
Khodabin and Rostami Advances in Difference Equations  (2015) 2015:62 
DOI 10.1186/s13662-015-0398-6

R E S E A R C H Open Access

Mean square numerical solution of stochastic
differential equations by fourth order
Runge-Kutta method and its application in
the electric circuits with noise
Morteza Khodabin1* and Majid Rostami2

*Correspondence:
m-khodabin@kiau.ac.ir
1Department of Mathematics,
College of Basic Sciences, Karaj
Branch, Islamic Azad University,
Alborz, Iran
Full list of author information is
available at the end of the article

Abstract
We consider numerical solutions of stochastic initial value problems via the random
Runge-Kutta method of the fourth order. A randommean value theorem is
established and the mean square convergence of these methods is proved. The
expectation and variance of the solution are derived. We supplement this method by
plotting computational errors.
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1 Introduction
Stochastic differential equations (SDEs) have many applications in economics, ecology,
and finance [–]. In recent years, the development of numerical methods for the approx-
imation of SDEs has become a field of increasing interest; see e.g. [–] and references
therein. For example in [], a numerical solution of SDEs is given by a random Euler
method and in [–], we obtain the expectation and variance of a numerical solution of
these equations by a random Runge-Kutta method of the second order that have good ac-
curacy, with respect to the Euler method [], and in this paper we obtain the expectation
and variance of numerical solution of these equations by a random Runge-Kutta method
of the fourth order.

A stochastic differential equation of the form

{
Ẋ(t) = f (X(t), t), t ∈ I = [t, T],
X(t) = X,

()

where X is a random variable, and the unknown X(t) as well as the right-hand side
f (X(t), t) are stochastic processes defined on the same probability space (�,�, P), are pow-
erful tools to model real problems with uncertainty. The authors of [] treated the nu-
merical solution of stochastic initial value problems based on a sample treatment of the
right-hand side of the differential equations. The sample treatment approach developed
in [] has the advantage that conclusions remain true in the deterministic case, but in
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many situations the hypotheses assumed in [] are not satisfied. This fact motivates re-
search for alternative conditions under which good numerical approximations could be
constructed. Here we do not assume any trajectorial condition but mean square change
information of f (X(t), t) is expressed in terms of its mean square modulus of continuity.
Other numerical schemes for stochastic differential equations may be found in [, , ,
].

This paper is organized as follows: Section  deals with some preliminaries addressed
to clarify the presentation of concepts and results used later. A mean value theorem for
stochastic processes is given in Section  and in Section  the mean square convergence of
a random fourth order Runge-Kutta method is established. In Section  some examples of
[, ] illustrate the accuracy of the presented results. Finally, Section  gives some brief
conclusions.

2 Preliminaries
Definition  We are interested in second order random variables X, having a density func-
tion fX ,

E
[
X] =

∫ ∞

–∞
xfX(x) dx < ∞,

where E denotes the expectation operator, and it allows the introduction of the Banach
space L of all the second order random variables endowed with the norm

‖X‖ =
√

E
[
X

]
.

Definition  A stochastic process X(t) defined on the same probability space (�,�, P)
is called a second order stochastic process if for each t, X(t) is a second order random
variable. Hence the meaning of Ẋ(t) in () is the mean square limit in L of the expression

X(t + �t) – X(t)
�t

, as �t → .

Lemma  Let Xn and Yn be two sequences of second order random variables mean square
convergent to the second order random variable X, Y , respectively, i.e.,

Xn → X and Yn → Y as n → ∞,

then

E[XnYn] → E[XY ] as n → ∞,

and so

lim
n→∞ E[Xn] = E[X] and lim

n→∞ Var[Xn] = Var[X].

Definition  Let g : I −→ L be a mean square bounded function and let h > , then the
mean square modulus of continuity of g is the function

ω(g, h) = sup
|t–t∗|≤h

∥∥g(t) – g
(
t∗)∥∥, t, t∗ ∈ I.
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Definition  The function g is said to be mean square uniformly continuous in I , if

lim
h→

ω(g, h) = .

Definition  Let f (X, t) be defined on S × I where S is a bounded set in L. We say that f
is randomly bounded uniformly continuous in S, if

lim
h→

ω
(
f (X, ·), h

)
= ,

uniformly for X ∈ S, and finally we have

sup
X∈S

ω
(
f (X, ·), h

)
= ω(h) → .

Definition  Let {Nt}t≥ be an increasing family of σ -algebras of sub-sets of �. A process
g(t,ω) from [,∞)×� to Rn is called Nt-adapted if for each t ≥  the function ω → g(t,ω)
is Nt-measurable, [].

Definition  Let ν = ν(S, T) be the class of functions f (t,ω) : [,∞) × � → R such that:
(i) (t,ω) → f (t,ω) is B ×F -measurable, where B denotes the Borel σ -algebra on

[,∞) and F is the σ -algebra on �,
(ii) f (t,ω) is Ft-adapted, where Ft is the σ -algebra generated by the random variables

Bs; s ≤ t,
(iii) E[

∫ T
S f (t,ω) dt] < ∞, [].

Definition  (The Itô integral), [] Let f ∈ ν(S, T), then the Itô integral of f (from S to
T ) is defined by

∫ T

S
f (t,ω) dBt(ω) = lim

n→∞

∫ T

S
φn(t,ω) dBt(ω),

where φn is a sequence of elementary functions such that

E
[∫ T

S

(
f (t,ω) – φn(t,ω)

) dt
]

→ , as n → ∞.

Theorem  (The Itô isometry), [] Let f ∈ ν(S, T), then

E
[(∫ T

S
f (t,ω) dBt(ω)

)]
= E

[∫ T

S
f (t,ω) dt

]
.

Definition  (-dimensional Itô processes), [] Let Bt be -dimensional Brownian mo-
tion on (�,F , P). A (-dimensional) Itô process (or stochastic integral) is a stochastic pro-
cess Xt on (�,F , P) of the form

Xt = X +
∫ t


u(s,ω) ds +

∫ t


v(s,ω) dBs,
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where

P
[∫ t


v(s,ω) ds < ∞, for all t ≥ 

]
= ,

P
[∫ t



∣∣u(s,ω)
∣∣ds < ∞, for all t ≥ 

]
= .

The Itô processes Xt is sometimes written in the shorter differential form

dXt = u dt + v dBt . ()

Theorem  (The -dimensional Itô formula), [] Let Xt be an Itô process given by () and
g(t, x) ∈ C([,∞) × R), then

Yt = g(t, Xt)

is again an Itô process, and

dYt =
∂g
∂t

(t, Xt) dt +
∂g
∂x

(t, Xt) dXt +



∂g
∂x (t, Xt)(dXt), ()

where (dXt) = (dXt)(dXt) is computed according to the rules

dt · dt = dt · dBt = dBt · dt = , dBt · dBt = dt. ()

Lemma  [] Let X(t) be a second order stochastic process, mean square continuous on
I = [t, T], then there exists η ∈ I such that

∫ t

t

X(s) ds = X(η)(t – t), t < t < T .

The purpose of the theorem below is to establish a relationship between the increment
X(t) – X(t) of a second order stochastic process, and its mean square derivative Ẋ(η) for
some η in [t, t] for t > t. The result will be used to prove the convergence of the random
Runge-Kutta method.

Theorem  Let X(t) be a mean square differentiable second order stochastic process in
I = [t, T] and mean square continuous in it. Then there exists η ∈ I such that

X(t) – X(t) = Ẋ(η)(t – t).

Proof See []. �

3 Convergence of random fourth order Runge-Kutta method
A random fourth order Runge-Kutta method will have the following form:

Xn+ = Xn +



(k + k + k + k), n = , , . . . , ()
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where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k = hf (Xn, tn),
k = hf (Xn + k

 , tn + h
 ),

k = hf (Xn + k
 , tn + h

 ),
k = hf (Xn + k, tn + h).

()

Theorem  Let f (X(t), t) be defined on S×I to L, where S is a bounded set in L. If f (X(t), t)
satisfies the conditions (C) and (C),

(C) f (X, t) is randomly bounded uniformly continuous,
(C) f (X, t) satisfies the mean square Lipschitz condition, that is,

∥∥f (X, t) – f (Y , t)
∥∥ ≤ k(t)‖X – Y‖, ()

where
∫ T

t
k(t) dt < ∞,

then the random fourth order Runge-Kutta scheme () is mean square convergent.

Proof Note that under hypotheses (C) and (C), we are interested in the mean square
convergence to zero of the error

en = Xn – X(tn), ()

where X(t) is the theoretical solution of the fourth order stochastic process of the prob-
lem ().

From Theorem  it follows that

X(tn+) = X(tn) + hf
(
X(tη), tη

)
, tη ∈ (tn, tn+). ()

By (), (), (), and () it follows that

‖en+‖ ≤ ‖en‖ +
h


∥∥f (Xn, tn) – f
(
X(tη), tη

)∥∥ +
h


∥∥∥∥f
(

Xn +
k


, tn +

h


)
– f

(
X(tη), tη

)∥∥∥∥
+

h


∥∥∥∥f
(

Xn +
k


, tn +

h


)
– f

(
X(tη), tη

)∥∥∥∥
+

h


∥∥f (Xn + k, tn + h) – f
(
X(tη), tη

)∥∥. ()

By assumption

M = sup
t≤t≤T

∥∥Ẋ(t)
∥∥, ()

and using (C), (C), and Theorem  we have

∥∥f (Xn, tn) – f
(
X(tη), tη

)∥∥ ≤ ∥∥f (Xn, tn) – f
(
X(tn), tn

)∥∥ +
∥∥f

(
X(tn), tn

)
– f

(
X(tη), tn

)∥∥
+

∥∥f
(
X(tη), tn

)
– f

(
X(tη), tη

)∥∥
≤ k(tn)‖en‖ + k(tn)Mh + ω(h) ()
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and
∥∥∥∥f

(
Xn +

k


, tn +

h


)
– f

(
X(tη), tη

)∥∥∥∥
≤ k

(
tn +

h


)
‖en‖ +




Mhk
(

tn +
h


)
+ ω(h), ()

∥∥∥∥f
(

Xn +
k


, tn +

h


)
– f

(
X(tη), tη

)∥∥∥∥
≤ k

(
tn +

h


)
‖en‖ +




Mhk
(

tn +
h


)
+ ω(h), ()

∥∥f (Xn + k, tn + h) – f
(
X(tη), tη

)∥∥ ≤ k(tn + h)‖en‖ + Mhk(tn + h) + ω(h). ()

So, from substituting (), (), (), and () in (), one gets

‖en+‖ ≤
[

 +
h


k(tn) +
h


k
(

tn +
h


)
+

h


k(tn + h)
]
‖en‖

+ M
h


k(tn) + Mhk

(
tn +

h


)
+ M

h


k(tn + h) + hω(h), ()

and by setting

an =  +
h


k(tn) +
h


k
(

tn +
h


)
+

h


k(tn + h), ()

bn = M
h


k(tn) + Mhk

(
tn +

h


)
+ M

h


k(tn + h) + hω(h) ()

the inequality () gets the following form:

‖en+‖ ≤ an‖en‖ + bn, n = , , , . . . , ()

and by successive substitution, () will become

‖en+‖ ≤
( n∏

i=

ai

)
‖e‖ +

n∑
i=

( n∏
j=i+

aj

)
bi, n = , , , . . . , ()

by () we can write

n∏
i=

ai ≤
n∏

i=

exp

(
h


[
k(ti) + k

(
ti +

h


)
+ k(ti + h)

])

≤ exp

(
(n + )

h


[
k(tn) + k

(
tn +

h


)
+ k(tn + h)

])
, ()

and by () and geometrical progression we conclude

n∑
i=

( n∏
j=i+

aj

)
≤ exp((n + ) h

 [k(tn) + k(tn + h
 ) + k(tn + h)]) – 

h
 [k(tn) + k(tn + h

 ) + k(tn + h)]
. ()
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Finally, from () and substituting () and () in (), we obtain the following error
bound:

‖en+‖ ≤ exp

(
(n + )

h


[
k(tn) + k

(
tn +

h


)
+ k(tn + h)

])
‖e‖

+
exp((n + ) h

 [k(tn) + k(tn + h
 ) + k(tn + h)]) – 

h
 [k(tn) + k(tn + h

 ) + k(tn + h)]

×
[

M
h


k(tn) + Mhk

(
tn +

h


)
+ M

h


k(tn + h) + hω(h)

]
; ()

by assumption e =  and nh = T – t, the above inequality can be written as

‖en+‖ ≤ exp( T–t+h
 [k(T) + k(T + h

 ) + k(T + h)]) – 
k(T) + k(T + h

 ) + k(T + h)

×
[

Mhk(T) + Mhk
(

T +
h


)
+ Mhk(T + h) + ω(h)

]
; ()

since ω(h) →  as h → , by condition (C) and inequality () we can deduce that the
sequence en is mean square convergent to zero as h → . Thus we have established the
theorem. �

4 Numerical examples
Here we present some examples. Since these examples can be found in [, ], we can com-
pare the results.

Example  Consider the following problem:

{
Ẋ(t) = tX(t) + exp(–t) + B(t), t ∈ [, ],
X() = X,

()

where B(t) is a Brownian motion process and X is a normal random variable, X ∼
N( 

 , 
 ) independent of B(t) for each t ∈ [, ].

For computing the exact solution of the problem, by multiplying the equation by
exp(–t) and using W (t) = dB(t)

dt , we have

–t exp
(
–t)X(t) dt + exp

(
–t)dX(t) = exp

(
–t)(exp(–t) + B(t)

)
dt

using the Itô formula [], we deduce

d
(
exp

(
–t)X(t)

)
= –t exp

(
–t)X(t) dt + exp

(
–t)dX(t) = exp

(
–t)(exp(–t) + B(t)

)
dt

and so

X(t) = exp
(
t){X +

∫ t


exp

(
–s)(exp(–s) + B(s)

)
ds

}
. ()
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If f (X(t), t) = tX(t) + exp(–t) + B(t), we have

∥∥f (X, t) – f
(
X, t∗)∥∥ ≤ (

‖X‖ + 
)∣∣t – t∗∣∣ +

∣∣t – t∗∣∣ 
 ()

so f (X, t) is randomly bounded uniformly continuous in any bounded set S ⊂ L.
Now, from the random fourth order Runge-Kutta method we have

Xn+ = Xn +



(k + k + k + k), ()

where

k = htnXn + h
(
exp(–tn) + B(tn)

)
,

k = h
(

tn +
h


)
( + htn)Xn + h

(
tn +

h


)(
exp(–tn) + B(tn)

)

+ h
(

exp

(
–
(

tn +
h


))
+ B

(
tn +

h


))
,

k =h
(

tn +
h


)(
 + h

(
tn +

h


)
( + htn)

)
Xn + h

(
tn +

h


)(
exp(–tn) + B(tn)

)

+ h
(

 + h
(

tn +
h


))(
exp

(
–
(

tn +
h


))
+ B

(
tn +

h


))
,

k = h(tn + h)
(

 + h
(

tn +
h


)(
 + h

(
tn +

h


)
( + htn)

))
Xn + h(tn + h)

×
(

tn +
h


)(
exp(–tn) + B(tn)

)
+ h(tn + h)

(
 + h

(
tn +

h


))

×
(

exp

(
–
(

tn +
h


))
+ B

(
tn +

h


))
+ h

(
exp

(
–(tn + h)

)
+ B(tn + h)

)
,

and by setting

an =  +
h


tn +
h


(
tn +

h


)(
 + ( + htn)

(
 + h

(
tn +

h


)))

+
h


(tn + h)
(

 + h
(

tn +
h


)(
 + h

(
tn +

h


)
( + htn)

))
,

bn =
h


(
 + h

(
tn +

h


)
+ h

(
tn +

h


)

+ h(tn + h)
(

tn +
h


))(
exp(–tn) + B(tn)

)

+
h


(
 + h

(
tn +

h


)
+ h(tn + h)

(
 + h

(
tn +

h


)))

×
(

exp

(
–
(

tn +
h


))
+ B

(
tn +

h


))
+

h


(
exp

(
–(tn + h)

)
+ B(tn + h)

)
,

we have

Xn+ = anXn + bn, n = , , , . . . , ()
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and so

Xn =

(n–∏
i=

ai

)
X +

n–∑
i=

( n–∏
j=i+

aj

)
bi, n = , , , . . . . ()

From () and (), we obtain the expectations and variances of X(t) and Xn.

E
[
X(t)

]
= exp

(
t)[ 


+

∫ t


exp

(
–s – s

)
ds

]
, ()

E[Xn] =



n–∏
i=

ai +
n–∑
i=

( n–∏
j=i+

aj

)
E[bi], n = , , , . . . , ()

where

E[bi] =
h


(
 + h

(
ti +

h


)
+ h

(
ti +

h


)

+ h(ti + h)
(

ti +
h


))
exp(–ti)

+
h


(
 + h

(
ti +

h


)
+ h(ti + h)

(
 + h

(
ti +

h


)))
exp

(
–
(

ti +
h


))

+
h


exp
(
–(ti + h)

)
and

Var
[
X(t)

]
= exp

(
t)[ 


+

∫ t



∫ t


exp

(
–s – r)min(s, r) ds dr

]

= exp
(
t)[ 


+

∫ t



(
exp

(
–s) – exp

(
–s))ds

]
, ()

Var[Xn] =




(n–∏
i=

ai

)

+
n–∑
i=

n–∑
k=

( n–∏
j=i+

aj

)( n–∏
l=k+

al

)
Cov[bi, bk], n = , , , . . . , ()

where

Cov[bi, bk] = Ai,k min(ti, tk) + Bi,k min

(
ti, tk +

h


)

+ Ci min(ti, tk + h) + Bk,i min

(
ti +

h


, tk

)

+ Di,k min

(
ti +

h


, tk +
h


)
+ Ei min

(
ti +

h


, tk + h
)

+ Ck min(ti + h, tk)

+ Ek min

(
ti + h, tk +

h


)
+

h


min(ti + h, tk + h),

where

Ai,k =
h



(
 + h

(
ti +

h


)
+ h

(
ti +

h


)

+ h(ti + h)
(

ti +
h


))

×
(

 + h
(

tk +
h


)
+ h

(
tk +

h


)

+ h(tk + h)
(

tk +
h


))
,
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Table 1 Absolute error of the expectation of X(t) with the Euler, RK2, and RK4 methods and
h = 1

20 , h = 1
50

t Euler RK2 RK4

h = 1
20 h = 1

50 h = 1
20 h = 1

50 h = 1
20 h = 1

50

0.1 7.548× 10–3 4.463× 10–3 5.315× 10–5 2.421× 10–5 1.253× 10–8 1.007× 10–8

0.2 9.157× 10–3 6.128× 10–3 1.173× 10–4 6.548× 10–5 2.427× 10–8 1.568× 10–8

0.3 1.253× 10–2 8.421× 10–3 2.074× 10–4 1.104× 10–4 3.523× 10–8 2.123× 10–8

0.4 2.107× 10–2 1.058× 10–2 3.433× 10–4 2.352× 10–4 4.602× 10–8 3.312× 10–8

0.5 3.257× 10–2 2.108× 10–2 5.541× 10–4 3.425× 10–4 5.928× 10–8 4.986× 10–8

0.6 4.369× 10–2 3.249× 10–2 8.845× 10–4 5.124× 10–4 8.100× 10–8 6.253× 10–8

0.7 5.578× 10–2 4.823× 10–2 1.405× 10–3 7.461× 10–4 1.241× 10–7 8.159× 10–8

0.8 8.457× 10–2 6.467× 10–2 2.229× 10–3 1.253× 10–3 2.180× 10–7 1.109× 10–7

0.9 1.253× 10–1 8.812× 10–2 3.539× 10–3 1.895× 10–3 4.209× 10–7 2.542× 10–7

1.0 2.346× 10–1 1.439× 10–1 5.637× 10–3 2.764× 10–3 8.506× 10–7 4.864× 10–7

Table 2 Absolute error of variance of X(t) with the Euler, RK2, and RK4 methods and h = 1
20 ,

h = 1
50

t Euler RK2 RK4

h = 1
20 h = 1

50 h = 1
20 h = 1

50 h = 1
20 h = 1

50

0.1 1.425× 10–3 7.356× 10–4 3.914× 10–5 1.149× 10–5 7.045× 10–6 3.206× 10–6

0.2 3.356× 10–3 1.108× 10–3 7.243× 10–5 4.312× 10–5 1.467× 10–5 6.542× 10–6

0.3 8.147× 10–3 2.006× 10–3 9.568× 10–5 6.452× 10–5 2.354× 10–5 8.312× 10–6

0.4 2.267× 10–2 3.876× 10–3 9.809× 10–5 7.765× 10–5 3.456× 10–5 1.318× 10–5

0.5 4.476× 10–2 6.189× 10–3 5.539× 10–5 8.826× 10–5 4.901× 10–5 2.894× 10–5

0.6 6.523× 10–2 1.078× 10–2 8.438× 10–5 9.105× 10–5 6.886× 10–5 4.364× 10–5

0.7 8.045× 10–2 4.368× 10–2 4.308× 10–4 1.432× 10–4 9.724× 10–5 6.157× 10–5

0.8 1.158× 10–1 6.456× 10–2 1.214× 10–3 2.565× 10–4 1.393× 10–4 8.364× 10–5

0.9 3.369× 10–1 8.564× 10–2 2.927× 10–3 8.253× 10–4 2.038× 10–4 1.421× 10–4

1.0 4.158× 10–1 1.831× 10–1 6.624× 10–3 2.567× 10–3 3.059× 10–4 1.897× 10–4

Bi,k =
h



(
 + h

(
ti +

h


)
+ h

(
ti +

h


)

+ h(ti + h)
(

ti +
h


))

×
(

 + h
(

tk +
h


)
+ h(tk + h)

(
 + h

(
tk +

h


)))
,

Ci =
h



(
 + h

(
ti +

h


)
+ h

(
ti +

h


)

+ h(ti + h)
(

ti +
h


))
,

Di,k =
h



(
 + h

(
ti +

h


)
+ h(ti + h)

(
 + h

(
ti +

h


)))

×
(

 + h
(

tk +
h


)
+ h(tk + h)

(
 + h

(
tk +

h


)))
,

Ei =
h



(
 + h

(
ti +

h


)
+ h(ti + h)

(
 + h

(
ti +

h


)))
, i, k = , , , . . . , n – .

The absolute error of the expectation and variance of X(t) with the Euler, RK and RK
methods and h = 

 , h = 
 are shown in Tables , . In Figure , the expectation and

variance of the exact and numerical solutions of Example  with the RK method and
h = 

 are compared. They show that the numerical values of E[Xn] and Var[Xn] are closer
to the theoretical values E[X(tn)] and Var[X(tn)] when the parameter h decreases.
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Figure 1 Expectations and variances of X(t) and Xn with the RK4 method and h = 1
20 .

Example  Consider the following initial value problem:

{
Ẋ(t) = tX(t) + W (t), t ∈ [, ],
X() = X,

()

where W (t) is a Gaussian white noise process with mean zero and X is an exponential ran-
dom variable with parameter λ = 

 , independent of W (t) for each t ∈ [, ]. Here f (X(t), t)
involves the white noise process with mean zero W (t), i.e. f (X(t), t) = tX(t) + W (t).

The covariance of W (t) is

Cov
[
W (t), W (s)

]
= δ(t – s), ()

where δ(t) is the delta generalized function. A convolution with the delta function always
exists, see [], and the delta function plays the same role for the convolution as unity does
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for multiplication,

δ ∗ g = g.

So, taking g(s) = h(s)χ[,t](s), where h(s) is a C∞ function and χ[,t](s) denotes the charac-
teristic function on the interval [, t], from () it follows that

∫ ∞

–∞
g(s)δ(s – r) ds =

∫ ∞

–∞
h(s)χ[,t](s)δ(s – r) ds =

∫ t


h(s)δ(s – r) ds = h(r).

For computing the exact solution of the problem, by multiplying both sides of () by
exp( –t

 ), and using W (t) = dB(t)
dt , we have

–t exp

(
–t



)
X(t) dt + exp

(
–t



)
dX(t) = exp

(
–t



)
dB(t),

using the Itô formula, [], we conclude

d
(

exp

(
–t



)
X(t)

)
= –t exp

(
–t



)
X(t) dt + exp

(
–t



)
dX(t) = exp

(
–t



)
dB(t),

and so

X(t) = exp

(
t



)[
X +

∫ t


exp

(
–s



)
dB(s)

]
. ()

Now, we compute Xn from the random fourth order Runge-Kutta method,

Xn+ = Xn +



(k + k + k + k), ()

where

k = ht
nXn + hW (tn),

k = h
(

tn +
h


)(
 +

h


t
n

)
Xn +

h



(
tn +

h


)

W (tn) + hW
(

tn +
h


)
,

k = h
(

tn +
h


)(
 +

h


(
tn +

h


)(
 +

h


t
n

))
Xn +

h



(
tn +

h


)

W (tn)

+ h
(

 +
h


(
tn +

h


))
W

(
tn +

h


)
,

k = h(tn + h)
(

 + h
(

tn +
h


)(
 +

h


(
tn +

h


)(
 +

h


t
n

)))
Xn +

h



(
tn +

h


)

× (tn + h)W (tn) + h(tn + h)
(

 +
h


(
tn +

h


))
W

(
tn +

h


)
+ hW (tn + h),

and by setting

an =  +
h


t
n +

h


(
tn +

h


)(
 +

(
 +

h


t
n

)(
 +

h


(
tn +

h


)))

+
h


(tn + h)
(

 + h
(

tn +
h


)(
 +

h


(
tn +

h


)(
 +

h


t
n

)))
,



Khodabin and Rostami Advances in Difference Equations  (2015) 2015:62 Page 13 of 19

bn =
h


(
 + h

(
tn +

h


)

+
h



(
tn +

h


)(
 +

h


(tn + h)
))

W (tn)

+
h


(
 +

(
 +

h


(
tn +

h


))(
 +

h


(tn + h)
))

W
(

tn +
h


)
+

h


W (tn + h),

we have

Xn+ = anXn + bn, n = , , , . . . ,

and so

Xn =

(n–∏
i=

ai

)
X +

n–∑
i=

( n–∏
j=i+

aj

)
bi, n = , , , . . . . ()

From () and () we obtain the expectation and variance of X(t) and Xn:

E
[
X(t)

]
=  exp

(
t



)
, ()

E[Xn] = 
n–∏
i=

ai +
n–∑
i=

( n–∏
j=i+

aj

)
E[bi] = 

n–∏
i=

ai, ()

and

Var
[
X(t)

]
= exp

(
t



)[
 +

∫ t


exp

(
–s



)
ds

]
, ()

Var[Xn] = 

(n–∏
i=

ai

)

+
n–∑
i=

n–∑
k=

( n–∏
j=i+

aj

)( n–∏
l=k+

al

)
E[bibk], ()

where

E[bibk] = Ai,kδ(ti – tk) + Bi,kδ

(
ti – tk –

h


)
+ Bk,iδ

(
ti – tk +

h


)

+ Ciδ(ti – tk – h) + Ckδ(ti – tk + h),

where

Ai,k =
h



(
 +

[
 + h

(
ti +

h


)

+
h



(
ti +

h


)(
 +

h


(ti + h)
)]

×
[

 + h
(

tk +
h


)

+
h



(
tk +

h


)(
 +

h


(tk + h)
)])

+
h



[
 +

(
 +

h


(
ti +

h


))(
 +

h


(ti + h)
)]

×
[

 +
(

 +
h


(
tk +

h


))(
 +

h


(tk + h)
)]

,

Bi,k =
h



(
 +

(
 +

h


(
ti +

h


))(
 +

h


(ti + h)
)

+
[

 + h
(

ti +
h


)

+
h



(
ti +

h


)

×
(

 +
h


(ti + h)
)][

 +
(

 +
h


(
tk +

h


))(
 +

h


(tk + h)
)])

,
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Table 3 Absolute error of the expectation of X(t) with the Euler, RK2 and RK4 methods and
h = 1

20 , h = 1
50

t Euler RK2 RK4

h = 1
20 h = 1

50 h = 1
20 h = 1

50 h = 1
20 h = 1

50

0.1 7.548× 10–4 4.513× 10–4 9.315× 10–6 6.678× 10–6 2.170× 10–10 1.007× 10–10

0.2 1.158× 10–3 8.536× 10–4 4.173× 10–5 1.352× 10–5 4.352× 10–10 2.568× 10–10

0.3 3.124× 10–3 1.421× 10–3 6.457× 10–5 2.098× 10–5 6.575× 10–10 4.123× 10–10

0.4 5.207× 10–3 3.521× 10–3 7.125× 10–5 2.983× 10–5 8.921× 10–10 6.348× 10–10

0.5 7.128× 10–3 5.326× 10–3 8.423× 10–5 4.130× 10–5 1.160× 10–9 8.457× 10–10

0.6 3.369× 10–2 8.459× 10–3 9.845× 10–5 5.725× 10–5 1.525× 10–9 1.253× 10–9

0.7 5.476× 10–2 2.823× 10–2 1.405× 10–4 8.054× 10–5 2.183× 10–9 2.159× 10–9

0.8 6.897× 10–2 4.106× 10–2 2.306× 10–4 1.157× 10–4 3.734× 10–9 3.458× 10–9

0.9 9.253× 10–2 6.456× 10–2 5.623× 10–4 1.701× 10–4 7.949× 10–9 5.442× 10–9

1.0 2.176× 10–1 8.036× 10–2 7.236× 10–4 2.560× 10–4 1.980× 10–8 8.864× 10–9

Table 4 Absolute error of variance of X(t) with the Euler, RK2, and RK4 methods and h = 1
20 ,

h = 1
50

t Euler RK2 RK4

h = 1
20 h = 1

50 h = 1
20 h = 1

50 h = 1
20 h = 1

50

0.1 5.425× 10–1 4.215× 10–1 9.914× 10–2 9.807× 10–2 9.74098× 10–2 6.206× 10–2

0.2 6.456× 10–1 5.452× 10–1 2.243× 10–1 1.968× 10–1 1.95502× 10–1 8.245× 10–2

0.3 8.425× 10–1 6.152× 10–1 3.654× 10–1 2.980× 10–1 2.96196× 10–1 1.312× 10–1

0.4 8.896× 10–1 7.431× 10–1 5.756× 10–1 4.049× 10–1 4.02421× 10–1 2.318× 10–1

0.5 9.476× 10–1 8.189× 10–1 7.265× 10–1 5.219× 10–1 5.18782× 10–1 3.436× 10–1

0.6 3.523× 10–0 1.078× 10–0 8.438× 10–1 6.558× 10–1 6.51931× 10–1 4.540× 10–1

0.7 4.247× 10–0 3.368× 10–0 9.457× 10–1 8.164× 10–1 8.11499× 10–1 7.243× 10–1

0.8 6.235× 10–0 4.236× 10–0 1.214× 10–0 1.017× 10–0 1.01174× 10–0 9.345× 10–1

0.9 7.369× 10–0 5.348× 10–0 2.125× 10–0 1.282× 10–0 1.27442× 10–0 1.895× 10–0

1.0 8.563× 10–0 6.831× 10–0 4.425× 10–0 1.644× 10–0 1.63398× 10–0 2.213× 10–0

Ci =
h



(
 + h

(
ti +

h


)

+
h



(
ti +

h


)(
 +

h


(ti + h)
))

, i, k = , , , . . . , n – .

The absolute errors of the expectation and variance of X(t) with the Euler, RK, and RK
methods and h = 

 , h = 
 are shown in Tables , . In Figure , the expectation and

variance of the exact and numerical solutions of Example  with the RK method and
h = 

 are compared.
Figures ,  show that E[Xn] and Var[Xn] of the numerical solutions of stochastic initial

value problems via random Runge-Kutta methods of the fourth order are close to E[X(t)]
and Var[X(t)], respectively, as h → .

5 Applications in the electric circuits with noise
Consider the following RC circuit with constant parameters:

{
R dQ(t)

dt + 
C Q(t) = V (t) + α(t)W (t),

Q() = Q,
()

where Q(t) is the electric charge at time t and Q is an exponential random variable with
parameter λ = 

 , independent of W (t) for each t ∈ [, ], which means the initial charge at
time t = , and V (t) are nonrandom functions of time variable, which means the voltage at
time t and W (t) = dB(t)

dt is a -dimensional white noise process and B(t) is a -dimensional
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Figure 2 Expectations and variances of X(t) and Xn with the RK4 method and h = 1
20 .

Brownian motion and α(t) is a nonrandom function that shows the infirmity and intensity
of noise at time t.

Now, solving this stochastic differential equation, we have

e
t

RC dQ(t) +


RC
e

t
RC Q(t) dt =


R

e
t

RC V (t) dt +

R

α(t)e
t

RC dB(t). ()

Now, by assuming g(t, x) = e
t

RC x and using Theorem , we conclude

d
(
e

t
RC Q(t)

)
=


RC

e
t

RC Q(t) dt + e
t

RC dQ(t). ()

By () and () we have

Q(t) = e
–t
RC

[
Q +


R

∫ t


e

s
RC V (s) ds +


R

∫ t


α(s)e

s
RC dB(s)

]
. ()
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Now, we compute Qn from the random fourth order Runge-Kutta method,

Qn+ = Qn +



(k + k + k + k), ()

where

k =
h
R

[
–


C

Qn + V (tn) + α(tn)W (tn)
]

,

k =
h
R

[
–


C

(
 –

h
RC

)
Qn –

h
RC

(
V (tn) + α(tn)W (tn)

)
+ V

(
tn +

h


)

+ α

(
tn +

h


)
W

(
tn +

h


)]
,

k =
h
R

[
–


C

(
 –

h
RC

+
h

RC

)
Qn +

h

RC

(
V (tn) + α(tn)W (tn)

)

+
(

 –
h

RC

)(
V

(
tn +

h


)
+ α

(
tn +

h


)
W

(
tn +

h


))]
,

k =
h
R

[
–


C

(
 –

h
RC

+
h

RC –
h

RC

)
Qn

–
h

RC

(
V (tn) + α(tn)W (tn)

)
–

h
RC

(
 –

h
RC

)

×
(

V
(

tn +
h


)
+ α

(
tn +

h


)
W

(
tn +

h


))
+ V (tn + h) + α(tn + h)W (tn + h)

]
,

and by setting

a =  –
h

RC
+

h

RC –
h

RC +
h

RC ,

bn =
h

R

[
 –

h
RC

+
h

RC –
h

RC

](
V (tn) + α(tn)W (tn)

)
+

h
R

[
 +

(
 –

h
RC

)]

×
(

V
(

tn +
h


)
+ α

(
tn +

h


)
W

(
tn +

h


))

+
h

R
(
V (tn + h) + α(tn + h)W (tn + h)

)
,

we have

Qn+ = aQn + bn, n = , , , . . . ,

and so

Qn = anQ +
n–∑
i=

an–i–bi, n = , , , . . . . ()

From () and (), we obtain the expectation and variance of Q(t) and Qn.

E
[
Q(t)

]
= e

–t
RC

[
 +


R

∫ t


e

s
RC V (s) ds

]
, ()
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Table 5 Absolute error of the expectation and variance of Qn with h = 1
20

t expectation variance

0.1 1.81855× 10–9 5.03579× 10–7

0.2 3.68255× 10–9 3.92178× 10–6

0.3 5.60162× 10–9 1.28015× 10–5

0.4 7.60549× 10–9 2.92113× 10–5

0.5 9.68700× 10–9 5.46908× 10–5

0.6 1.18932× 10–8 9.02095× 10–5

0.7 1.42378× 10–8 1.36148× 10–4

0.8 1.67180× 10–8 1.92299× 10–4

0.9 1.93713× 10–8 2.57896× 10–4

1 2.22230× 10–8 3.31654× 10–4

E[Qn] = an +
n–∑
i=

an–i–
(

h
R

[
 –

h
RC

+
h

RC –
h

RC

]
V (ti)

+
h

R

[
 +

(
 –

h
RC

)]
V

(
ti +

h


)
+

h
R

V (ti + h)
)

, ()

and

Var
[
Q(t)

]
= exp

(
–t
RC

)[
 +


R

∫ t


α(s) exp

(
s
RC

)
ds

]
, ()

Var[Qn] = an +
n–∑
i=

n–∑
k=

an–i–k– Cov[bi, bk], ()

where

Cov[bi, bk] = Ai,kδ(ti – tk) + Bi,kδ

(
ti – tk –

h


)
+ Bk,iδ

(
ti – tk +

h


)

+ Ci,kδ(ti – tk – h) + Ck,iδ(ti – tk + h),

where

Ai,k =
h

R

[
 –

h
RC

+
h

RC –
h

RC

]

α(ti)α(tk) +
h

R

[
 +

(
 –

h
RC

)]

× α

(
ti +

h


)
α

(
tk +

h


)
+

h

R α(ti + h)α(tk + h),

Bi,k =
h

R

[
 –

h
RC

+
h

RC –
h

RC

][
 +

(
 –

h
RC

)]
α(ti)α

(
tk +

h


)

+
h

R

[
 +

(
 –

h
RC

)]
α

(
ti +

h


)
α(tk + h),

Ci,k =
h

R

[
 –

h
RC

+
h

RC –
h

RC

]
α(ti)α(tk + h), i, k = , , , . . . , n – .

The absolute error of the expectation and variance of Qn with V (t) = exp(t), α(t) = sin(t)
 ,

R = , C =  are shown in Table .
The absolute error of the expectation and variance of Qn with V (t) = exp(t), α(t) = sin(t)

 ,
R = , C =  are shown in Figure .
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Figure 3 Expectations and variances of Q(t) and Qn with h = 1
20 .

6 Conclusion
In this paper, the numerical solution of a stochastic differential equation is discussed by
fourth order Runge-Kutta methods in detail. The results can be compared with [, ]. Our
comparison showed that this method has more accuracy than the Euler method and the
second order Runge-Kutta methods in [, ].
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