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1 Introduction

Stochastic differential equations (SDEs) have many applications in economics, ecology,
and finance [1-3]. In recent years, the development of numerical methods for the approx-
imation of SDEs has become a field of increasing interest; see e.g. [4—10] and references
therein. For example in [11], a numerical solution of SDEs is given by a random Euler
method and in [12-15], we obtain the expectation and variance of a numerical solution of
these equations by a random Runge-Kutta method of the second order that have good ac-
curacy, with respect to the Euler method [11], and in this paper we obtain the expectation
and variance of numerical solution of these equations by a random Runge-Kutta method
of the fourth order.

A stochastic differential equation of the form

X0 =f(X(0),0), tel=[t,T), n
X(to) = Xo,

where Xy is a random variable, and the unknown X(¢) as well as the right-hand side

f(X(2), ) are stochastic processes defined on the same probability space (2, F, P), are pow-

erful tools to model real problems with uncertainty. The authors of [16] treated the nu-

merical solution of stochastic initial value problems based on a sample treatment of the

right-hand side of the differential equations. The sample treatment approach developed

in [16] has the advantage that conclusions remain true in the deterministic case, but in
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many situations the hypotheses assumed in [16] are not satisfied. This fact motivates re-
search for alternative conditions under which good numerical approximations could be
constructed. Here we do not assume any trajectorial condition but mean square change
information of f(X(¢),t) is expressed in terms of its mean square modulus of continuity.
Other numerical schemes for stochastic differential equations may be found in [4, 6, 12,
16].

This paper is organized as follows: Section 2 deals with some preliminaries addressed
to clarify the presentation of concepts and results used later. A mean value theorem for
stochastic processes is given in Section 3 and in Section 4 the mean square convergence of
a random fourth order Runge-Kutta method is established. In Section 5 some examples of
[11, 12] illustrate the accuracy of the presented results. Finally, Section 6 gives some brief
conclusions.

2 Preliminaries
Definition1 We are interested in second order random variables X, having a density func-

tion fx,

E[X?*] = ‘/Ooxzfx(x) dx < 00,

o]

where E denotes the expectation operator, and it allows the introduction of the Banach
space L, of all the second order random variables endowed with the norm

X1 = E[x2].

Definition 2 A stochastic process X(¢) defined on the same probability space (2, F, P)
is called a second order stochastic process if for each ¢, X(¢) is a second order random
variable. Hence the meaning of X(¢) in (1) is the mean square limit in L of the expression

X(t+ At) - X(2)

, as At— 0.
At

Lemmal Let X, and Y, be two sequences of second order random variables mean square
convergent to the second order random variable X, Y, respectively, i.e.,

X,—X and Y,—Y asn— oo,
then
E[X,Y,] — E[XY] asn— oo,
and so
lim E[X,] = E[X] and lim Var[X,]= Var[X].
n>00 n=>00

Definition 3 Let g:I — L, be a mean square bounded function and let /2 > 0, then the
mean square modulus of continuity of g is the function

w(gh)= sup |g)-g(t")||, &t el

[t=t*|<h
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Definition 4 The function g is said to be mean square uniformly continuous in 7, if
lim w(g, 1) = 0.
h—0 Ct)(g )

Definition 5 Let f(X,¢) be defined on S x I where S is a bounded set in L,. We say that f

is randomly bounded uniformly continuous in S, if
li X: ) =Y,
lim w(f(X,-),h) =0

uniformly for X € S, and finally we have

supa)(f(X, -),h) =w(h) — 0.
XeS

Definition 6 Let {N,},>¢ be an increasing family of o -algebras of sub-sets of Q2. A process
g(t, w) from [0, 00) x 2 to R” is called N;-adapted if for each ¢ > 0 the function v — g(¢, ®)

is N;-measurable, [17].
Definition 7 Let v = v(S, T) be the class of functions f (¢, w) : [0,00) x 2 — R such that:
(i) (¢, w) — f(t,w) is B x F-measurable, where B denotes the Borel o -algebra on
[0,00) and F is the o -algebra on £,
(ii) f(¢t, w) is F;-adapted, where F; is the o -algebra generated by the random variables
Bg; s <t,

(iii) E[f f2(t w)dt] < o0, [17].

Definition 8 (The It6 integral), [17] Let f € v(S, T), then the It6 integral of f (from S to
T) is defined by

T T
/ f(t,w)dBi(w) = lim f ¢n(t, w) dB(w),
S n—00 S
where ¢, is a sequence of elementary functions such that
T 2
E[/ (f(t,a)) —¢,,(t,a))) dt] — 0, asn— oo.
s

Theorem 1 (The It6 isometry), [17] Letf € v(S, T), then

E[([STf(t,w)dBt(w))Z] :E[/;sz(t,w)dt}.

Definition 9 (1-dimensional It6 processes), [17] Let B; be 1-dimensional Brownian mo-
tion on (2, F, P). A (1-dimensional) It6 process (or stochastic integral) is a stochastic pro-
cess X; on (L2, F, P) of the form

t t
X, =Xo + / u(s,w) ds + / v(s, w) dBs,
0 0
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where
t
P|;/ V2 (s, w) ds < 0o, for all £ > 0] =1,
0
t
P[/ |u(s,a))| ds < 0o, for all ¢ > O] =1
0

The It6 processes X; is sometimes written in the shorter differential form
dXt =udt+ VdBt. (2)

Theorem 2 (The 1-dimensional It6 formula), [17] Let X; be an Ité process given by (2) and
g(t,x) € C%([0,00) x R), then

)/t = g(t’ Xt)
is again an It6 process, and
dg dg 193¢ 2
dYt = E(t,Xt) dt + a(t,Xt) dXt + 5 a—xz(t,Xt)(dXt) , (3)
where (dX;)* = (dX,)(dX;) is computed according to the rules
dt . dt = dt . dBt = dB[ . dt = 0, dBt . dBt = dt. (4)

Lemma 2 [1] Let X(t) be a second order stochastic process, mean square continuous on
1 = [to, T, then there exists n € I such that

/tX(s)ds=X(n)(t—t0), to<t<T.

The purpose of the theorem below is to establish a relationship between the increment
X(£) - X(to) of a second order stochastic process, and its mean square derivative X (1) for
some 7 in [ty, t] for t > ty. The result will be used to prove the convergence of the random
Runge-Kutta method.

Theorem 3 Let X(t) be a mean square differentiable second order stochastic process in
I = [ty, T] and mean square continuous in it. Then there exists n € I such that

X(t) - X(to) = X(n)(t — to).
Proof See [1]. O

3 Convergence of random fourth order Runge-Kutta method
A random fourth order Runge-Kutta method will have the following form:

1
X,Hl:X,,+g(k1+2k2+2k3+k4), n=12,..., (5)
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where

kl = hf(th t}’l)r

ka = hf (X, + 2,8, + ),
ks = hf (X, + 2, t, + 1),
kg = hf (X, + ks, t,, + ).

Theorem4 Letf(X(t),t) bedefinedon S xIto L,, where S isa bounded setin L,. Iff (X (¢), )
satisfies the conditions (C1) and (C2),

(C1) f(X,t) is randomly bounded uniformly continuous,

(C2) f(X,t) satisfies the mean square Lipschitz condition, that is,

“f(X: t) _f(Y’ t) H E k(t)”X_ Y”r (7)

where ftOT k(t) dt < oo,
then the random fourth order Runge-Kutta scheme (5) is mean square convergent.

Proof Note that under hypotheses (C1) and (C2), we are interested in the mean square

convergence to zero of the error
ey =X, — X(tn), (8)
where X(¢) is the theoretical solution of the fourth order stochastic process of the prob-

lem (1).
From Theorem 3 it follows that

X(tVH-l) = X(tn) + hf(X(tn): tn): tr/ € (tn: tn+1)' (9)
By (5), (6), (8), and (9) it follows that

h h K h
llensll < lleall + g ”f(thn) _f(X(tn),tn)” + ng(Xn + g»tn + 5) _f(X(tn)> tn)

2
h k h
t3 Hf(X,, + 32,1,‘,, + 5) —-f(X(@t) 1)

h
+ ng(Xn + ks, by + 1) = f (X(8), ) |- (10)

By assumption

M= sup ||X(t)

to<t<T

, (11)

and using (C1), (C2), and Theorem 3 we have

[f s ) = £ (X (), 1) | < ([ Qs t) = f (XCE)s ) | + [ (X (8 ) = f (X (8, 1) |

+ Hf(X(tn)’tﬂ) _f(X(tn)’tn)”
< k(tn)lleall + k(£,)Mh + w(h) (12)



Khodabin and Rostami Advances in Difference Equations (2015) 2015:62 Page 6 of 19

and
H/(X,, + %,tn + g) -f(X(@), 1)
< k<t,, + g) llewll + %th(tn + g) + w(h), (13)
‘P(Xn + %,tn + g) —f(X(&), 1)
< k<t,, + g) llenll + %th(t,, + g) + w(h), (14)
If X + k3ot + 1) = F (X&) 1) || < Kt + B)llenll + 2Mbk (2, + h) + w(h). (15)

So, from substituting (12), (13), (14), and (15) in (10), one gets

h 2h E\ h
lleanll < [1 + Ek(tn) + _k<tn + —) + gk(tn + h)]llenll

3 2
h? 5 h W
+Mgk(t,,) + Mhk( t, + 3 + Mgk(t,, +h) + ho(h), (16)
and by setting

h 2h h h

a,=1+ gk(t,,) + ?k<t,, + 5) + gk(tn +h), 17)
h? N h h?

b, = Mzk(t,,) +Mh°k| ¢, + 5 + M;k(tn +h) + ho(h) (18)

the inequality (16) gets the following form:
lenll < anllenll + by n=0,1,2,..., 19)

and by successive substitution, (19) will become

n n n
llewall < (Hﬂl) lleoll + Z(H 61,‘)% n=0,1,2,..., (20)
i=0

i=0 \j=i+l

by (17) we can write

n n h h
[O[ai = !:)[exp(g |:k(tz’) + 4k(ti + 5) +k(t; + h)])
h h
< exp((n + l)g [k(tn) + 4k(t,, + E) +k(t, + h)]>, on

and by (21) and geometrical progression we conclude

Ny exp((n + 1) 2 [k(t,) + 4k(t, + &) + k(t, + h)]) - 1
Zo: (}1_[1 “’) = E(k(ty) + 4K(tn + 5) + k(5 + )] ' 22)
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Finally, from (18) and substituting (21) and (22) in (20), we obtain the following error
bound:

lemstll < exp((n . 1)2 [k(m . 4/<(rn . g) 4 Kty + h)]) leoll

exp((n + 1)% [k(t,) + 4k(t, + %) +k(t, +h)]) -1
%[k(tn) + 4k(t, + %) +k(t, + h)]

h? 5 h h?
X Mzk(t,,) + Mhk( t, + 5 +M?k(tn +h) + ho(h) |; (23)

by assumption ey = 0 and nk = T — t,, the above inequality can be written as

exp(TLH A [K(T) + 4k(T + ) + k(T + h)]) -1

K(T) +4k(T + ) + k(T + h)

llessill <
X [th(T) + 6th(T + g) + 2Mhk(T + h) + 6w(h)]; (24)

since w(k) — 0 as h — 0, by condition (C1) and inequality (24) we can deduce that the
sequence e, is mean square convergent to zero as # — 0. Thus we have established the

theorem. O

4 Numerical examples
Here we present some examples. Since these examples can be found in [1, 2], we can com-

pare the results.

Example 1 Consider the following problem:

X(£) = 26X (¢) + exp(—t) + B(t), te[0,1],

X(0) = Xo, (25)

where B(t) is a Brownian motion process and X, is a normal random variable, X, ~

N(%, %) independent of B(¢) for each ¢ € [0,1].

For computing the exact solution of the problem, by multiplying the equation by
dB
d

exp(—£2) and using W (£) = #, we have
—2texp(~£*)X(t) dt + exp(~t*) dX(t) = exp(~£*) (exp(~t) + B(t)) dt
using the It6 formula [17], we deduce

d(exp(—£2)X(2)) = —2texp(~£*)X(¢) dt + exp(-£>) dX(t) = exp(~t>) (exp(~¢) + B(¢)) dt

and so

X(t) = exp(£) {Xo + /texp(—s2)(exp(—s) +B(s)) ds}. (26)
0
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If f(X(2),t) = 2tX(t) + exp(—t) + B(t), we have
1
lf&e —fF(X )| < @UXN+1)|e—¢| + |e -] (27)
so f(X,t) is randomly bounded uniformly continuous in any bounded set S C L.
Now, from the random fourth order Runge-Kutta method we have
1
Xn+1 = Xn + g(kl + 2/(2 + 2/(3 + 1(4), (28)

where

ky = 2ht, X, + h(exp(-t,) + B(t,)),

ko =2h (t,, + g)(l +ht,)X, + h? (t,, + g) (exp(—t,,) + B(t,,))
h h
+h<exp<—<tw + —)) +B(tn + —>),
2 2
2
ks =2h (tn + g) (1 + h(tn + g)(l + htn)>Xn +h3 (t,, + g) (exp(=ty) + B(ty))
h h h
n{in(oe3) ) (oo 3)) 50 3))
2 2 2
ky = 2h(t, + h) 1+2h(t,,+—><1+h<t +—>1+ht))) 4t + h)
n\? ) h
( 5) exp(— ))+2h (t,,+h)(1+h<t,,+5)>
(exp( (tn + )) + B(t,, g)) + h(exp(=(t, + ) + B(t, + h)),

and by setting

a,,:1+ﬁtn+%(t,ﬁﬁ><1+(1+htn)(1+h<tn+ﬁ>))
3 3 2 2

k(t +h)(1+2h<t,,+ﬁ>(1+h(t,,+ﬁ)(1+ht,,))),

3 2 2

2 2
b, = ﬁ<1+2h(t,,+ g) +2h2<t,,+ g) +2h3(t,,+h)(t,,+ g) )(exp(—t,,)+B(t,,))
+ﬁ<2+h(tn+lz)+h(tn+h)<1+h(tn+ﬁ>)>
3 2 2

X (exp(— (tn + g)) +B<tn + g)) + g(exp(—(t,, +h)) + B(t, + h)),

o))

we have

Xp1=a,X,+b,, n=0,12,..., (29)
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and so

= (Ha,>xo+nz(]_[ a/) » n=12,3,. (30)

i=0 \j=i+l

From (26) and (30), we obtain the expectations and variances of X(¢) and X,.

E[X(t)] = exp(tz) [% + /:exp(—s2 —s) ds], (31)
l_[a,+z<]_[a,> b, n=1,23,..., (32)
i=0 \j=i+l

where

2 2
E[b;] = g(l + 2h<ti + g) + 2h2(t,» + g) +213(t; + h) (ti + g) )exp(—ti)
+ ﬁ(2+h(ti + E) + h(¢ +h)<1 +h<ti + é))) exp(—(t,» + ﬁ))

3 2 2 2

+ Z exp(—(& + h))

and
Var[X(t)] = exp 2t [ / / exp —s? - r mln(s, r) dsdri|
1
= exp(2t* )[12 /o (exp(~s*) — exp(-2s>)) ds], (33)
1 n-1 2 n-1 n-1 n-1
Var[X,] = — (1_[ zzi> + (H a,) ( 1_[ al) Cov|b;,br], n=12,3,..., (34)
12 i=0 i=0 k=0 V\j=i+l I=k+1
where

h
Cov[b;, br] = A min(¢;, ) + B min <ti, b + 5)
. . h
+ Cymin(t;, ti + h) + By min| ; + ol
. h h ) h _
+D;min| ¢ + E’tk t3 +E;ymin| ¢; + E'tk +h | + Cemin(t; + h, ty)

h h?
+ Ex min<ti + b+ 5) + 3 min(t; + h, ty + h),

2 h n\? n\?
Ajx = —<1+2h<ti + —) +2h2(ti + —) +2K3(¢ +h)<ti + —) )
36 2 2 2
h n\? n\*
X (1 +2h(t;< + 5) +2h2<tk + 5) + 213 (8 +h)<t;< + 5) ),
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Table 1 Absolute error of the expectation of X(t) with the Euler, RK2, and RK4 methods and

h= —0 h= 50
t Euler RK2 RK4
1 1 1 1 1 1
h=2% h=35 h=3% h=3 h=3 h=2%
0.1 7548 x 102 4463 x 103 5315x10° 2421 x10° 1253x10®  1.007 x 1078
02 9157x102  6128x 103 1173 x 10"  6548x 10 2427 x10® 1568x 1078
03 1253x 102 8421 x103 2074x10% 1104x10% 3523x10% 2123x10°®
04 2107 x102  1058x 102 3433x10% 2352x10% 4602x10® 3312x10°%
05 3257x102 2108x 102 5541 x10% 3425x10% 5928x10® 4986 x 1078
06 4369x 102 3249x 102 8845x 10 5124x10% 8100x 10 6253x10°8
07 5578x 1072 4823x1072 1405x 107 7461 x10% 1241 x107 8159 % 1078
08 8457 x 1072 6467 x 1072 2229x1073 1253x 103 2180 x 10 7 1.109 x 1077
09 1253x 107" 8812x 102 3539x 107 1895x 107> 4209 x 10 2542 x 107
10 2346 x 1077 1439x 107" 5637 x 103 2764 x 103 8506 x 107 4.864 x 107/

Table 2 Absolute error of variance of X(t) with the Euler, RK2, and RK4 methods and h = 21—0,

1
h=z5
t Euler RK2 RK4
1 — 1 -1 . | . | 1
h=g3 h=3; h=3 h=g; h=3 h=%
01 1425x103 7356 x 10 3914x10° 1.149x 10 7.045x10° 3206 x 107
02 335 %107  1.008x 1073  7243x107° 4312x10° 1467 x107° 6542 % 107°
03 8147 x 103  2006x 103 9568 x 10  6452x 10 2354x 10 8312x10°
04 2267 %102 3876x 1073 9809x 107 7765x10™ 3456x 10 1318x 107
05 4476x 102  6189x 103 5539x 10 8826x 10 4901 x 10°  2.894 x 107
06 6523x 102 1.078x 1072 8438x 10 9105x10™ 6886 x 10 4364 x 107
07 8045x 102 4368x 102 4308x10% 1432x10% 9724x10° 6157 x 107
08 1.158x 107" 6456 x 1072  1214x 1073  2565x 10 1393 x 10 8364 x 107
09 3369x 1077 8564 x 102 2927 x10° 8253x10% 2038x10% 1421 x 107
10 4158x 1077 1831 x 107" 6624 x 103 2567 x 1073  3059x 10 1897 x 107

By =

=" (20

h
2
h
C; = <1+2h<t, + =
2
h
2

)
).
)

2 2
] h2(1+2h(t,+ﬁ) hz(t+—) +2h3(t,'+h)<t,»+ﬁ)>
18 2 2

(2+h(tk+ +h(tk+h)<1+h<tk+g>)>,
2
2<l‘l+—) +2h3(ti+h)<ti+ 5) ),
h
L+ + h(t; +h)<1+h<t + 2)))
h
( +h| t + )+h(tk+h)<1+h<tk+§))),
Ei—h—<2+h<ti k>+h(ti+h)<1+h<ti+ﬁ)>), L,k=0,1,2,...,n—
18 2 2

1.

The absolute error of the expectation and variance of X(¢) with the Euler, RK2 and RK4

methods and % =

20’

h = 7= are shown in Tables 1, 2. In Figure 1, the expectation and

variance of the exact and numerical solutions of Example 1 with the RK4 method and

h:L

to the theoretical values E[X(t,)] and Var[X(£,)] when the parameter /1 decreases.

are compared. They show that the numerical values of E[X},] and Var[X,,] are closer
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3 T
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—— VarXn]

1.6 |k VarX()] S

Var[X(t)]
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Figure 1 Expectations and variances of X(t) and X, with the RK4 method and h = zlo-

Example 2 Consider the following initial value problem:

35)

X@®) =2X@®) + W), telo1],
X(O) = XO!

where W (¢) is a Gaussian white noise process with mean zero and X is an exponential ran-
dom variable with parameter X = %, independent of W (t) for each ¢ € [0,1]. Here f(X(¢), £)
involves the white noise process with mean zero W (¢), i.e. f(X(¢),t) = £2X(¢) + W(¢).

The covariance of W (¢) is

Cov[W(t), W(s)] =8(t—s), (36)

where §(¢) is the delta generalized function. A convolution with the delta function always

exists, see [18], and the delta function plays the same role for the convolution as unity does
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for multiplication,

dxg=g.

So, taking g(s) = h(s) x[0,¢1(s), where h(s) is a C* function and x[o(s) denotes the charac-
teristic function on the interval [0, ¢], from (36) it follows that

f g(s)8(s—r)ds = / h(s)x10,4(s)8(s — r) ds = /0 h(s)8(s —r)ds = h(r).

o0 —00

For computing the exact solution of the problem, by multiplying both sides of (35) by
exp(5- -2 ), and using W (¢) = 4O \ve have

—t exp< 3 )X(t)dt+exp( i )dX(t)—exp( i >dB()

using the It6 formula, [17], we conclude

d(exp( 33 )X(t)) =—t exp( )X(t) dt + exp( 3) dx(t) = exp( 3) dB(t),

and so

/3 t
X(@) = exp(g) [Xo +/ exp( 3 )dB(s)] (37)
0

Now, we compute X, from the random fourth order Runge-Kutta method,
1
Xn+1 = Xn + g(kl + 2/(2 + 2/(3 + k4), (38)

where

ki = ht2 X, + hW (t,,),

WN\*(. h 2 n\? h
kzzh(tn+—) (1+—tﬁ>Xn+—<tn+—) W(tn)+hW<tn+—>,

2 2 2 2 2

WN\*(. h WN\*(. h 3 n\*
k3=h(tn+—) (1+—(tn+—) (1+—tﬁ>>Xn+—(tn+—> W (z,)

2 2 2 2 4 2

+h{1+=(t,+ = Wlt,+ =),
2 2 2
2 2 4 4
k4:h(t,,+h)2(1+h(t,,+ﬁ> (1+E<tn+ﬁ> <1+ﬁtﬁ)))X,,+h—(tn+ﬁ>
2 2 2 2 4 2

) ) . h n\? h
X (t, + h)*W(t,) + h*(t, + h) (1+§<tn+§) )W(tn+§> +hW(t, + h),

and by setting

i (oeg) (0 (032) (45(5) )
n—1+—tn+ ty+ — T+ {1+=, J(1+=(tu+ =
h h2 h h2 h
+_(t”+h)2<1+h<tn+_> <1+—<t,,+—) <1+—t§)>),
6 2 2 2 2
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h n\* W\*(. h
by = (l+h(tn+—) +h_(zn+—) (1+—(zn+h>2)>W(tn)
6 2 2 2 2
h h n\? h W\ h
+—<1+(1+—<ty,+—> ><1+—(t,,+h)2)>W<t,q+—)+—W(tn+h),
3 2 2 2 2 6
we have

Xn+1:aan+bm n=0,1,2,...,

and so

(Hﬂl>Xo+Z<Ha}) » n=123,

39)
i=0 \j=i+1
From (37) and (39) we obtain the expectation and variance of X(¢) and X,
23
E[X®)]= 2exp(§>, (40)
— n-1
E[X, H +Z<na,> :21_[51,-, (41)
i=0 i=0 \j=i+l i=0
and
2t3 t -2 3
Var[X(¢)] = exp<—) |:4 + / exp(—s) dS:|, (42)
3 0 3
n-1 2 n-1 n-1 n-1
Var[X,,] =4 (1_[ oz,-) + (1_[ a,) ( 1_[ a;)E[bibk], (43)
i=0 i=0 k=0 \j=i+l I=k+1
where
h h
E[bibi] = Aixd(t; — ti) + BisS\ i — tr — 2 )t Brid\ ti—tr + 5
+ Cié(ti — tx — ) + Cid(t; — tic + ),
where
2 2 2 4
Ajx = h—<1+ |:1+h(t,»+ E) + h—(t,»+ ﬁ) <1 E(t +h) )]
36 2 2 2 2

2 4
X l+h<tk+§> +h;<tk+g) <1+g(tk+h)2>i|)
2
+—2|:1+(1+ﬁ(ti+ﬁ) >(l+ﬁ(ti+h)2):|
9 2 2 2
1+g(tk+h)2>],

2 4

(1 2o [ron(us 2) o 2 (0 )

8 2 2 2
2

(1+ Z(t +h)2>][1+ 1+ g(tk"' g) )(1_,_ g(tk+h)2>]),
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Table 3 Absolute error of the expectation of X(t) with the Euler, RK2 and RK4 methods and

h—zo'h‘_

t Euler RK2 RK4
1 1 1 _ 1 1 _ 1
h=3% h=3 h=35 h=5% h= 3 h=2%
0.1 7548x 10" 4513x10% 9315x10° 6678x10° 2170x 1070 1007 x 10710
02 1.158x 103 8536x107% 4173x10° 1352x107° 4352x 1070 2568 x 10710
03 3124x1073 1421x10°3 6457 x107° 2098x10° 6575x 1070 4123 %1070
04 5207x103 3521x1073 7125x107° 2983 x10° 8921 x 1070 6348 % 10710
05 7128x1073 5326x10° 8423x10° 4130x10° 1.160x10° 8457 x 10710
06 3369x102 8459x103 9845x107° 5725x10° 1525%x10° 1253 x107°
07 5476 x 1072 2823x 1072 1405x 10 8054x 107 2183 x 107 2159 x 107
08 6897 x 1072 41061072 2306 x o 4 1157 x 104 3734x107° 3458 x 107
09 9253x 1072 6456 %1072 5623 x 1701 x 1074 7949 x 10° 5442 x 107°
10 2176 x 1077 8036 x 102  7236x10% 2560x107* 1980 x 108 8864 x 107

1
1
1
1
1
1
1
1
10
1

Table 4 Absolute error of variance of X(t) with the Euler, RK2, and RK4 methods and h = -,

20
h=s5
t Euler RK2 RK4
h=3% h=2% h=3% h=2% h=3% h=%

0.1 5425x 1077 4215x 107" 9914x 102 9807 x 102 974098 x 1072 6.206 x 1072
02 6456x 107" 5452x 107" 2243 x 1077 1968 x 107" 195502 x 107" 8245 x 1072
03 8425x 107" 6152x 107" 3654 x 107" 2980 x 107" 296196 x 107" 1312 x 107!
04 8896 x107" 7431 x 107" 5756x 107" 4049 x 107" 402421 x 107" 2318 x 107!
05 9476x 107" 8189 x 107" 7265x 107" 5219x 107" 518782 x 107" 3436 x 107!
06 3523x10°0 1078x 100 8438x10" 6558x 107" 651931 x 107" 4540 x 107!
0.7 4A247xw00 3368xw00 9457 x 107" 8164 x 107" 811499 x 107" 7.243 x 107"
08 6235><10 4236x10 1214x10° 1017%x 100  1.01174x10° 9345 x 107
09 7369 x 10 5348 x 10 2125 %109 1282x 100 127442 x 100  1.895x 1070
10 84563><100 6.831 x 100 4425 %1070 1644 x 100 163398 x10° 2213 x 107

2 2 2 4
C = h <1+h( h) +h—<t,«+ﬁ) <1+ﬁ(t,~+h)2>>, iLk=0,1,2,...,n-1.
36 2 2 2 2

The absolute errors of the expectation and variance of X(£) with the Euler, RK2, and RK4
methods and % = 20, h = i are shown in Tables 3, 4. In Figure 2, the expectation and
variance of the exact and numerical solutions of Example 2 with the RK4 method and
h= 210 are compared.

Figures 1, 2 show that E[X,,] and Var[X,] of the numerical solutions of stochastic initial
value problems via random Runge-Kutta methods of the fourth order are close to E[X(t)]

and Var[X(t)], respectively, as i1 — 0.

5 Applications in the electric circuits with noise
Consider the following RC circuit with constant parameters:

R 4 L) = V() +alt) W(), (44)
Q(0) = Qo,

where Q(¢) is the electric charge at time ¢ and Qo is an exponential random variable with

parameter A = %, independent of W () for each ¢ € [0,1], which means the initial charge at

time ¢ = 0, and V(¢ ) are nonrandom functions of time variable, which means the voltage at

time ¢t and W(¢t) = 4B®) s 3 1-dimensional white noise process and B(¢) is a 1-dimensional
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28 :

—p— E[Xn]

—*— EX()]
27

2.6

251

24

E[X(1)]

231

22

21

—pP— Var{Xn]
—%— Var[X(t)]

Var[X(®)]
T

Figure 2 Expectations and variances of X(t) and X, with the RK4 method and h = 21—0.

Brownian motion and «(¢) is a nonrandom function that shows the infirmity and intensity
of noise at time ¢.
Now, solving this stochastic differential equation, we have

exc V(t)dt + %a(t)e% dB(?). (45)

¢ 1 1
erc dQ(t) + %eﬁ Q(t)dt = 2

Now, by assuming g(¢,x) = eXCx and using Theorem 2, we conclude

d(eme Q(t)) = %e% Q(t) dt + eTc dQ(). (46)

By (45) and (46) we have

Q(t) = exC [Qo + zle /0 teﬁ—c V(s)ds + 11—3 /0 ta(s)e% dB(s)]. (47)
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Now, we compute Q, from the random fourth order Runge-Kutta method,

1
Qui1=Qu + g(kl +2ky + 2k3 + ka), (48)

where

h

1
k= E |:_EQn + V(t,) + a(t,) W(tn)j|:

hl 1 h h h
k2 = E |:—E (1 - %>Qn - %(V(tn) + Ol(t,,)W(t,,)) + V(tn + E)

ol (et

h[ 1 h h? h?
b= e (12t * die )%+ e (Vi) 1) Vi)

(-gre) (e 2) relr2) 7 (02))
+1-=——= )| Vlth+t =z ) +altu+ - )Wt + = ,
2RC 2 2 2

h[ 1 h W W
ka = E[_E(l_ rC "areC? 4R3C3>Q"

W I P
- s V) +a)W(6) - oo (1 - _)

RC 2RC
h h h
x|V t,,+§ +a t,,+§ w t,,+§ +V(t,+h)+a(t, + )W(t, +h) |,
and by setting
h2 ]’13 h4
:1—— — ,
= T RC T 2R T 6RPCE T 24RMCH
h h W n? h h\?
by=—|1-—+—+-—— |(V(¢ L)Wt —11 1-—
" 6R|: rC "arec? 4R3C3]( (8) + (t) (”))+3R[+< 2RC>}
() rereo5)(e3))
x| VIt,+=)+alt,+=|W|t,+—=
2 2 2
h
+ a(\/(tn +h) +alty + W (L, + h)),
we have

Qnﬂ:aQn"'bn; n=0,1,2,...,

and so

n-1

Qu=a"Q+ Yy a" b, n=123,.... (49)

i=0

From (47) and (49), we obtain the expectation and variance of Q(¢) and Q,,.

E[Q(1)] = ee [3 + % /teks_c V(s) ds], (50)

0
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Table 5 Absolute error of the expectation and variance of Q, with h = %

t expectation variance
0.1 1.81855 x 1077 503579 x 107/
0.2 368255 x 107° 392178 x 107®
03 560162 x 107° 128015 x 107
04 7.60549 x 1077 292113 x 107
05 968700 x 107° 546908 x 107
0.6 1.18932 x 1078 9.02095 x 10
0.7 142378 x 1078 136148 x 1074
0.8 167180 x 1078 192299 x 1074
09 1.93713 x 1078 257896 x 1074
1 222230 x 1078 331654 x 1074
n-1
; h h n? V&
E[Q,] = 34" (U (R R (7
[Q] =34 +§” (612[ rC T2 4R3c3] ®)
h 1+(1 a 2Vt ke hV(t h) (51)
+—|1+(1-— i+ =+ =V + ,
3R 2RC 2 R
and
-2t 2
Var[Q(t) =exp 9 + (s)exp ds|, (52)
n-1 n-1
Var[Q,] = 94*" + Z a? =2 Cov[b;, b, (53)
i=0 k=0
where
h h
COV[bi,bk] =Ai,k8(ti - tk) + Bi,k(S ti—tr — 5 + Bk,i(S ti— i + 5
+ Cixd(t; —tx — ) + Cri8(t; — tr + h),
where
"2 h 2 w7 "2 h\*7?
A = 1-—+———— | a&)alty) + — 1-—
k= 36R2 [ rC Tarec? 4R3C3] (i)t + 5z [ ¥ ( 2RC> ]
h h n?
a(ti + E)a(tk + E) + Wa(ti + h)a(ty + h),
thlh 2 h311h2(t)th
ik=E—— 1l =t = - —— +{1-—) la@®)o| tx + =
KT 18RZ| T RC T 2R2C2 T 4R3CP 2RC )
"2 ho\? h
+——|1+|1-— ) |e|t;i+ = )atx +h),
18R2 2RC 2
W2 h K> W .
Ci,]( =m|: - R + W - W]a(h)a(t}( + ]’l), l,k = 0, 1,2,...,1’1 -1.
The absolute error of the expectation and variance of Q, with V(£) = exp(¢), «(t) = “;;),
R =1, C =2 are shown in Table 5
The absolute error of the expectation and variance of Q, with V(¢) = exp(¢), a(¢) = “;5 ,

R =1, C =2 are shown in Figure 3.
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1) 0.1 02 03 0.4 05 06 07 0.8 09 1

o T T

—+H— Var[Qn]
—¥*— Var[Q(t)]

Var[Q(1)]
E
L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

Figure 3 Expectations and variances of Q(t) and Q, with h = 21—0.

6 Conclusion

In this paper, the numerical solution of a stochastic differential equation is discussed by
fourth order Runge-Kutta methods in detail. The results can be compared with [1, 2]. Our
comparison showed that this method has more accuracy than the Euler method and the

second order Runge-Kutta methods in [1, 2].
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