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Abstract
In this paper, we consider the existence of positive solutions for a discrete third-order
boundary value problems, which has the sign-changing Green’s function. The
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1 Introduction
Let a, b be two integers with b > a. Let us employ [a, b]Z to denote the integer set {a, a +
, . . . , b}. For any real number c > , [c] is the integer part of c. In this paper, we consider
the existence of a positive solution for the following discrete third-order BVP:

{
�u(t – ) + a(t)f (t, u(t)) = , t ∈ [, T – ]Z,
u() = �u(T) = �u(η) = ,

(.)

where T >  is an integer, η ∈ [, [ T–T–
T+ ]]Z, a : [, T – ]Z → (, +∞) and f : [, T – ]Z ×

[, +∞) → [, +∞) is continuous.
Difference equations appear in many mathematical models in diverse fields, such as

economy, biology, physics, and finance; see [–]. In recent years, the existence and mul-
tiplicity of positive solutions of discrete boundary value problems have received much
attention from many authors and a great deal of work has been done by using classical
methods such as fixed point theory [–], lower and upper solutions methods [], critical
point theory [–], etc.

Specially, Jiang et al. [, ], Hao [], Gao [], Ma et al. [], Kong et al. [], and Hen-
derson et al. [–] considered the existence of positive solution for discrete equations
by using fixed point theory in a cone.

However, in all of the above papers, in order to obtain positive solution, the Green’s func-
tions they used are positive. Now, there is a question: when the Green’s function changes
its sign, can we get the existence of a positive solution?

In this paper, we will consider the existence of a positive solution of (.). It will be shown
that the Green’s function of (.) changes its sign in Section .
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Finally, it must be mentioned that there are some excellent results on the existence of
the positive solutions of BVPs for ordinary differential equations when the Green’s func-
tions change their signs; see Sun et al. [–] and Palamides et al. [, ] and references
therein.

Our main tool is the following well-known Guo-Krasnoselskii fixed point theorem.

Theorem . [] Let E be a Banach space and K a cone in E. Assume that � and �

are bounded open subsets of E such that  ∈ �, � ⊂ �, and A : K ∩ (�\�) → K is a
completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂� and ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂�, or
(ii) ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂� and ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂�.

Then A has at least one fixed point in K ∩ (�\�).

The rest of this paper is arranged as follows. In Section , we will show the expression
and some properties of the Green’s function of (.). Specially, we will show that the Green’s
function changes its sign. Moreover, we will give some other preliminaries. In Section ,
we will demonstrate our main result and prove it.

2 Preliminaries
First, let us consider the following linear problem:

{
�u(t – ) + y(t) = , t ∈ [, T – ]Z,
u() = �u(T) = �u(η) = .

(.)

We will convert (.) to the equivalent summation equation. To get it, let us define the
Green’s function G(t, s) as follows.

If s > η, then

G(t, s) =

{
t(T – s), t –  < s,
(T+)t–t–s–s

 , s ≤ t – .
(.)

If s ≤ η, then

G(t, s) =

{
t–(+s)t

 , t –  < s,
–s–s

 , s ≤ t – .
(.)

Now, we get the following lemma.

Lemma . The problem (.) has a unique solution

u(t) =
T–∑
s=

G(t, s)y(s), (.)

where G(t, s) is defined as (.) and (.).

Proof Summing from s =  to s = t –  at both sides of (.), we get

�u(t – ) = �u() –
t–∑
s=

y(s).
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Repeating the above process, we obtain

�u(t – ) = �u() + (t – )�u() –
t–∑
s=

(t – s – )y(s).

Summing from s =  to s = t at both sides of the above equation, we have

u(t) = t�u() +
t(t – )


�u() –

t–∑
s=

(t – s)(t – s – )


y(s).

By using the boundary condition u() = �u(T) = �u(η) = , we get

{
�u(η) = �u() –

∑η
s= y(s) = ,

�u(T) = �u() + T�u() –
∑T–

s= (T – s)y(s) = .

Therefore,

u(t) = –Tt
η∑

s=

y(s) + t
T–∑
s=

(T – s)y(s) +
t(t – )



η∑
s=

y(s) –
t–∑
s=

(t – s)(t – s – )


y(s), (.)

which implies (.) holds. �

Now, we can give some properties of G(t, s).
If s > η, then

�tG(t, s) =

{
T – s, t –  < s,
T – t, s ≤ t – .

If s ≤ η, then

�tG(t, s) =

{
t – s, t –  < s,
, s ≤ t – .

Thus, if η < s ≤ T – , then G(t, s) ≥  and �tG(t, s) ≥  for t ∈ [, T]Z. We have

max
t∈[,T+]Z

∣∣G(t, s)
∣∣ = G(T + , s) =

{
(T + )(T – s) ≤ T(T – η), t –  < s,
(T–s)(T+s+)

 ≤ T(T – η), s ≤ t – .

If  ≤ s ≤ η, then G(t, s) ≤  and �tG(t, s) >  for t ∈ [s + , s + ]Z, �tG(t, s) ≤  for
t ∈ [, s]Z. We have

max
t∈[,T+]Z

∣∣G(t, s)
∣∣ = – min

t∈[,T+]Z
G(t, s) =

{
, t –  < s,
s+s

 ≤ η + η, s ≤ t – .

Since η ∈ [, [ T–T–
T+ ]]Z and T > , we can obtain

max
t∈[,T+]Z

∣∣G(t, s)
∣∣ ≤ max

{
T(T – η),η + η

}
= T(T – η), (t, s) ∈ [, T + ]Z × [, T – ]Z. (.)
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Remark Let us give some reasons for why η ∈ [, [ T–T–
T+ ]]Z. To get it, let us consider

the following BVPs:

{
�u(t) = –,
u() = �u(T) = �u(η) = .

(.)

By Lemma ., we find that (.) has a solution u(t) as follows:

u(t) = –
t


+

 + η


t +

(
T(T – )


– Tη –

η


–




)
t.

Now, we will show that if η ∈ [, [ T–T–
T+ ]]Z, then u(t) ≥  for t ∈ [, T + ]Z.

Let φ(t) = t – ( + η)t – T(T – ) + (T + )η + . It is obvious that u(t) ≥  equals
φ(t) ≤ . Since �φ(t) = t – η – , we get �φ(t) ≥  for t ≥ η

 +  and �φ(t) ≤  for t ≤
η

 +. Due to T
 > T–T–

T+ , we get η

 + < T +. Therefore, �φ(t) ≥  for t ∈ [[ η

 +], T]Z
and �φ(t) ≤  for t ∈ [, [ η

 + ]]Z, i.e., φ(t) is increasing on [[ η

 + ], T + ]Z and φ(t) is
decreasing on [, [ η

 + ]]Z. Consequently, if φ() ≤  and φ(T + ) ≤ , then φ(t) ≤ 
for t ∈ [, T + ]Z. By the direct computation, φ() ≤  for η ∈ [, [ T–T–

T+ ]]Z and φ(T +
) ≤  for η ∈ [, [ T–T

T ]]Z. Combining with the fact T–T–
T+ < T–T

T < T
 , we get η ∈

[, [ T–T–
T+ ]]Z.

Now, let us give some notations.
Let E = {u : [, T + ]Z → R}. Then E is a Banach space under the norm ‖u‖ =

maxt∈[,T+]Z |u(t)|. Let

K =
{

y ∈ E : y(t) ≥ ,�y(t) ≥ , t ∈ [, T]Z and �y(t – ) ≤ , t ∈ [η + , T]Z
}

.

Then K is a cone in E.

Lemma . Assume y ∈ E, y(t) ≥  for t ∈ [, T + ]Z and �y(t) ≥  for t ∈ [, T]Z. Then
the unique solution u(t) of (.) belongs to K, where u(t) is defined as (.). Moreover, u(t)
is concave on [η + , T + ]Z.

Proof The following proof will be divided into two cases.
Case I. For  ≤ t –  < η, we have

u(t) = –
t–∑
s=

s + s


y(s) +
η∑

s=t–

t – ( + s)t


y(s) +
T–∑

s=η+

t(T – s)y(s).

Since η ∈ [, [ T–T–
T+ ]]Z, we get

�u(t) = –
t – t


y(t – ) +

η∑
s=t

(t + ) – ( + s)(t + )


y(s)

–
η∑

s=t–

t – ( + s)t


y(s) +
T–∑

s=η+

(T – s)y(s)
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= –
t – t


y(t – ) +

η∑
s=t

(t – s)y(s) –
–t + t


y(t – ) +

T–∑
s=η+

(T – s)y(s)

=
η∑

s=t
(t – s)y(s) +

T–∑
s=η+

(T – s)y(s)

=
η∑

s=t
(t – s)y(s) +

T–∑
s=η

(T – s)y(s) – (T – η)y(η)

≥ y(η)
η∑

s=t
(t – s) + y(η)

T–∑
s=η

(T – s) – (T – η)y(η)

= y(η)(T – t)
(

–η +
T + t


–




)
≥ .

Case II. For η ≤ t –  ≤ T – , we have

u(t) = –
η∑

s=

s + s


y(s) +
t–∑

s=η+

(T + )t – t – s – s


y(s) +
T–∑

s=t–

t(T – s)y(s).

Furthermore, we get

�u(t) =
t–∑

s=η+

(T + )(t + ) – (t + ) – s – s


y(s)

–
t–∑

s=η+

(T + )t – t – s – s


y(s)

+
T–∑
s=t

(t + )(T – s)y(s) –
T∑

s=t–

t(T – s)y(s)

=
t–∑

s=η+

(T – t)y(s) +
T–∑
s=t

(T – s)y(s) ≥ 

and

�u(t – ) = –
t–∑

s=η+

y(s) ≤ .

Since �u(t) ≥  for t ∈ [, T]Z, we have u(t) ≥  for t ∈ [, T + ]Z. So, u ∈ K. Due to
�u(η) = , we have �u(t – ) ≤  for t ∈ [η + , T]Z, i.e., u(t) is concave on [η + , T + ]Z.

�

Lemma . Assume y ∈ E, y(t) ≥  for t ∈ [, T + ]Z, �y(t) ≥  for t ∈ [, T]Z, and u is
the solution of (.). Then u satisfies

min
t∈[θ ,T+–θ ]Z

u(t) ≥ θ∗‖u‖, (.)

where θ∗ = θ–η–
T–η

and θ ∈ [η + , [ T+T+
T+ ]]Z.
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Proof From Lemma ., we know that u is concave on t ∈ [η + , T + ]Z. Therefore,

u(T + ) – u(η + )
T – η

≤ u(t) – u(η + )
t – η – 

, t ∈ [η + , T + ]Z.

Finally, by direct computation, we get

u(t) ≥ t – η – 
T – η

u(T + ) =
t – η – 

T – η
‖u‖.

That is,

min
t∈[θ ,T+–θ ]Z

u(t) = u(θ ) ≥ θ – η – 
T – η

‖u‖ = θ∗‖u‖.

Since T+T+
T+ ≤ T+

 , we get θ ≤ T +  – θ , and the set [θ , T +  – θ ] is well defined. �

3 Main results
In this section, we conclude the existence of positive solution of (.). To get it, we assume
that:

(H) f : [, T – ]Z × [, +∞) → [,∞) is continuous and the mapping u �→ f (t, u) is
nondecreasing for each t ∈ [, T – ]Z;

(H) a : [, T – ]Z → (, +∞) is increasing.
Define the cone

K =
{

u ∈ K : u() = , min
t∈[θ ,T+–θ ]Z

u(t) ≥ θ∗‖u‖
}

,

and the operator A : K → K by

Au(t) =
T–∑
s=

G(t, s)a(s)f
(
s, u(s)

)
.

Obviously, if u is fixed point of A in K , then u is positive and increasing solution of the BVP
(.). From Lemma . and Lemma ., we know that A : K → K is completely continuous.

Set

B = T(T – η)
T–∑
s=

a(s), D = (θ – )(T – θ + )
T+–θ∑

s=θ

a(s).

Theorem . Assume that (H) and (H) hold. If there exist two positive constants r and
R with r �= R such that

(A) f (t, x) ≤ r
B for (t, x) ∈ [, T – ]Z × [, r],

(A) f (t, x) ≥ R
D for (t, x) ∈ [, T – ]Z × [θ∗R, R],

then the BVP (.) has a positive and increasing solution u satisfying min{r, R} ≤ ‖u‖ ≤
max{r, R}. Moreover, the obtained solution u(t) is concave on [η + , T + ]Z.

Proof Firstly, we deal with the case r < R. Let

� =
{

u ∈ E : ‖u‖ < r
}

, � =
{

u ∈ E : ‖u‖ < R
}

.
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For any u ∈ K ∩ ∂�, from (.), the assumption (A) implies that

‖Au‖ = max
t∈[,T+]Z

∣∣∣∣∣
T–∑
s=

G(t, s)a(s)f
(
s, u(s)

)∣∣∣∣∣
≤ T(T – η)

T–∑
s=

a(s)f
(
s, u(s)

)

≤ T(T – η)
T–∑
s=

a(s)
r
B

= r = ‖u‖.

This shows that ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂�.
Similarly, for any u ∈ K ∩∂�, we get θ∗R ≤ u(s) ≤ R for s ∈ [θ , T +  –θ ]Z by Lemma ..

Since the function G(t, s) is positive and increasing for η < s ≤ T – , it follows from the
assumption (A) that

‖Au‖ = max
t∈[,T+]Z

∣∣∣∣∣
T–∑
s=

G(t, s)a(s)f
(
s, u(s)

)∣∣∣∣∣
= max

t∈[,T+]Z

T–∑
s=

G(t, s)a(s)f
(
s, u(s)

)

≥ max
t∈[θ ,T+–θ ]Z

T+–θ∑
s=θ

G(t, s)a(s)f
(
s, u(s)

)

=
T+–θ∑

s=θ

G(T +  – θ , s)a(s)f
(
s, u(s)

)

=
T+–θ∑

s=θ

(
T + T + θ – θ –  – s – s

)
a(s)f

(
s, u(s)

)

≥
T+–θ∑

s=θ

(
Tθ – θ – T + θ – 

)
a(s)f

(
s, u(s)

)

≥ (θ – )(T – θ + )
T+–θ∑

s=θ

a(s)
R
D

= R = ‖u‖.

This indicates that ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂�.
Therefore, A has a fixed point u ∈ K ∩ (�\�) from Theorem ., which is a positive and

increasing solution of the BVP (.) with r ≤ ‖u‖ ≤ R. Moreover, we know the obtained
solution u is concave on [η + , T + ]Z from the proof of Lemma ..

Secondly, we deal with the case r > R. Let

� =
{

u ∈ E : ‖u‖ < R
}

, � =
{

u ∈ E : ‖u‖ < r
}

.

Then, for each u ∈ K ∩ ∂�, by Lemma ., we obtain

min
t∈[θ ,T+–θ ]Z

u(t) = u(θ ) ≥ θ∗‖u‖ = θ∗R.
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The assumption (A) gives

‖Au‖ = max
t∈[,T+]Z

∣∣∣∣∣
T–∑
s=

G(t, s)a(s)f
(
s, u(s)

)∣∣∣∣∣
= max

t∈[,T+]Z

T–∑
s=

G(t, s)a(s)f
(
s, u(s)

)

≥ max
t∈[θ ,T+–θ ]Z

T+–θ∑
s=θ

G(t, s)a(s)f
(
s, u(s)

)

=
T+–θ∑

s=θ

G(T +  – θ , s)a(s)f
(
s, u(s)

)

≥ (θ – )(T – θ + )
T+–θ∑

s=θ

a(s)
R
D

= R = ‖u‖.

If u ∈ K ∩ ∂�, then  ≤ u(s) ≤ r,  ≤ s ≤ T – . So, the assumption (A) yields

‖Au‖ = max
t∈[,T+]Z

T–∑
s=

G(t, s)a(s)f
(
s, u(s)

)

≤ T(T – η)
T–∑
s=

a(s)
r
B

= r = ‖u‖.

Therefore, it is clear that the result holds. �

Corollary . Suppose that (H) and (H) hold. If f satisfies
(A) limx→+ maxt∈[,T–]Z

f (t,x)
x =  and limx→+∞ mint∈[,T–]Z

f (t,x)
x = +∞, or

(A) limx→+ mint∈[,T–]Z
f (t,x)

x = +∞ and limx→+∞ maxt∈[,T–]Z
f (t,x)

x = ,
then BVP (.) has a positive and increasing solution u, which is concave on [η + , T + ]Z.

Proof Superlinear case. Since limx→+ maxt∈[,T–]Z
f (t,x)

x = , there exists a constant r > 
so that

f (t, x)
x

≤ r

B
, (t, x) ∈ [, T – ]Z × [, r].

Similarly, since limx→+∞ mint∈[,T–]Z
f (t,x)

x = +∞, there exists a constant R > r so that

f (t, x) ≥ x
θ∗D

≥ θ∗R

θ∗D
=

R

D
, (t, x) ∈ [, T – ]Z × [

θ∗R, R
]
.

Hence, by Theorem ., we get the desired result.
Sublinear case. Firstly, we let

� =
{

u ∈ E : ‖u‖ < r
}

.

For u ∈ K ∩ ∂�, we get θ∗r ≤ u(s) ≤ r for s ∈ [θ , T +  – θ ]Z.
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Since limx→+ mint∈[,T–]Z
f (t,x)

x = +∞, there exists a constant r < R so that

f
(
s, u(s)

) ≥ u(s)
Dθ∗ ≥ θ∗r

Dθ∗ =
r

D
,

(
s, u(s)

) ∈ [, T – ]Z × [
θ∗r, r

]
.

Consequently, for u ∈ K ∩ ∂�, we get

‖Au‖ = max
t∈[,T+]Z

∣∣∣∣∣
T–∑
s=

G(t, s)a(s)f
(
s, u(s)

)∣∣∣∣∣
= max

t∈[,T+]Z

T–∑
s=

G(t, s)a(s)f
(
s, u(s)

)

≥ max
t∈[θ ,T+–θ ]Z

T+–θ∑
s=θ

G(t, s)a(s)f
(
s, u(s)

)

=
T+–θ∑

s=θ

G(T +  – θ , s)a(s)f
(
s, u(s)

)

≥ (θ – )(T – θ + )
T+–θ∑

s=θ

a(s)
r

D
= r = ‖u‖.

Now, we consider this case limx→+∞ maxt∈[,T–]Z
f (t,x)

x = .
Let

� =
{

u ∈ E : ‖u‖ < R
}

.

Case I. f is bounded. Then there exists a constant M >  so that f (t, u) ≤ M for (t, u) ∈
[, T – ]Z × [, +∞). Choosing constant R ≥ BM, we have

‖Au‖ = max
t∈[,T+]Z

∣∣∣∣∣
T–∑
s=

G(t, s)a(s)f
(
s, u(s)

)∣∣∣∣∣
≤ T(T – η)

T–∑
s=

a(s)f
(
s, u(s)

)

≤ MB ≤ R = ‖u‖.

Therefore, ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂�.
Case II. f is unbounded. Then we let constant R be positive and large enough such that

f (t, u) ≤ f (t, R) ≤ R

B
, (t, u) ∈ [, T – ]Z × [, R].

Consequently, for u ∈ K ∩ ∂�, we get

‖Au‖ = max
t∈[,T+]Z

∣∣∣∣∣
T–∑
s=

G(t, s)a(s)f
(
s, u(s)

)∣∣∣∣∣
≤ T(T – η)

T–∑
s=

a(s)f
(
s, u(s)

) ≤ R

B
B = ‖u‖.
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Therefore, by Theorem ., we obtain a solution of the problem (.). Moreover, we know
the obtained solution u is concave on [η + , T + ]Z from the proof of Lemma .. So, the
proof of Corollary . is completed. �
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