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1 Analysis of projectile motion in view of Riemann-Liouville fractional calculus
1.1 Introduction
In this paper we consider a projectile motion in view of Riemann-Liouville fractional cal-
culus. The projectile motion is one of the simplest problems whose analogs are ubiqui-
tous in physics. The purpose of this paper is to extend the Caputo approach of [] to the
Riemann-Liouville case. We obtain some new formulas, in particular, the trajectory using
the Riemann-Liouville fractional derivative is different. We compare both approaches and
indicate new directions of research.

The fractional calculus is an extension of the ordinary calculus and has a history of over
 years old. It represents a generalization of the ordinary differentiation and integration
to arbitrary order and fractional calculus has applications in various fields, e.g. physics,
engineering or biology [–]. Differential equations of fractional order have assumed a
relevant role in the most diverse areas of science and engineering. Some physical consid-
erations in favor of the use of fractional models are given in [] and fractional mechanics
is presented in [, ].

Many times the authors replace the usual integer derivative by another derivative of
fractional order. However, from the physical point of view that is not totally correct [] and
some dimensional correction in the new equation is necessary; for example, substituting
a first order derivative D := d

dt by 
σ –α Dα where σ has an appropriate dimension [].

For some new directions in fractional calculus and fractional differential equations we
refer the reader for example to [–].

1.2 Definitions and preliminaries
We recall some definitions of fractional calculus.
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The fractional integral of order α >  of a function f : [, T] →R is defined by

Iα
+ f (t) =

∫ t



(t – s)α–

�(α)
f (s) ds,

provided the right-hand side integral exists for almost every t ∈ [, T]. Here � is the clas-
sical gamma function. This fractional integral is well defined if, for example, f ∈ L(, T).

Let α > , n –  < α < n, n ∈N, n ≥ .

.. Caputo fractional derivative
Consider the space ACn[, T] of functions with absolutely continuous derivatives up to
order n –  and with absolutely continuous n-derivative.

The Caputo fractional derivative of a function f ∈ ACn[, T], T >  is defined by []

cDαf (t) =
dαf
dtα

=


�(n – α)

∫ t


(t – τ )n–α–f (n)(τ ) dτ , t ∈ [, T]. (.)

The Laplace transform of a function f : [,∞) →R is the function F(s),

F(s) = L
{

f (t)
}

=
∫ ∞


e–stf (t) dt,

provided it is well defined.
If we apply the Laplace transform to (.) we get []

L
{cDαf (t)

}
= sαF(s) –

n–∑
m=

sα–m–f (m)(). (.)

.. Riemann-Liouville fractional derivative
The Riemann-Liouville fractional derivative of a function f is defined as

Dαf (t) =
dαf
dtα

=


�(n – α)

(
d
dt

)n ∫ t


(t – τ )–α+n–f (τ ) dτ , (.)

provided the left-hand side is defined for almost every t > . If we apply the Laplace trans-
form, we get

L
{

Dαf (t)
}

= sαF(s) –
n–∑
m=

smf (α–m–)(). (.)

We recall that the Caputo derivative of a constant function is zero, i.e., cDα() = . How-
ever, for the Riemann-Liouville derivative:

Dα =


�( – α)
t–α .

Also Dαtα–j =  for j = , , . . . , [α] + .
A useful formula is the following relation:

Dαtγ =
�(γ + )

�(γ +  – α)
tγ –α , α > ,γ –  > , t > ,

and for γ =  we obtain the Riemann-Liouville derivative of a constant.
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.. Mittag-Leffler function
A two-parameter function of the Mittag-Leffler type is defined by the series expansion []:

Eα,β (z) =
∞∑

m=

zm

�(αm + β)
(α > ,β > ). (.)

The Laplace transform for the Mittag-Leffler function is very useful in solving fractional
differential equations:

∫ ∞


e–sttαm+β–E(m)

α,β
(±atα

)
dt =

m!sα–β

(sα ± a)m+

(
Re(s) > a


α
)
. (.)

Hence

L–
[

m!sα–β

(sα ± a)m+

]
= tαm+β–E(m)

α,β
(±atα

)
. (.)

The general solution of the following simple fractional differential equation:

cDαf = 

is given by

f (t) = c + ct + · · · + cn–tn–

with c, c, . . . , cn– arbitrary constants.
Thus for  < α < , the general solution of cDαf =  is a constant.
However, for the Riemann-Liouville derivative we find that the general solution of

Dαf = 

is given by

f (t) = ctα–n + ctα–n+ + · · · + cn–tα–. (.)

Thus for  < α < , the general solution of

Dαf =  is f (t) = ctα–, c ∈R.

This is a crucial difference since tα– has a singularity at t = +.

1.3 Classical problem formulation of projectile motion
A familiar basic physics problem involves the determination of the motion of an object
which is projected into a spatial medium and subject to a uniform gravitational field. In
this section, we consider the introductory version of this problem in which the medium
usually does not offer resistance to the projectile motion. The projectile is treated as a
particle of mass m under an uniform gravitational force and no drag force is considered.
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Under these conditions, the classical equations of motion for the particle, in the x-y plane,
are given by

m
dx
dt = , m

dy
dt = –mg, (.)

by the classic Newton law.
The corresponding initial conditions are

x() = , ẋ() = v cosφ,

y() = , ẏ() = v sinφ;
(.)

namely, the projectile starts from rest, with an initial force of module v and an angle φ.
The trajectory is given by a parabola:

y = tanφx –
g

v


sec φx.

The range is the horizontal distance traveled by the projectile from the time it is fired
until it lands. The maximum altitude is the height of the highest point in the trajectory.
The time of flight is the amount of time the projectile spends in the air between when it is
fired and when it lands.

The range is

v


g
sinφ cosφ,

and the corresponding flight time is

v sinφ

g
.

The range is maximum for φ = π
 . Finally the maximum height is equal to

v
 sin φ

g
.

1.4 Caputo fractional problem formulation
Now consider the above problem in view of the fractional calculus. Before doing so, we
consider the question of how to formulate the acceleration of a particle in the fractional
approach. It seems reasonable to consider instead of the second derivative a fractional
order derivative []. The fractional differential equations for the projectile problem is then

dαx
dtα

= ,
dαy
dtα

= –g, (.)

where  < α ≤ .
For α =  we recover, of course, the classical case (.).
Physically, we can interpret the fractional derivatives of x and y, respectively, as the ac-

celerations of the projectile in the horizontal and vertical directions, which reduce to the
acceleration of the classical mechanics at α → –.
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First we recall the solutions using the Caputo derivative []. The general solution of (.)
using the Caputo derivative is

x(t) = c + ct, y(t) = –g
tα

�(α + )
+ d + dt.

Implementing the initial conditions (.) we get

x(t) = v cosφt, y(t) = –g
tα

�(α + )
+ v sinφt. (.)

For the Caputo derivative the solution of (.) can also be obtained by means of Laplace
transform (.) as in []:

sαX(s) – sα–x() – sα–ẋ() = ,

sαY (s) – sα–y() – sα–ẏ() = –
g
s

.
(.)

Using the initial conditions (.), we get

X(s) =
v cosφ

s , Y (s) = –
g

sα+ +
v sinφ

s , (.)

and then x, y are given by (.).

1.5 Riemann-Liouville fractional problem formulation
For the Riemann-Liouville derivative the corresponding and adequate initial conditions
are []

Dα–x() = , Dα–x() = v cosφ,

Dα–y() = , Dα–y() = v sinφ,
(.)

which, of course, coincide with the initial conditions (.) for α = .
The general solution of (.) for the Riemann-Liouville derivative is given by

x(t) = ctα– + ctα–,

y(t) = dtα– + dtα– –
g

�(α + )
tα ,

in view of (.).
However,

Dα–x(t) = cDα–(tα–) + cDα–(tα–).

We have

Dα–(tα–) = 

and

Dα–(tα–) = �(α).
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Therefore Dα–x(t) = c�(α).
Using the initial condition Dα–x() = v cosφ, we can conclude that c = v cosφ

�(α) , so that

x(t) = ctα– +
v cosφ

�(α)
tα–.

Using the other initial condition we obtain with c,

Dα–x(t) = c�(α – ) + v cosφt,

since Dα–(tα–) = �(α – ) and Dα–(tα–) = �(α)t.
Therefore Dα–x() =  implies c =  and we get

x(t) =
v cosφ

�(α)
tα–. (.)

In the same way

Dα–y(t) = –gt + d�(α),

Dα–y(t) =
–


gt + d�(α – ) + v sinφt,

where we obtain d = v sinφ

�(α) , d = , i.e.,

y(t) =
–g

�(α + )
tα +

v sinφ

�(α)
tα–. (.)

We point out that the solution x(t), y(t) given by (.), (.) is qualitatively different
from the solution (.). With this Riemann-Liouville approach we get new fractional tra-
jectories.

For the Riemann-Liouville derivative, the solution of (.) can also be reached by means
of the Laplace transform (.) as follows:

sαX(s) – Dα–x() – sDα–x() = ,

sαY (s) – Dα–y() – sDα–y() = –
g
s

.
(.)

Using the initial conditions (.), we get

X(s) =
v cosφ

sα
, Y (s) = –

g
sα+ +

v sinφ

sα
. (.)

From this it follows that x(t), y(t) are given by (.), (.), respectively.

1.6 Features of projectile motion in the fractional calculus
As we have recalled before, three quantities are particularly relevant for identifying, dis-
tinguishing, and analyzing trajectories in our setting: the range, the maximum altitude,
and the time of flight.

We recall each of these quantities using the Caputo derivative [] and compute them for
the Riemann-Liouville derivative.
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.. Trajectory
Caputo: By eliminating t from (.), we obtain the trajectory of the fractional projectile
for arbitrary α as:

y = tanφx –
gxα

�(α + )(v cosφ)α
. (.)

This was obtained in [].
As α → –, (.) gives the classical trajectory equation:

y = tanφx –
g

v


sec φx. (.)

Riemann-Liouville: By eliminating t from (.), (.) we now obtain the trajectory of
the fractional projectile from (.), (.):

y = tanφx –
g

�(α + )

(
x�(α)

v cosφ

) α
α–

. (.)

As a new result, as α → –, from (.) we obtain the classical trajectory equation (.).
Observe that (.) is different from (.).

.. Range
The fractional projectile range is defined as the value of x at the impact point.

Caputo []: Thus, y =  at x = RF. Hence, RF is given as

RF = (v)
α

α–

[
�(α + )

g

] 
α–

(sinφ)


α– cosφ. (.)

Also as α → –, (.) leads to the range of the classical projectile:

RC =
v


g

sinφ cosφ. (.)

See Figure  for v = .
Riemann-Liouville: Doing again y =  at x = RF, we obtain in this case for RF,

RF =
v cosφ

�(α)

(
αv sinφ

g

)α–

, (.)

which is different and, surprisingly, simpler than (.). See Figure .
As α → –, from (.) we obtain the range of the classical projectile (.).
We compare both ranges in Figure .

.. Flight time
The fractional time of flight tF-flight is defined as the value of t at which the projectile hits
the ground.

Caputo: Thus, y =  at t = tF-flight, hence

tF-flight =
[

�(α + )v sinφ

g

] 
α–

. (.)
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Figure 1 Range (Caputo) depending on the order of differentiation α, 1 < α < 2, and the angle φ,
0 ≤ φ ≤ π

2 (v0 = 2).

Figure 2 Range (Riemann-Liouville) depending on the order of differentiation α and the angle φ
(v0 = 2).

Figure 3 Comparison between ranges depending on the order of differentiation α and the angle φ
(v0 = 2).
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Here, it should be noted also that the classical flight time tC-flight can be deduced from
(.) at α → – as

tC-flight =
v sinφ

g
. (.)

Riemann-Liouville: Doing y =  at t = tF-flight, we obtain

tF-flight =
αv sinφ

g
. (.)

This has a simpler expression than the Caputo analogous (.).
Again, it is verified that the classical flight time tC-flight can be obtained from (.) at

α → – to get (.).

.. Maximum height
Caputo: The projectile reaches its maximum height when its vertical component vanishes,
i.e., ẏ = . By solving this equation for t, we get

theight-max =
[

�(α)v sinφ

g

] 
α–

. (.)

Substituting (.) into y(t) in (.), we obtain the Caputo fractional maximum height HF:

HF =
(

 –

α

)[
�(α)

g

] 
α–

(v sinφ)
α

α– . (.)

Here, we can also obtain the maximum height of the classical projectile when α → –:

HC =
v

 sin φ

g
. (.)

Riemann-Liouville: Solving for t the equation ẏ = , we obtain

theight-max =
(α – )v sinφ

g
. (.)

Substituting (.) into y(t) in (.), we obtain the Riemann-Liouville fractional maximum
height HF:

HF =
–((α – )v sinφ)α

�(α + )gα– +
(v sinφ)α

�(α)

(
α – 

g

)α–

. (.)

If α → –, we obtain again (.). We have

HC =
v

 sin φ

g
. (.)

2 Relationship between the ranges
In this section we present two main results: one of them comparing the range of a projectile
using the fractional calculus by the Caputo derivative with the range in the classical case
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(Theorem  of []), and the other comparing again the classical range with the fractional
range, but using this time the new formulas obtained for the Riemann-Liouville derivative.

Theorem . ([]) Suppose that

μ =


[
�(α + )

] 
α–

[
v sinφ

g

] –α
α–

,

then the relation between the range of a projectile using fractional calculus (by Caputo)
RF-C and the range in the classical case RC is given by RF-C = μRC, hence:

. RF-C = RC if μ = , i.e., v sinφ = [ α–

�(α+) ] 
–α g .

. RF-C > RC if μ > , i.e., v sinφ > [ α–

�(α+) ] 
–α g .

. RF-C < RC if μ < , i.e., v sinφ < [ α–

�(α+) ] 
–α g .

We now give the corresponding result for the Riemann-Liouville range without proof,
since it is similar to that of Theorem ..

Theorem . Suppose that υ = g–α (v sinφ)α–αα–

�(α) , then the relation between the range of
a projectile using fractional calculus (by Riemann-Liouville) RF-RL and the range in the
classical case RC is given by RF-RL = υRC, hence:

. RF-RL = RC if υ = , i.e., v sinφ = ( �(α)
αα– ) 

α– 
g .

. RF-RL > RC if υ > , i.e., v sinφ > ( �(α)
αα– ) 

α– 
g .

. RF-RL < RC if υ < , i.e., v sinφ < ( �(α)
αα– ) 

α– 
g .

3 Maximum projectile range
In applications, the maximum projectile range and the required optimal projection angle
are of considerable interest (e.g. in situations for which the projectile serves as a delivery
system [, , ]). In order to maximize RF, it is necessary to optimize the projection
angle φ. This is developed below.

Theorem . (see [], Theorem ) The optimal projection angle φmax and the maximum
projectile range RF-max (by Caputo) are given by

φmax = tan–
(

√
α – 

)
;

π


≤ φmax <

π



and

RF-max =
√

α – 
α

[
�(α + )vα

√
αg

] 
α–

.

See Figure  for the optimal angle. For α =  the optimal angle is π
 = . . . . and

the maximum range in Figure  for v =  where for α = , we obtain according to (.),
an approximate value of ..

We now present a new result on the optimal angle with the Riemann-Liouville approach.

Theorem . The optimal projection angle φmax to attain the maximum projectile range
RF-max (by Riemann-Liouville) is given by

φmax = tan–(
√

α – );
π


≤ φmax <

π


,
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Figure 4 Optimal angle using the Caputo
fractional derivative.

Figure 5 Maximum range using the Caputo
fractional derivative (v0 = 2).

and the corresponding maximum range

RF-max =
(

v

�(α)

)α(
�(α + )

g

)α– √
α

(
α – 

α

) α–


.

Proof We have to maximize the function RF given in (.), and for this a necessary con-
dition is dRF

dφ
= . Therefore,

dRF

dφ
=

(
v

�(α)

)α(
�(α + )

g

)α–[
(α – )(sinφ)α–(cosφ) – (sinφ)α

]
.

The next step is to solve the equation dRF
dφ

=  as φ = φmax, and after some simple calcu-
lations we get

φmax = tan–(
√

α – ). (.)

On the other hand,  < α ≤ – implies that  ≤ √
α– < ∞, i.e., π

 ≤ φmax < π
 .

When in this equation we let α → –, we obtain φmax = π
 , which is the optimal projec-

tion angle in the classical case.
Now we need to find the value of the maximum projectile range RF-max, and for this we

replace the φmax that we just calculated in (.). Using the trigonometrical relations

sinφ =
tanφ√

 + (tanφ)
, cosφ =

√
 + (tanφ)

simplifies greatly the calculations.
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Figure 6 Optimal angle using the
Riemann-Liouville fractional derivative. As α = 2,
we obtain the angle π

4 .

Figure 7 Maximum range using the
Riemann-Liouville fractional derivative (v0 = 2).
As α = 2, we obtain the value 8

9.8 sin(
π
4 ) cos(

π
4 ).

Figure 8 Comparison of the optimal angles.

Hence, the formula for the maximum projectile range is given by

RF-max =
(

v

�(α)

)α(
�(α + )

g

)α– √
α

(
α – 

α

) α–


. (.)

We get from it the expression of the classical maximum range RC-max = v

g as α → –.

�

In Figure  we show the optimal angle (.). We point out a qualitative difference with
the optimal angle for the Caputo case: φmax is increasing in α when using the Riemann-
Liouville derivative. Again for α =  we recover the optimal angle π

 . The maximum range
(.) is decreasing in α as is shown in Figure  for v = .

Finally, in Figures  and  we compare the optimal angle and the maximum range for
the Caputo and Riemann-Liouville cases, respectively.

4 Conclusions
We have studied the motion of a projectile using the Riemann-Liouville fractional deriva-
tive. We have compared the trajectory, range, flight time, maximum height, maximum
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Figure 9 Comparison between the maximum
projectile ranges (v0 = 2).

projectile range, and optimal angle with the results obtained previously for the fractional
Caputo derivative.

Some relevant qualitative differences between the Caputo and the Riemann-Liouville
approach are indicated. For example, the maximum projectile range is increasing with the
order of derivative for the Caputo approach and, by contrast, it is decreasing with the order
of the derivative for our Riemann-Liouville approach.

In the future we suggest to study the motion of a projectile in a resistant medium via the
fractional calculus approach.
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