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Abstract
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1 Introduction
The problem of absolute stability is often encountered in engineering practice. One spe-
cific form of this problem is the indirect control Lur’e problem, where the system to be
controlled is linear, but the control action is the output of a nonlinear scalar system that
itself receives output feedback. The special case where the output of the controller is a
nonlinear function of one variable whose graph lies between two lines in the first and
third quadrants of the coordinate plane is usually studied. Initially only systems of ordi-
nary differential equations were considered; see for example [–]. A historical overview
of the absolute stability problem can be found in [] or in the introduction of [].

In practical control processes time delays are common and they often cause instabilities,
as a result, the absolute stability problem of nonlinear control systems with delay has at-
tracted a lot of interest [, , –]. Nonlinear systems of neutral type with indirect control
are considered in [–]. Sufficient conditions for absolute stability for such systems are
derived in [, ] by the direct Lyapunov method using Lyapunov-Krasovskii functionals,
these conditions are given in Theorem  of this paper. The functionals are constructed by
taking the sum of a quadratic form of the current coordinates, integrals over the delay of
quadratic forms of the state and its derivative, and the integral of the nonlinear compo-
nents of the considered system [, , –]. All results from [, , ] can be put into a
unified form in terms of matrix algebraic inequalities. A very different approach is given
in [, ] or [, ], where integral operators are used.

In this paper we also consider what to do if absolute stability of the system under inves-
tigation cannot be established using the result given in Theorem . There are two obvious
options: either change the method of investigation or change the Lyapunov function or
functional. But there is a third option: we can try to add a linear state feedback to stabilize
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the closed loop system for the previously chosen Lyapunov function or functional. There
are some interesting papers devoted to the investigation of stability and stabilization tasks
[–].

The present article is a direct extension of []. The remainder of this paper is organized
as follows. In Section  the absolute stability problem of neutral type indirect nonlinear
control system is formulated, some notation is defined, and a result from [, ] is stated.
Section  introduces the concepts of stability and stabilization with respect to a given
functional for the case of a linear control system with delay. In Section  the scalar case of
a neutral system with nonlinear indirect control is treated. The indirect control system of
neutral type in the general matrix form is considered in Section . Finally, some conclusion
are drawn in Section .

2 Problem formulation and preliminaries
In this paper R

+
 = [,∞), Rn is the n-dimensional vector space over the real numbers;

R
m×n will be used for the set of all m × n matrices, In×n is the n × n identity matrix; m×n

is an m × n matrix filled with zeros; a superscript T marks the transpose of a vector or a
matrix; and �ek,n is the unit vector along the kth coordinate direction in an n-dimensional
space. Subscripts n and n × n, which indicate the dimension of the space or the matrix,
will be dropped whenever they are clear from the context. The Euclidean norm of a vector
a ∈R

n will be written as |a|, so

|a| =

( n∑
i=

a
i

) 


and for a square matrix A ∈R
n×n, |A| will be the operator norm induced by the Euclidean

vector norm. Recall that

|A| =
(
λmax

(
AT A

)) 
 ,

where λmax is the largest eigenvalue of ATA. We will write Cn,τ for the Banach space
C([–τ , ],Rn) of continuous functions from [–τ , ] to R

n with norm

‖x‖∞ = sup
s∈[–τ ,]

{∣∣x(s)
∣∣}

and use C
n,τ = C([–τ , ],Rn) for the Banach space C([–τ , ],Rn) of continuous functions

from [–τ , ] to R
n with a continuous derivative with norm

‖x‖∞, = sup
s∈[–τ ,]

{∣∣x(s)
∣∣, ∣∣ẋ(s)

∣∣}.

We will also need the time shift operator, which operates on time dependent functions
and is given by

Ttx = s �→ x(s + t).

For a function f with domain X, the function g with domain Y ⊂ X that coincides with
f on Y will be denoted by f |Y . As is usual in the literature on differential equations with
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delay, we will use the abbreviated notation xt for the time shifted function x, restricted to
the domain [–τ , ], so

xt = Ttx|[–τ ,].

In this paper we will consider a Lur’e system of neutral type with indirect control,

d
dt

[
x(t) – Dx(t – τ )

]
= Ax(t) + Ax(t – τ ) + bf

(
σ (t)

)
, t ≥ t, ()

d
dt

σ (t) = cTx(t) – ρf
(
σ (t)

)
, t ≥ t, ()

xt = φ ()

with φ ∈ Cn,τ , A, A, D ∈ R
n×n, b, c ∈ R

n, ρ, τ ∈ R, f ∈ C(R,R) such that ρ > , τ > ,
|D| < , and

kσ
 ≤ σ f (σ ) ≤ kσ

, ()

where k, k ∈ R and k > k > . This is a special case of the more general autonomous
neutral functional-differential equation

d
dt

[
x(t) – Dx(t – τ )

]
= F(xt), ()

where D ∈R
n×n and F ∈ C(Cn,τ ,Rn) with initial condition

xt = φ, ()

where φ ∈ C
n,τ . If we need to refer to a specific solution of () with () then we will use the

notation x〈t,φ〉.

Definition  A pair (x,σ ) ∈ C([t – τ ,∞),Rn) × C([t,∞),R) is a solution of (), (), ()
on [t,∞) if x satisfies () and the pair satisfies the system () and ().

Evidently, as discussed in [], p., there are obviously two families of metrics or mea-
sures for stability in this case, one based on x alone and another based on x and its deriva-
tive. A general theory of stability in two metrics or measures was first given by [] and
extended by []; see also [, ]. We use the definition of measure given in [].

Definition  A function h ∈ C(R+
 ×X,R+

), where X is a Banach space, is called a measure
in X if

inf
(t,x)∈R×X

h(t, x) = 

and the set of all measures in X is denoted by �(X).

Note the large difference in meaning conveyed by the subtle difference in terminology
between a ‘measure in X ’ and a ‘measure on X ’.
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Definition  For given h ∈ �(C
n,τ ) and h ∈ �(C

n,τ ) the solution x〈t,φ〉 of () with () is
(h, h) stable if

∀ε > ∃δ > ∀ψ ∈ Cn,τ : h(t,φ – ψ) ≤ δ ⇒ h(t, x〈t,φ〉t – x〈t,ψ〉t) ≤ ε.

Definition  For given h ∈ �(C
n,τ ) and h ∈ �(C

n,τ ) the solution x〈t,φ〉 of () with () is
(h, h) asymptotically stable if it is (h, h) stable and

∃δ > ∀ε > ∃T > t∀t ≥ T∀ψ ∈ Cn,τ :

h(t,φ – ψ) ≤ δ ⇒ h(t, x〈t,φ〉t – x〈t,ψ〉t) ≤ ε

or equivalently if it is (h, h) stable and

∃δ > ∀ψ ∈ Cn,τ : h(t,φ – ψ) ≤ δ ⇒ lim
t→∞ h(t, x〈t,φ〉t – x〈t,ψ〉t) → .

Definition  For given h ∈ �(C
n,τ ) and h ∈ �(C

n,τ ) the solution x〈t,φ〉 of () with () is
(h, h) exponentially stable (after for instance [, ]) if

∃ρ > ∃K > ∃λ > ∀t ≥ T∀ψ ∈ Cn,τ :

h(t,φ – ψ) ≤ ρ ⇒ h(t, x〈t,φ〉t – x〈t,ψ〉t) ≤ Kh(t,φ – ψ)e–λ(t–t).

Definition  For given h ∈ �(C
n,τ ) and h ∈ �(C

n,τ ) the solution x〈t,φ〉 of () with () is
(h, h) globally asymptotically stable if

∀ε > ∀ψ ∈ Cn,τ∃T > t∀t ≥ T : h(t, x〈t,φ〉t – x〈t,ψ〉t) ≤ ε.

Definition  We call the zero solution x : t �→ n×, σ : t �→  of (), () stable if it is (h, h)
stable for h(t,φ) = ‖φ‖∞ and h(t, 〈xt ,σt〉) =

√|xt()| + |σt()|.

Definition  We call the zero solution x : t �→ n×, σ : t �→  of (), () asymptot-
ically stable if it is (h, h) asymptotically stable for h(t,φ) = ‖φ‖∞ and h(t, 〈xt ,σt〉) =√|xt()| + |σt()|.

Definition  We call the zero solution x : t �→ n×, σ : t �→  of (), () globally
asymptotically stable if it is (h, h) globally asymptotically stable for h(t,φ) = ‖φ‖∞ and
h(t, 〈xt ,σt〉) =

√|xt()| + |σt()|.

Definition  We call the zero solution x : t �→ n×, σ : t �→  of (), () globally asymp-
totically stable in metric C if it is (h, h) globally asymptotically stable for h(t,φ) = ‖φ‖∞
and

h
(
t, 〈xt ,σt〉

)
= max

(√∣∣xt()
∣∣ +

∣∣σt()
∣∣,

√∣∣ẋt()
∣∣ +

∣∣σ̇t()
∣∣).

Definition  The system (), () is called absolutely stable if the zero solution of the sys-
tem (), () is globally asymptotically stable for an arbitrary function f (σ ) that satisfies ().
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To investigate the system (), () we use a Lyapunov-Krasovskii functional of the form

V [x,σ , t] = xT (t)Hx(t)

+
∫ t

s=t–τ

e–ζ (t–s){xT (s)Gx(s) + ẋT (s)Gẋ(s)
}

ds

+ β

∫ σ (t)

w=
f (w) dw, ()

where H , G, G ∈R
n×n and β ,γ ∈R, β > , ζ > .

We define the matrix

S[A, A, b, c,ρ, τ , H , G, G,β , ζ ] =

⎡
⎢⎢⎢⎣

S S S S

ST
 S S S

ST
 ST

 S S

ST
 ST

 ST
 S

⎤
⎥⎥⎥⎦ , ()

where

S = –AT
 H – HA – G – AT

 GA, S = –HA – AT
 GA,

S = –HD – AT
 GD, S = –Hb – AT

 Gb –


βc,

S = e–ζτ G – AT
 GA, S = AGD, S = –AT

 Gb,

S = e–ζτ G – DT GD, S = –DT Gb, S = βρ – bT Gb.

()

In [, ] a general theorem was proved, that provided sufficient conditions for absolute
stability and estimates of the exponential decay for the solutions of the system (), (),
when the elements of the matrices A and A were only known to lie in given intervals.
When A and A are known exactly the following theorem follows immediately.

Theorem  Let |D| < , ρ, τ >  and suppose that there exist positive definite matrices G,
G, H , and constants ζ > , β >  such that the matrix S[A, A, b, c,ρ, τ , H , G, G,β , ζ ] is
positive definite. In that case the system (), () is absolutely stable in metric with respect
to the metric defined earlier for C.

Corollary  Let |D| < , ρ, τ >  and suppose that there exist positive definite matrices G,
G, H , and constants  < λ < , β >  such that the matrix S̃[A, A, b, c,ρ, τ , H , G, G,β ,λ]
given by Sij for (i, j) /∈ {(, ), (, )} and S̃ = λG – AT

 GA, S̃ = λG – DT GD is positive
definite. In that case the system (), () is absolutely stable in metric in metric C for all
finite delays τ .

Proof For each τ this follows from Theorem  by taking ζ = τ– logλ. �

Note  In this corollary there are no conditions on the delay other than τ > .

In analogy with the definition of exponential stability in terms of two measures we can
use the existence of a Lyapunov-Krasovkii functional with specific properties to define a
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new type of stability. The definition is based on the inequality

d
dt

V [x, t] ≤ –γ V [x, t]. ()

Definition  A system is stable with respect to the functional V with exponent γ >  if
inequality () holds for the total derivative of the functional V [x, t] along any solution of
x : t �→ x(t) of the system.

For some systems it can be profitable to examine the possibility of stabilizing the system
by allowing a specific type of linear state feedback.

Definition  A system is stabilizable with respect to functional V and state feedback of
a given type if the adding state feedback of that type results in a system that is stable with
respect to the functional V with exponent γ > .

To illustrate the use of these definitions in the next two sections we will apply these
definitions first in the case of a linear system with delay and then in the case of a scalar
nonlinear neutral system with indirect control.

3 A Lyapunov-Krasovkii functional approach to a linear problem with delay
Before considering the general problem of stabilization of nonlinear control systems, an
example of a linear control system with delay is used to introduce the concept of stability
and stabilization with respect to a given functional and to demonstrate the methodology.
Let us consider the control system

ẋ(t) = Ax(t) + Ax(t – τ ) + bu(t) ()

with A, A ∈ R
n×n, b, c ∈ R

n, and u(t) is a scalar function and τ >  is constant. To inves-
tigate the system () we use a Lyapunov-Krasovskii functional of the form

V
[
x(t)

]
= xT (t)Hx(t) +

∫ 

s=–τ

eγ sxT (t + s)Gx(t + s) ds, ()

where H , G ∈R
n×n and γ ∈ R, ζ > . We will consider controls of the form

u(t) = cT x(t) + dT x(t – τ ), ()

where c, d ∈R
n. First, let us consider stability with respect to the functional ().

Theorem  Consider () for b =  and with given A, A. Let there be positive definite
matrices G and H and a constant γ >  such that the matrix

M[A, A, G, H ,γ , τ ]

=

[
–(AT

 H + HA + G + γ H) –HA

–AT
 H e–γ τ G

]
()

is positive definite. In that case the system () is stable with respect to functional () with
matrices G, H , and exponent γ .
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Proof Let x(t) be a solution of (). We introduce the vector

y(t) =

[
x(t)

x(t – τ )

]
.

We can now write

x(t) = [I ]y(t), x(t – τ ) = [ I]y(t), ẋ(t) = [A A]y(t). ()

To show that the system () is stable with respect to functional () we need to show that
() holds. For this we need to take the derivative of V [x(t)]:

d
dt

V
[
x(t)

]
= ẋT(t)Hx(t) + xT(t)Hẋ(t)

+
d
dt

(∫ t

ξ=t–τ

e–γ (t–ξ )xT(ξ )Gx(ξ ) dξ

)
. ()

The terms containing H in () can be rewritten in terms of y(t) by using ()

ẋT(t)Hx(t) + xT(t)Hẋ(t) = yT(t)

[
(AT

 H + HA) HA

AT
 H 

]
y(t). ()

To rewrite the terms in () containing the integral we will use

V
[
x(t)

]
– xT(t)Hx(t) =

∫ t

s=t–τ

eγ (s–t)xT(s)Gx(s) ds

and

d
dt

∫ t

s=t–τ

eγ (s–t)g(s) ds = –γ

∫ t

s=t–τ

eγ (s–t)g(s) ds + g(t) – e–γ τ g(t – τ ).

If we insert g(t) = xT(s)Gx(s) then this results in

d
dt

(
V

[
x(t)

]
– xT(t)Hx(t)

)
= (–γ )

(
V

[
x(t)

]
– xT(t)Hx(t) + xT(t)Gx(t) + e–γ τ

(
–xT(t – τ )Gx(t – τ )

)
,

which with the aid of () can be put into matrix form

d
dt

(
V

[
x(t)

]
– xT(t)Hx(t)

)

= (–γ )
(
V

[
x(t)

]
– xT(t)Hx(t)

)
+ yT (t)

[
G 
 –e–γ τ G

]
y(t).

If we combine these results, then we get

d
dt

V
[
x(t)

]
= –yT (t)My(t) – γ V

[
x(t)

]
and by positive definiteness of M we have (). �
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Example  If in Theorem  we take

A =

[
– 



 –

]
; A =


,

[
– 

 –

]
; τ = ,

then the conditions of the theorem are satisfied when we take

G =

[
 –
– 

]
, H =

[
 –
– 

]
, γ = .

Corollary  Let there be positive definite matrices H and G, vectors c and d, and a constant
γ >  such that the matrix

M
[
A + bcT , A + bdT , G, H

]
is also positive definite. In that case the system () is stabilizable with respect to functional
() with state feedback of type (), matrices G, H , and exponent γ .

Proof This follows immediately from Theorem . �

Corollary  If the pair (A, b) is controllable and

R =
[
b Ab A

 b · · · An–
 b An–

 b
]

and det(λI – A) = λn + pλ
n– + · · · + pn and we define

Ã =

[
(n–)×

I(n–)×(n–)

∣∣∣∣ –p

]
= R–AR,

Ã = R–AR, H̃ = RT HR, G̃ = RT GR,

b̃ = R–b = �en, c̃ = RT c, d̃ = RT d,

and the matrix

M̃ =

[
–(Ã + 

γ I)T H̃ – H̃(Ã + 
γ I) – G –H̃A

–AT
 H e–γ τ G

]

is positive definite, then the system () is stabilizable with respect to functional () with
state feedback of type (), matrices G, H , and exponent γ .

Proof If we apply the change of basis y(t) = R–x(t), then this corollary follows immediately
from the previous corollary. �

4 A scalar Lur’e system of neutral type with indirect control
Let us consider an indirect control system of neutral type described by a two scalar equa-
tions

d
dt

[
x(t) – dx(t – τ )

]
= ax(t) + ax(t – τ ) + bf

(
σ (t)

)
, ()
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d
dt

σ (t) = cx(t) – ρf
(
σ (t)

)
, ()

where t ≥ t ≥ , x is the state function, σ is the control defined on [t,∞), a, a, b, c,
– < d < , ρ > , τ >  are constants, and f is a continuous function on R that satisfies the
sector condition ().

For this case the Lyapunov-Krasovskii functional () can be written as

V
[
x(t),σ (t), t

]
= h · (x(t)

)

+
∫ t

s=t–τ

e–ζ (t–s){g
(
x(t)

) + g
(
ẋ(s)

)}ds

+
∫ σ (t)

w=
f (w) dw,

where h > , g > , g > , ζ >  are constants, (x,σ ) is a solution of (), (), and t ≥ t ≥
. We define

s = –ah – g – a
 g, s = –ah – aag, s = –hd – a dg,

s = –hb – ag, s = e–ζτ g – a
g, s = –agd, s = –agb,

s =
(
e–ζτ – d)g, s = –dgb, s = βρ – bg,

and the symmetric matrix

S[a, a, b, c,ρ, h, g, g,β , ζ ] =

⎡
⎢⎢⎢⎣

s s s s

s s s s

s s s s

s s s s

⎤
⎥⎥⎥⎦ ,

where sij = sji. Our first result is a theorem on the absolute stability for the system (),
().

Theorem  If there exist constants h > , g > , g > , β > , ζ >  such that the matrix
S[a, a, b, c,ρ, h, g, g,β , ζ ] is positive definite, then the system (), () is absolutely stable.

Proof The proof of this theorem follows directly from Theorem . �

Example  If in Theorem  we take

a = –, a =



, d = –



, b =




, c =



, ρ = , τ = ,

then the conditions of the theorem are satisfied for

g =



, g =



, h =



, β =



, ζ =



.

From Sylvester’s criterion [], Theorem .., it follows that a necessary and sufficient
condition for positive definiteness of the matrix S is that all of the leading principal minors



Shatyrko et al. Advances in Difference Equations  (2015) 2015:64 Page 10 of 18

are positive, that is,

s > , ()

ss – (s) > , ()

det

⎛
⎜⎝

s s s

s s s

s s s

⎞
⎟⎠ > , ()

det(S) > . ()

From inequalities () to () we can determine whether or not the matrix S is positive
definite. If it is then the system (), () is absolutely stable. Another approach is based
on the lemma on the properties of block matrices given below.

Lemma  Let A be a regular n × n matrix, B be an n × q matrix, and C be a regular q × q
matrix. Let a Hermitian matrix S be represented as

S =

[
A B
B∗ C

]
.

This matrix S is positive definite if and only if the matrices A and

C – B∗A–B

are positive definite. Here B∗ denotes the Hermitian adjoint.

Proof See [], Theorem .. �

Now we can use this to formulate another set of stability conditions.

Theorem  For S = S[a, a, b, c,ρ, h, g, g,β , ζ ] let

W = [I× ×]S

[
I×

×

]
,

W = [× I×]S

[
×

I×

]
,

W = [I× ×]S

[
×

I×

]
,

and suppose there exist constants h > , g > , g > , β > , ζ >  such that the inequalities
(), () hold and the matrix

W – W T
W –

 W ()

is positive definite. In that case the system (), () is absolutely stable.
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Proof According to Lemma , S is positive definite if and only if W and W –W T
W –

 W

are positive definite. This completes the proof. �

The crucial assumption in Theorem  is the assumption of positive definiteness of the
matrix S[a, a, b, c,ρ, h, g, g,β , ζ ]. If we cannot find suitable constants c > , h > , g > ,
g > , β > , ζ >  to ensure positive definiteness, then we cannot apply Theorem . If
that is the case, then we can consider modification of the control function in (), () by
adding a linear combination of the state at t and at t – τ

d
dt

[
x(t) – dx(t – τ )

]
= ax(t) + ax(t – τ ) + bf

(
σ (t)

)
+ u(t), ()

d
dt

σ (t) = cx(t) – ρf
(
σ (t)

)
+ v(t), ()

where

u(t) = cx(t) + cx(t – τ ),

v(t) = cx(t),

and c, c, and c are suitable constants. Inserting the definitions of u and v in system (),
() results in

d
dt

[
x(t) – dx(t – τ )

]
= (a + c)x(t) + (a + c)x(t – τ ) + bf

(
σ (t)

)
, ()

d
dt

σ (t) = (c + c)x(t) – ρf
(
σ (t)

)
. ()

In this case the matrix of the total derivative takes of the functional along the solution will
be of the form

S[a + c, a + c, b, c + c,ρ, h, g, g,β , ζ ].

To stabilize the system we need to find c, c, and c such that

S[a + c, a + c, b, c + c,ρ, h, g, g,β , ζ ]

is positive definite. We can now either use the Sylvester criterion [] and look for c, c,
and c such that the leading principal minors of S are positive or use Lemma  by defining

W = [I× ×]S

[
I×

×

]
,

W = [× I×]S

[
×

I×

]
,

W = [I× ×]S

[
×

I×

]
,
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where

S = S[a + c, a + c, b, c + c,ρ, h, g, g,β , ζ ]

and look for c, c, and c such that the matrices S and S –ST
S–

 S are positive definite.

5 Stabilization
Let us return to our original system (), (). According to Theorem  for absolute stability
of the system (), () we need the matrix

S[A, A, b, c,ρ, τ , H , G, G,β , ζ ]

to be positive definite. From the Sylvester criterion [] it follows that we can verify that the
matrix is positive definite by calculating its leading principal minors, that is, by verifying
the positivity of n +  determinants. Using the results of Lemma  we will give another
set of absolute stability conditions. To do so we give names to specific blocks in matrix ()
as follows:

W = [In×n (n+)×(n+)]S

[
In×n

(n+)×(n+)

]
,

W = [In×n (n+)×(n+)]S

[
n×n

I(n+)×(n+)

]
,

W = [n×n I(n+)×(n+)]S

[
n×n

I(n+)×(n+)

]
,

where

S = S[A, A, b, c,ρ, τ , H , G, G,β , ζ ].

Theorem  The sufficient conditions of absolute stability of neutral-type indirect con-
trol system (), () are the existence of the positive definite matrices W and W –
(W)T (W)–W.

Proof According to Lemma  the condition imposed on the matrices W and W –
(W)T (W)–W implies that S is positive definite. Theorem  now implies that the sys-
tem is stable. �

Therefore, the absolute stability investigation problem is reduced to the task of checking
of positive definiteness for two matrices, one of which is n-dimensional and the other is
n + -dimensional. Note that we can use Lemma  to reduce the proof of positive definite-
ness of the n-dimensional case to positive definiteness of two n-dimensional matrices.

Example  When the matrices have special properties, Theorem  can be quite useful.
For example suppose we have

A =



√



⎡
⎢⎣

 – 
–  
 

√


⎤
⎥⎦ , A =




⎡
⎢⎣

  
  
  

⎤
⎥⎦ , D =




⎡
⎢⎣

  
  
  

⎤
⎥⎦ .
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Now A is negative definite and

AT
 D = , DTb = , AT

 b = ,

or in other words b is in the intersection of the null spaces of DT and AT
 and the image of

D is in the null space AT
 .

If we could take H = –hA, G = gI , and G = gI , then our matrix S would be of the
form

⎡
⎢⎢⎢⎣

(h – g)AT
 A – gI (h – g)AT

 A (h – g)AT
 D (h – g)AT

 b – 
βc

(h – g)AT
 A ge–ζτ I – gAT

 A  
(h – g)DTA  g(e–ζτ I – DTD) 

(h – g)bTA – 
βcT   βρ – gbTb

⎤
⎥⎥⎥⎦ .

It is interesting to examine under what conditions we could actually do this and still prove
positive definiteness of the matrix. To apply Theorem  to this matrix we need the follow-
ing matrices to be positive definite:

W =

[
(h – g)AT

 A – gI (h – g)AT
 A

(h – g)AT
 A ge–ζτ I – gAT

 A

]

and

W – W T
W –

 W,

where

W =

[
g(e–ζτ I – DTD) 

 βρ – gbTb

]

and

W =

[
(h – g)AT

 D (h – g)AT
 b – 

βc
 

]
.

Note that we can apply Lemma  to W, so the proof of positive definiteness of W reduces
to the proofs that

(h – g)AT
 A – gI

and

ge–ζτ I – gAT
 A – (h – g)AT

 AS–
 AT

 A

are positive definite.
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A tempting further simplification would be h = g, which would simplify W and W

to

W =

[
hAT

 A – gI 
 ge–ζτ I – gAT

 A

]

and

W =

[
 – 

βc
 

]
,

while for W – W T
W –

 W we would get

[
g(e–ζτ I – DTD) 

 βρ – gbTb

]
–




β

[
 
 cT(hAT

 A – gI)–c

]

to get a positive definite S. Under these assumptions we would need the following matrices
to be positive definite:

S = hAT
 A – gI, ()

S = ge–ζτ I – gAT
 A, ()

S = g
(
e–ζτ I – DTD

)
, ()

and we would need r(ρ, b, c,β , g, h) defined by

r(ρ, b, c,β , g, h) = βρ – gbTb –



βcT(
hAT

 A – gI
)–c ()

to be positive.
For () we need g >  and exp(–ζ τ ) > ‖DTD‖ which can be realized by taking ζ >

– log‖DTD‖. This is possible because ‖D‖ < . For () is possible only if ge–ζτ > h‖AT
 A‖

and for () we need h‖AT
 A‖ > g. For () to hold we need




βcT(
hAT

 A – gI
)–c – βρ + gbTb < ,

which is solvable if and only if

ρ > gβ
(cT(

hAT
 A – gI

)–c
)
bTb.

For our example we find

W = h

⎡
⎢⎣


 – 

 
– 



 

  


⎤
⎥⎦ – gI, ()

S = ge–ζτ I – h

⎡
⎢⎣

  
 

 
  

⎤
⎥⎦ , ()
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S = h

⎛
⎜⎝e–ζτ I –

⎡
⎢⎣

  
 

 
  

⎤
⎥⎦

⎞
⎟⎠ , ()

and

r = βρ –



h –




β

⎡
⎢⎣





⎤
⎥⎦

T ⎛
⎜⎝h

⎡
⎢⎣


 – 

 
– 



 

  


⎤
⎥⎦ – gI

⎞
⎟⎠

– ⎡
⎢⎣





⎤
⎥⎦ > . ()

We see that for g = h/ and  < ζ < (log )/τ the matrices

h

⎡
⎢⎣

 – 
 

– 
  

  

⎤
⎥⎦ , ()

h

⎛
⎜⎝ 


e–ζτ I –




⎡
⎢⎣

  
  
  

⎤
⎥⎦

⎞
⎟⎠ , ()

h

⎛
⎜⎝e–ζτ I –

⎡
⎢⎣

  
 

 
  

⎤
⎥⎦

⎞
⎟⎠ ()

are positive definite and

r = βρ –



h –


h

β

⎡
⎢⎣





⎤
⎥⎦

T ⎛
⎜⎝

⎡
⎢⎣

 – 
 

– 
  

  

⎤
⎥⎦

⎞
⎟⎠

– ⎡
⎢⎣





⎤
⎥⎦ > , ()

which, after insertion of the inverse matrix,

r = βρ –



h –


h

βh–

⎡
⎢⎣





⎤
⎥⎦

T ⎡
⎢⎣





 





 

  

⎤
⎥⎦

⎡
⎢⎣





⎤
⎥⎦ > , ()

reduces to




βh – βρ +



h < . ()

This holds for

ρ –
√

ρ – h

h
< β <

ρ +
√

ρ – h

h
,

which is solvable as long as ρ > h.

If we cannot find suitable matrices G, G, H , and constants β > , ζ >  to ensure pos-
itive definiteness, or such matrices and constants do not exist, then Theorem  is not
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applicable. In such a case we can try to construct a feedback control u, v, such that the
modified system

d
dt

[
x(t) – Dx(t – τ )

]
= Ax(t) + Ax(t – τ ) + bf

(
σ (t)

)
+ u(t), ()

d
dt

σ (t) = cT x(t) – ρf
(
σ (t)

)
+ v(t), ()

u(t) = Cx(t) + Cx(t – τ ), ()

v(t) = Cx(t) ()

will be absolutely stable, where C and C are n × n matrices and C is a  × n matrix.
Define

S = S
[
A + C, A + C, b, c + CT

 ,ρ, τ , H , G, G,β , ζ
]
.

We give a generalization of the two previous options of finding of the stabilization condi-
tions to the case of the system (), ().

Theorem  Suppose that there are matrices C, C, and C, such that the matrix S is pos-
itive definite. In that case the system (), () is stabilizable with respect to the state feedback
shown in (), (), and the functional ().

Proof The proof follows immediately from Theorem . �

Using the results of Lemma , we can replace verification of positive definiteness of ma-
trix S by verification of positive definiteness of two matrices of lower dimensionality.

Theorem  Define

S̃ = [In×n (n+)×(n+)]S

[
In×n

(n+)×(n+)

]
,

S̃ = [In×n (n+)×(n+)]S

[
n×n

I(n+)×(n+)

]
,

S̃ = [n×n I(n+)×(n+)]S

[
n×n

I(n+)×(n+)

]
.

Suppose that there are matrices C, C, and C, such that the matrices S̃ and S̃ –
(S̃)T (S̃)–S̃ are positive definite. In that case the system (), () is stabilizable with re-
spect to the state feedback shown in (), (), and the functional ().

6 Conclusions
We discussed the stabilization problem for an indirect control Lur’e system of neutral
type. Based on the direct Lyapunov method (Lyapunov-Krasovskii approach) several sta-
bilization criteria were given in terms of a set of matrix algebraic inequalities. A sufficient
condition for absolutely stability of the closed loop system was presented.
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