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Abstract

Rumor is an important form of social interaction, and its spreading has a significant
impact on human lives. In this paper, a rumor propagation model with latent period
and varying population is considered, which assumes an ignorant individual first goes
through a latent period after infection before becoming a spreader or a stifler. Agents
that read the rumor but have not decided to spread it, stay in the latent period. By
means of the Lyapunov function and LaSalle’s invariant set theorem, we proved the
global asymptotical stable results of the rumor-free equilibrium and the
rumor-endemic equilibrium by using the Poincare-Bendixson property. Then an
optimal control problem is formulated, from the perspective of a manager in
emergency events, to maximize positive social effects with rumor spreading when
the emergency resources are under constraints. Control signals, such as science
education and official medial coverage attempt to convert lurkers and spreaders into
stiflers. By employing Pontryagin's maximum principle, the optimal solution is
acquired when the emergency response incurs nonlinear costs. Finally, we outline
some strategies for managers that can contribute to rumor control in an emergency
event.

Keywords: optimal control; rumor propagation; asymptotical stable; emergency
event

1 Introduction

Rumors are part of our everyday life, and its spreading has a significant impact on human
lives. Hayakawa [1] defines rumor as a kind of social phenomenon that a similar remark
spreads on a large scale in a short time through chains of communication. Shibutani [2]
regards rumor as collective problem-solving, in which people ‘caught’ in ambiguous situ-
ations trying to caught ‘construe a meaningful interpretation ... by pooling their intellec-
tual resources’ Rumors may contain confidential information about public figures or news
which concerns important social issues, they can shape the public opinion of a society or a
market by affecting the individual beliefs of its members, and its spreading plays a signifi-
cant role in a variety of human affairs. The effects of rumors have been widely documented
in many fields, such as in markets, social organizations, and disasters.

Rumor spreading is the social phenomenon that a remark spreads on a large scale in a
short time through a chain of communication. To analyze the spreading and cessation of
them, rumor transmissions are often modeled as social contagion processes. The classical
models for the spread of rumor were introduced by Daley and Kendal [3] and Maki and
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Thompson [4], and then many researchers have used the model extensively in the past for
their quantitative studies [5].

In classical models, people are divided into three classes: ignorants (those not aware of
the rumor), spreaders (those who are spreading it), and stiflers (those who know the rumor
but have ceased communicating it after meeting somebody already informed), and they
interact by pairwise contacts. In the Daley-Kendall (D-K) model, spreader-ignorant con-
tact will convert the ignorant to spreader; spreader-spreader contact will convert both
spreaders to stiflers, and spreader- stifler contact will stifle the spreader. In the Maki-
Thompson (M-T) model, the rumor is spread by directed contact of the spreaders with
other individuals. Hence, when a spreader contacts another spreader, only the initiating
one becomes a stifler. Pearce [6] and Gani [7] analyzed the probability generating func-
tions in the stochastic rumor models by means of a block-matrix methodology. In addition,
Dickinson and Pearce [8] studied stochastic models for more general transient processes
including epidemics. Independently of this series of studies, deterministic models for ru-
mor propagation have been studied sporadically. For example, Castillo-Chavez and Song
[9] proposed the propagation model for a fanatic behavior based on the models for sexu-
ally transmitted diseases and analyzed them qualitatively and numerically. Bettencourt et
al. [10] have worked on the spreading process of multiple varying ideas. Kawachi [11] pro-
posed and mathematically analyzed deterministic models for rumor transmission, which
are extensions of the deterministic D-K model. In Kawachi’s other extension model [12],
he and his cooperators studied a flexible spreader-ignorant-stifler model where spreader
to ignorant and stifler to spreader transitions are possible, while Lebensztayn [13] investi-
gated the case that a new uninterested class of people exists. Huang [14] studied the rumor
spreading process with denial and skepticism, two models are established to accommodate
skeptics. A number of studies proposed more complex models of rumor spreading based
on several classical models of social networks including homogeneous networks, Erdos-
Renyi (ER) random graphs, uncorrelated scale-free networks and scale-free networks with
assortative degree correlations.

In particular, we have those which were mediated by the internet, such as ‘virtual’ com-
munities and email networks. Those extended models include a general class of Markov
processes for generating time-dependent evolution, and studies of the effects of social
landscapes on the spread, through Monte Carlo simulations over small-world and scale-
free networks, but major shortcomings of these models were that either they neglected the
topological characteristics of social networks or some of these models were not suitable
for large-scale spreading process. As for applications, Zanette [15, 16] and Buzna et al. [17]
established rumor spreading model on the small-world networks and found the existence
of a rumor spreading critical value. Moreno [18] studied the stochastic D-K model on
scale-free networks and insisted that the uniformity of networks had a significant impact
on the dynamic mechanism of rumor spreading. Isham [19] studied the final size distri-
bution of rumors on general networks. Sauerwald [20] studied the relation between the
vertex expansion of a graph and the performance of randomized rumor spreading by re-
placing conductance by vertex expansion. Recently, Zhao et al. [21, 22] have put forward a
series rumor spreading models, such as the SIRaRu and 2SI2R models, entailing inherited
and extended classical rumor spread theory.

Although there are a lot of studies on preventing the spread of disease and computer
viruses in human and computer networks through optimal control [23, 24], information
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epidemics have attracted less attention (see for example [25]). Apart from differences in
epidemic models, our objective is to minimize the final size distribution of rumors spread
and the negative social effects with rumor spreading in emergency event. In addition, the
cost functions used by Behncke [23] and Lashari [24] are linear in control, while our cost is
quadratic in control. Zhu et al. [26] assumed a time-varying state variable in the cost func-
tion, while our formulation considers only the final system state. In this paper, we aim to
prevent the rumor diffusion which uses science education and official media coverage as
control strategies. The publicity of science education and the advance of people’s cultural
qualities encourage lurkers to protect themselves from the rumor and attempt to convert
lurkers into stiflers. In an emergency situation, the authority plays the role of the manager,
putting an announcement in the authoritative media to address rumors, inducting pub-
lic opinions, and putting emergency under control, reducing the potential for secondary
damage. It is imperative that announcements be enacted and executed to stop the pro-
duction and transmission of the rumors in an emergency event and attempt to convert
spreaders into stiflers.

During the past decades, various mathematical models for the propagation of a rumor
within a population have been developed. Beyond obvious qualitative parallels there are
also important differences between the spread of rumor and diseases. In this paper, we
apply models similar to those used in epidemiology to the spread of rumor. By the term
‘rumor;, we refer generally to any concept that can be transmitted from person to person.
It may refer to uncertain information, which may require efforts and apprenticeship to be
learned. What is important is that it is possible to tell if someone has adopted the rumor,
believed it, and is capable of and/or active in spreading it to others.

A major difference between an information epidemic and a biological epidemic is that
in the case of a biological epidemic, the infection rate, and recovery rate are constant
throughout the season. The interest level of the population during the emergency period
changes as we approach the deadline (poll date or movie release date). We have modeled
this by making the effective information spreading rate a time-varying quantity. Previous
studies have ignored this characteristic of information epidemics. Another difference be-
tween epidemiological models and rumor spreading models is the removal mechanism.
The spread of a rumor, unlike a disease, is usually an intentional act on the part of the
transmitter and/or the adopter. A core element associated with a rumor is lack of verifi-
cation, and some rumors that take time to identify, such as those involving consideration
or confirmation, require active effort to discern between true and false and one needs to
determine whether there is propagation or not. Because network information has always
suffered from a lack of credibility, people cannot believe it immediately but are able to
believe news from their friends and relatives more easily. Especially, rumors mostly come
from a network and then spread in real life mouth to mouth. Many rumors come from a
network and are hidden in the depths of one’s heart for a period of time before he/she be-
comes a spreader or stifler in real life. Being a model that is more general than the classical
D-K model, the XYZ type needs to be studied to investigate the role of a latent period in
rumor propagation. Using a compartmental approach based on a disease infection, we as-
sume that an ignorant individual first goes through a latent period (and is said to become
exposed or in the class W) after infection before becoming a spreader or stifler.

In this paper, we apply a general model, inspired by epidemiology and informed by our
knowledge of the sociology of the spread dynamics, to the diffusion of the rumor. This
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paper deals with the rumor propagation model with latent period and varying total popu-
lation. Then an optimal control problem is formulated, from the perspective of a manager
in emergency events, to minimize negative social effects with rumor spreading when the
emergency resources are under constraints. By employing Pontryagin’s maximum princi-
ple, the optimal solution is acquired when the emergency response incurs nonlinear costs.
We provide a more detailed and realistic description of the rumor spreading process with
combination of a latent period mechanism and the D-K model of a rumor. This paper
is organized as follows. In Section 2, we review the D-K model and introduce a model
with homogeneity in susceptibility and propagation. In Section 3, we discuss and analyze
our general rumor propagation model with latent period and having a constant immi-
gration; and we discuss the existence of an equilibrium. In Section 4, we consider the
global stability of the rumor-free equilibrium (RFE) and the unique rumor-endemic equi-
librium (REE). In Section 5, an optimal control problem is formulated, and the optimal
solution is acquired by employing Pontryagin’s maximum principle. Finally, we present
simulations and conclusions about the model, and we discuss the implications of these re-
sults, and from this we conclude what parameters have an impact on each system so that
we can come up with suggestions for possible preventative or control methods.

2 Review of Daley-Kendall framework
Daley and Kendall published a paper aiming to stochastically model the spread of rumors.
They considered a closed homogeneously mixing population of N individuals. At any time
an individual can be classified as one of three categories: X(£) denotes those individuals
who are ignorant of the rumor; Y (¢£) denotes those individuals who are actively spread-
ing the rumor; and Z(¢) denotes those individuals who know the rumor but have ceased
spreading it. For all £, X(£) + Y (¢£) + Z(¢) = N. They referred to these three types of individu-
als as ignorants, spreaders, and stiflers, respectively [3]. The rumor is propagated through
the closed population by contact between ignorants and spreaders, following the law of
mass action. They assume that any spreader involved in any pairwise meeting ‘infects’ the
‘other’ If the ‘other’ is an ignorant then he/she will become a spreader; if the ‘other’ is a
spreader or a stifler, then the spreader(s) will become a stifler(s). A stifler will never, under
any circumstances, infect a susceptible because of the definition of a spreader. Stiflers do
not transmit the rumor.

Next, Cintron-Arias and Castillo-Chdvez [27] proposed the following deterministic ver-
sion of the D-K model:

aX _ _pXY

dr N’

dY _ pXY 4 Y(Y+Z)

PN AR 1)
dzZ _ 5 Y(Y+2)

dt — N

This model has been extremely useful in the interpretation of the D-K because some
analytical analysis can be done on this deterministic version of the model. Still, the D-K
model makes some other assumptions. There is no inflow to the susceptible class or out-
flow from any of the classes. The model also assumes that everybody should be a spreader
immediately after they learn the rumor, and the process of thinking is virtually ignored.
Along the same lines, their model does not take into account the personality of the person
who is spreading or receiving the rumor. Finally, it does not allow for people who are ‘igno-
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Figure 1 The basic scheme of population dynamics models for the spread of rumor.

rant’ to hear the rumor and then choose not to spread it. Still, their model was extremely

innovative and is still very useful in the modeling and analysis of rumor spreading.

3 General rumor propagation model with latent period and having constant
immigration

In the following we will concentrate on the model, based on ‘homogeneous mixing’ with
state variables as functions of time, which is more general than the XYZ type model and
needs to be studied to investigate the role of latent period in rumor propagation. However,
the propagation requires some time for individuals to pass from the infected to the spread
state, and we assume that an ignorant individual first goes through a latent period (and is
said to become exposed or in the class W) after being infected before becoming a spreader
or stifler, and the resulting model is of XWYZ type.

We divide the population into four classes: the ignorant class, the latent class, the
spreader class, and the stifler class. Each population at time ¢ is denoted by X(¢), W (¢),
Y(t), Z(¢), respectively, each of which we call a rumor-class. Those who belong to the ig-
norant class, whom we call ignorants, do not know about the rumor. Those who belong
to the latent class, whom we call lurker, know about the rumor and require active effort
to discern between true and false and need to determine whether there is propagation or
not; a part of them believe the rumor and become spreaders, others do not believe it and
become stiflers. Those who belong to the spreader class, whom we call spreaders, know
about the rumor and spread it actively. Those who belong to the stifler class, whom we
call stiflers, know about the rumor and do not spread it. The total population size at time
tis denoted by N(¢), with N = X + W + Y + Z. The transfer diagram is depicted in Figure 1.

We assume that no transition of rumor-class happens unless a spreader contacts some-
one, since the two people who are not spreaders do not talk about the rumor. That is, it is
spreaders who are involved in the transition of rumor-class. When a spreader contacts an
ignorant, the spreader transmits the rumor at a constant frequency and the ignorant gets
to know about it and requires time to discern between true and false and becomes rumor
latent. Then the ignorant does not always become a spreader, but may doubt its credibil-
ity and consequently becomes a stifler. Therefore, we assume that o XY At/N ignorants
change their rumor-class and become exposed during the small interval (¢, ¢ + At), where
Bo is a positive constant number representing the product of the contact frequency and
the probability of transmitting the rumor. W have been infected but are not yet spread-
ing, we assume that ag W exposed change their rumor-class and become spreaders at a
constant rate 6 € (0,1], and others become stiflers at a rate 1 — 6, where « is a positive
constant number representing the proportion of exposed change their rumor-class. When
two spreaders contact with each other, both of them transmit the rumor at a constant fre-
quency. Hearing it again and again, the spreader gets bored, gradually loses interest in
it, and consequently becomes a stifler. Therefore, we assume that AoY2At/N spreaders
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become stiflers during the small interval (¢, ¢ + At), where X is a positive constant num-
ber. When a spreader contacts a stifler, the spreader transmits the rumor at a constant
frequency, and after hearing it, the stifler tries to remove it, because the stifler shows no
interest in it or denies it. As a result, the spreader becomes a stifler. Therefore, we as-
sume that Ao YZAt/N spreaders become stiflers during the small interval (£, + At). Any
spreader may lose interest in spreading those influenced by official media, and it becomes
a stifler at a rate y.

For the meantime we assume that the rumor is ‘constant, that is, the same remark is
transmitted at all times. First, we consider the propagation of a constant rumor with vari-
able population size, we assume that the propagation of a constant rumor in a population
with constant immigration and emigration. Let A be the immigration, such as the number
of new internet accounts created (‘births’), p the emigration rate such as the number of
internet accounts that are canceled or become void (‘deaths’). Thus, the maximum value
that i can take is the average lifespan of the rumor within a generation of researchers in
the relevant community. We assume that A, u are positive constants, that the newcomers
are all ignorant, and that emigration is independent of rumor-class.

The model is described by the following system of differential equations:

X = A-Bo’f - uX,

Y = BoAL — g W — W,

dzg (Y+2)Y (2)
G =0aW —ro—5——nY-uY,
LZ — (1-0)ogW + 1o L2Y 4 Y — uZ.

In the epidemic models used in this study, the demographic dynamics are modeled by

‘3—1;[ = A — uN, then N(¢) varies over time and approaches a stable fixed point, %, ast — 0o,
z

in other words, the community approaches its ‘carrying’ capacity. Let x = %, y= ]%, z=5%,
T=ut,B= /%0
of differential equations

) . . .
,o = 0’70, A= 7", y = V—lf It is easy to verify that x, w, y, and z satisfy the system

dx

T =1-Bxy—x,
Z—V: =Bxy—aw-w, 3)
L = faw -y +2)y-yy -9

% =1-0)aw+r(y+2)y+yy-z

subject to the restriction x + w + y + z = 1. Note that the total population size N(¢) does not
appear in (2); this is a direct result of the homogeneity of the system (1). Also, we rewrite t
as t, determining z from z = 1 —x — w — y, this allows us to research system (2) by studying
the subsystem

dx

% =1-Bxy—x,
D~ Bxy —aw—w, (4)
dy

G =0ow—A(l—-x-w)y—-yy-y.

The feasible region for (1) is R?, we study (4) in the closed set

A:{(x,w,y)eRi|0§x+w+y§1}, (5)
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where R? denotes the nonnegative cone and its lower dimensional faces. It can be verified
that A is positively invariant with respect to (4). We denote by 84 and A the boundary and
the interior of A in Ri, respectively.

Letting the right side of each of the three differential equations be equal to zero in system

(4) gives the equation

1-Bxy—-x=0,
Bxy—aw—-w=0, (6)
Oaw—- A1 -x—-w)y—yy-y=0.

Adding the first and second equation of system (6), and then substituting it into the last

equation of system (6), we have

x=1-(a+1)w,

(7)
Oaw
Y= raw+(y+1)
Substituting (7) into the second equation of (6), w satisfies the following equation:
baw [1 (o + l)w] (a+1)w (8)
— |1 - (x = (a .
raw+ (y +1)

So the system (4) always has the RFE Py = (1,0,0), and unique REE P* = (x*, w*,y*),

BOa—(a+1)(y+1) _ _ Qaw* . _ B
S DEea x*=1— (o +)w*, y* = WM(/;/H) if Ry = @00 > 1, where R,

the basic reproduction number of the system (4).

where w* =

4 Global stability of the RFE and the unique REE
Theorem 4.1 IfRy <1, the RFE P is globally asymptotically stable in A. Py is unstable if
Ry > 1, the solutions to the system (4) starting sufficiently close to Py in A move away from

Py except that those starting on invariant x-axis approach Py along this axis.

Proof Consider the Lyapunov function:
L=——w+—y. )

Its derivative along the solutions to the system (4) is

_ Boaxy—(a+1)(y + )y - A+ 1)1 -x-w)y
N oo +1)

_ (B0 @+ Dy + Dly _ (7 + DRy -y
- o +1) - o

L/

<0. (10)

Furthermore, L' = 0 only if w = 0, y = 0. The maximum invariant set in {(x,w,y): L' =
0}, is the singleton {Py}. The global stability of Py when Ry <1 follows from LaSalle’s

invariance principle [28]. 0

Theorem 4.2 If R, > 1, the REE P* of the system (4) is locally asymptotically stable.
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Proof The Jacobian matrix at REE P* is given by

-1-8y* 0 —Bx*
J(P)=| By  —(a+1) B+ : (11)
Ay af +2y* Al —x*—w*)—(y +1)

Its characteristic equation is det(wE — J(P*)) = 0, where E is the unit matrix and

*
" Oaw

x*=1- (o +1)w", =
( ) Y raw* +(y +1)

So the characteristic equation becomes w® + Ciw? + Cyw + Cs3 = 0, where

Ci=Baf —(@+1)(y+1)>0 ifRy>1,

- adQ+a)?+ B2 +a’+y +aB+A+7y))]
2T (@+1)2(y +1) + Aa(a +1)

>0,
Ci=3+a+By +y+r(1-w"-x")>0.

We calculate easily C;C; — Cs > 0. According to the Hurwitz criterion, the REE P* has
local asymptotical stability. O

In the following,using the geometrical approach of Li and Muldowney in [29]; we obtain
simple sufficient conditions that the rumor steady state P* is globally asymptotically stable.
First, we give a brief outline of this geometrical approach.

Lemma 4.1 [30] Counsider the following systems:
V=f(v), veA. (12)

If the following conditions are satisfied:
(I) For the system (12) there exists a compact absorbing set ' C A and has a unique
equilibrium P in A;
(II) P islocal asymptotically stable;
(III) the system (12) satisfies a Poincaré-Bendixson criterion;
(IV) a periodic orbit of the system (12) is asymptotically orbitally stable;
then the only equilibrium P is the globally asymptotically stable in A.

Lemma 4.2 [31] A sufficient condition for a periodic orbit P = {P(t): 0 <t < w} of system
(12) to be asymptotically orbitally stable with asymptotic phase is that the linear system
V' = %(P(t))\/(t) is asymptotically stable, where %[tz] is the second additive compound
matrix of the Jacobian matrix g—ft of f. The system (12) is called the second compound system
of the orbit P(t).

Lemma 4.3 Any periodic solution to the system (4), if it exists, is asymptotically orbitally
stable.

Proof Suppose that the solution (x(£), w(t), y(¢)) is periodic of least period @ > 0 such that
(x(0), w(0),¥(0)) € A. The periodic orbit is P = {P(t): 0 < t < w}. From (11), the second
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compound system v’ = J?(P)v of the differential system #' = J(P)® in the periodic solution
is the following periodic linear system:

DA = —(By +a +2)Vy + (Vs + V3),

42 = (@a +ay)Vi— [y +2+ By + M1 —x - w)] Vs, (13)

% = Vi+ByVo—[a+y +2+ A1 -x—-w)]V3,

where
J(P)
-By-—a-2 Bx Bx
= O + Ay -y -2-By-r1-x-w) 0 . (14)
-y By —a-y-2-A1-x-w)

Suppose that (Vy(¢£), Va2 (2), V3(t)) is a solution to (13) and (x(¢), w(¢), y(¢)) € P.
Let

w
U(‘/lx VZ) VSJC;WJ/):SUP{H/H; ;(|V2+ VB')} (15)

From the condition (I) of Lemma 4.1 we find that there exists a constant > 0 such that
U(‘/lt VZ) V37x7 W,}/) = 77|(V1¢ V21 V3)| (16)

for all (V4, Va, V3) € R® and (x(t), w(£), y(t)) € P. Direct calculations lead to the following
differential inequalities:

Bxy w

D+|V1(t)|S—(ﬂy+a+2)|V1|+7;(IVzI+IVsl), 17)
D |Va(®)] < @ + M) Vil = [y +2 + By + A1 —x = w)] [ V2], (18)
D, |Va(0)| < -aylVil+ By Val = [ + y + 2+ A(1 —x = w)]| V3] (19)

Using (18) and (19), we have

D+%(|v2(t>| +|Va(0))

< Zoa|vi(o)] + V—”[K/ —y—/-y—z—x(1—x-w)](|v2(t)} +|Va8)), (20)
y yLw

y

where ' denotes the derivative of a function. Equations (17) and (20) lead to

D, U(t) < Sup{g,g&}U(2), (21)
where

ga=—-By+a+2)+ %, (22)

gZ:V—V€a+K/—Z—y—2—A(1—x—w). (23)

y woy
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Rewriting (4), we find that

W_BY e, (24)
woow

jL/ _ Baw —A(1l—x—w)y (4 ). (25)
J J

Substituting (24) and (25) into (23), we have

_Pxy

L= —(e+1) -1 (26)

Thus Sup{g1, &} < WW/ —1and

/ Sup{gi, g2} dw <Inw(t)|§ —w =-w. (27)
0

From (21), this implies that U(¢) — 0 as ¢ — 00, and in turn that (Vy(¢), Va(¢), V3(¢)) = 0
as t — oo. As a result, the second compound system (13) is asymptotically stable and the
periodic solution (x(t), w(¢), ¥()) is asymptotically orbitally stable by Lemma 4.2. O

Now, we are ready to prove the global stability of the endemic equilibrium P*.

Theorem 4.3 IfRy > 1, then the unique REE P* of the system (4) is globally asymptotically
stable.

Proof Firstly, from the condition (1) of Lemma 4.1, the uniformly persistent property of
the solution of the system (1) can be concluded to [32]. In fact, let G = {P}, Lemma 4.1
implies that, when Ry > 1, G* is just contained in the x-axis and thus just in the boundary
of A. It also implies that G® is isolated in A. Then, when Ry > 1, the system (4) satisfies the
conditions of Theorem 4.3 of [33], namely, (i) the maximal compact invariant set G in the
boundary of A is isolated, and (ii) the stable set G® of G is contained in the boundary of A.
Therefore, the system (4) is uniformly persistent in A when Ry > 1.

Secondly, let H = diag(1,-1,1), H/(P)H has non-positive off-diagonal elements for
(x(2), w(£), y(¢)). Thus we can verify that the system (4) is competitive with respect to the
partial ordering defined by the orthant S = {(x,w,y) € R®|x > 0,w > 0,y > 0} (see [34]).

From [31], we know system (4) satisfies the Poincaré-Bendixson property. By Lemma 4.3
and Theorem 4.2, we know that the system (4) is satisfied with every condition of
Lemma 4.1, so the unique REE of the system (4) is globally asymptotically stable. d

5 The optimal control model
Our objective in this section is to extend the initial model to include two intervention
methods, called controls, represented as functions of time and assigned reasonable upper
and lower bounds, each representing a possible method of rumor intervention.
Historically, rumor outbreaks have tended to reach the attention of authorities only after
transmission has been amplified by inadequate infection control. Conversely, as with any
breaking news story, information is often fluid and the authoritative media updated the
story with the official explanation as soon as it was provided. If there is a rumor spread
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in emergency event, the official has the obligation to state whether it is true or not, it
helps the person to understand the situation better. After the 9-magnitude earthquake
in Fukushima, incurring nuclear leakage accidents in 2011, some rumors said that taking
materials containing iodine could help ward of nuclear radiation, which led to the public
rushing for everything containing iodine, such as Chinese snapping up iodized salt, Amer-
icans rushing for iodine pills, Russians hoarding iodine, and Korean residents rushing for
seaweed. The science knowledge is that eating iodized salt cannot prevent people from
radiation, which encourages lurkers to protect themselves from the rumor and attempt to
convert lurkers into stiflers. Official media as authority announcing the news, after receiv-
ing the true information, the public will not be confused by the rumors. It is imperative
that announcements be enacted and executed to stop the production and transmission of
the rumors in emergency event and attempt to convert spreaders into stiflers.

Generally, the lurker individual becomes a spreader when being convinced of the truth
of the rumor and then decides to inform others. However, note that ‘a convinced’ lurker
can possibly refuse to spread the rumor, or alternately a spreader can lose interest in the
rumor and then decide not to spread the rumor any further. In these two situations, both
become stiflers. A stifler is therefore either an individual who knows the rumor but who
is not spreading it or a spreader who, with time, loses interest and is no longer spreading
the rumor. Furthermore, one can notice that the tendency of accepting a rumor as cred-
ible information differs from one lurker to another. This can be explained by the strong
background knowledge that some of the lurker individuals possess. These types of lurker
individuals, once aware of the rumor, generally raise some reasonable questions and/or
logical arguments in order to assess the credibility or the validity of the rumor. Science
education is therefore among the factors that also contribute to the cessation of a rumor
spreading and is an important aspect that has not been considered in previous studies.

We will integrate the essential components into one XWYZ-type model to accommo-
date the dynamics of rumor outbreak determined by population-specific parameters such
as the effect of contact reduction when infectious and stifler individuals are reported in
the official media.

Let u, and u, be the control variables for science education and official media coverage,
respectively, where n =1 — 6. Thus, model (2) now reads

% =1-Bxy—x,

il—vtv = Bxy — Oaw — uynaw —w,

d

F=baw-Ay+2)y-(1-u,)y-y,

% =unaw+ Ay +2)y+ 1 —-u,)y -z
The balance of multiple intervention methods can differ between populations. A suc-

cessful mitigation scheme is one which reduces rumor infectious with minimal cost.

A control scheme is assumed to be optimal if it maximizes the objective functional

t

W (1 (6, 1, (8)) = / " [Bo((0) + 2(0)) = Buy(t) = Ba 10y (0 + u, (2?)] . (29)

to

The first two terms represent the benefits of the ignorant and stifler populations. The
parameters By represent the weight constraints for the ignorant and stifler populations,
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B; and B, represent the weight constraints for the infected population and the control,
respectively. They can also represent balancing coefficients transforming the integral into
dollars expended over a finite time period of [£y, #s]. The goal is to maximize the pop-
ulations of ignorant and stifler individuals, minimize the population of infectives, and
maximize the benefits of official media coverage and vaccination, while minimizing the
systemic costs of both rumor vaccination and official media coverage. The terms By, (t)*
and By u,, (£)? represent the maximal cost of education, implementation and campaigns on
both rumor vaccination and official media coverage. x(¢) and z(¢) account for the fitness
of the ignorant and the stifler groups. We thus seek optimal controls

W(uf](t),u’; (t)) = max[W(un(t),u), (t))l(un(t),uy(t)) € L[], (30)

where U = {u,,u, |u,,u, measurable, 0 < ay; <u, < by <1,0 <ay <u, <byp <1,
t € [to, tr]}. The basic framework of this problem is to characterize the optimal control.
The existence of an optimal control can be obtained by using a result by Joshi [35].

Theorem 5.1 Consider the control problem with the system of equations (9)-(12). There ex-
ists an optimal control, such that max{W (u, (t), u, (£))|(u,(£), u, (£)) € U} = W (u;(¢), uy, ®)).

Proof To prove this theorem on the existence of an optimal control, we use a result from
Fleming and Rishel [36] (Theorem 4.1 pp.68-69), where the following properties must be
satisfied: (I) The set of controls and corresponding state variables is nonempty; (II) the
control set U is closed and convex; (III) the right-hand side of the state system is bounded
above by a linear function in the state and control; (IV) the integrand of the functional is
concave on U and is bounded above by ¢; — ¢;(|u, (£)|* + |u, (£)|?), where ¢; > 0, ¢ > 0, and
k>1.

An existence result in Lukes [37] (Theorem 9.2.1) for the system of equations (28) for
bounded coefficients is used to give the first condition. The control set is closed and convex
by definition. The right-hand side of the state system satisfies Condition III since the state
solutions are a priori bounded. The integrand in the objective functional, By(x(t) + z(t)) —
Byy(t) — Bz(u,,(t)2 + uy(t)z) is concave on U. Furthermore, ¢; >0, ¢; >0, and k > 1, so

Bo(x(t) + 2(2)) = Biy(t) — B (1 ()% + 1, (%) < ¢ — c1 (|un(0)|* + |1ty (8) ). (31)

Therefore, the optimal control exists, since the left-hand side of (31) is bounded; conse-
quently, the states are bounded.

Since there exists an optimal control for maximizing the functional (29) subject to (28),
we use Pontryagin’s maximum principle to derive the necessary conditions for this opti-
mal control. Pontryagin’s maximum principle introduces adjoint functions that allow us to
attach our state system (of differential equations), to our objective functional. After first
showing the existence of optimal controls, this principle can be used to obtain the dif-
ferential equations for the adjoint variables, corresponding boundary conditions, and the
characterization of an optimal control u’;(t), u, (). This characterization gives a represen-
tation of an optimal control in terms of the state and adjoint functions. Also, this principle
converts the problem of minimizing the objective functional subject to the state system
into minimizing either the Lagrangian or the Hamiltonian with respect to the controls
(bounded measurable functions) at each time ¢.
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The Lagrangian is defined as

L =8By (x(t) + z(t)) —Byy(t) - By (u,,(t)2 + u,,(t)z) +p1[l - Bxy — ]

+ po[Bxy — Oaw — uynaw — w]

+ pg[eaw— Ay+z2)y-(Q1- uy)y—y]

+ p4[u,777aw +Ay+2)y+ L —uy)y— z]

+ oy (an — u,(2)) + w12 (1, () = bry)

+ w1 (azs — uy (£)) + w22 (1 () — bra), (32)
where w11 > 0, w12 > 0 are penalty multipliers satisfying wii(an — u,(£)) + wi2(u,(£) — bun)
at optimal u;;(t), and wy; > 0, wyy > 0 are penalty multipliers satisfying wo (a2 — u, (t)) +
a2 (1, (t) — byy) at optimal i, (1).

Given optimal controls u;(t) and u), (), and solutions of the corresponding state system
(28), there exist adjoint variables p;, for i = 1,2, 3, 4, satisfying the following equation:

4 = 0L~ By +(p1— p2)BY + p1,

2 = 3L (p) — p3)fa + (P2 — pa)uynat + P2, 33)
4 = 5L = By + (p1 - p2)Bx + (3 — pa) 20y + Az + (1= ) + p3,

dps

L4 = —8L = _By + (03 — )Xy + pa,

with transversality conditions p;(tf), for i = 1,2,3, 4. To determine the interior maximum
of our Lagrangian, we take the partial derivatives of L with respect to u,(t) and u,,(£),
respectively, and set them to zero. Thus,

L _
Auy (t)

% = =2Bou)y (£) + (03 = pa)y — @21 + w2a.

=2Bouy (t) + (pa = p2)naw — o + wiz, 34)

To determine an explicit expression for our controls uz(t) and u; (t) (without w11, w12, wo1,
wy,), a standard optimality technique is utilized. The following cases are considered to
determine the specific characterization of the optimal control.

Case 1: Optimality of u; (¢)

1. We consider the set {t|a;; < u;(t) < b}, wn = w1z = 0. Hence, the optimal control is

(pa — p2)naw
)= ———. 35
U, (t) 2B, (35)

2. We consider the set {t|a; = u(¢)}, on = 0. We have
() = (4 — p2)naw + wiy (36)
1 2B,
or

- w

ui(p) = LA (37)

2B,

since wyy > 0.
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3. We consider the set {¢|bn = u; (£)}, w1z = 0. We have

WA (f) = (pa — p2)naw — wyy (38)
n 2B,

or

(o4 — p2)naw -

u,(t) = 2B, > by. (39)

Combining all the three sub-cases in a compact form gives

u,(t) = rnin{max{auW },bu}. (40)
2B,

Case 2: Optimality of uy, (t)

1. We consider the set {¢|az; < u’;(t) < by}, wy1 = wyy = 0. Hence, the optimal control is

%0 (p3 — pa)y
u, () = 7232 . (41)

2. We consider the set {¢|ay; = u;(t)}, w1 = 0. We have

(03 — pa)y + w22

*(8) = 42
' (8) 55, (42)
or
(p3 = pa)y + @2
()= ———=< 43
u, (2) 2B, <a (43)
since wyy > 0.
3. We consider the set {t|by = 1} (£)}, w2 = 0. We have
Wt (£) = (/03—/04))’—6021 (44)
v 2B,
or
ut(t) = w >b (45)
v 2B, %
Combining all the three sub-cases in a compact form gives
* . (pa = p2)naw
uy(t) = mln{max{a22, T ,bao ¢ (46)

The optimality system consists of the state system coupled with the adjoint system, with

the initial conditions, the transversality conditions and the characterization of the optimal
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control:
% =1-Bxy—x,
il_:/ = Bxy —Oaw —uy,naw —w,
% =0aw—-A(y+2)y—(L—u,)y—y,
d—f:unnaw+k(y+z)y+(1—uy)y—z, (47)
401 = By + (p1— p2) By + p1,
42 = (py — p3)0at + (P2 — pa)tyner + pa,
% = =B+ (01 — p2) Bx + (p3 — pa)(2Ay + Az + (L —uy)) + p3,
%4 =—=Bo + (03 — pa)Ay + pa,

where u;(¢) and u;(t), are given by (40) and (46), respectively, with x(0) = xo, w(0) = wy,
¥(0) = 3o, 2(0) = 2o, and p;(tr) = 0, for i =1,...,4. Due to the a priori boundedness of the
state and adjoint functions and the resulting Lipschitz structure of the ODEs, we obtain
the uniqueness of the optimal control for small [#]. The uniqueness of the optimal con-
trol follows from the uniqueness of the optimality system. The state system of differential
equations and the adjoint system of differential equations together with the control char-
acterization above form the optimality system solved numerically and depicted in the next
section. 0

6 Discussions and simulations

6.1 Model simulation without involve control

This section deals with the rumor propagation model without optimal control. It concerns
a rumor with latent period; for example, many rumors come from network and are hidden
in the depths of one’s heart for a period of time before he/she becomes a spreader or stifler
inreal life. Our main results present the global dynamics of rumor propagation model with
latent period and its transformed proportionate system, the process of communication
correlations between the two systems in rumor eradication and persistence, and the effects
of different management strategies on the rumor control.

Numerical simulations (parameters and variables used in simulations are summarized
in Table 1) carried out for system (4) show that the rumor ‘dies out’ when the basic repro-
duction number Ry < 1 (the threshold) (Figure 2) and the rumor persists at an ‘endemic’
level when Ry > 1 (Figure 3), where Ry = (H;)ﬁ.

The threshold Ry is increasing with the rumor propagation coefficient g, the believe and
spread rate 6. If there exist many active members who believe and spread the rumor ac-
tively, then B and 0 will be sufficiently large. Then R, > 1 holds easily, and the rumor will
persists at an ‘endemic’ level. Conversely, if the managers induct public views and remind
more carefully the public of not relying on rumors, increasing the ability to distinguish,
then the parameters 8 and 6 will become smaller, and make the threshold Ry < 1, and
the rumor will ‘die out’ The threshold Ry for the differential equation model also deter-
mines the asymptotic behavior of the infectious fraction y(¢). When Ry > 1, y(£) always
approaches the rumor-endemic value, y* = ;20— where w* = Boa—(a+1)(y+1)

T dawF+(y+1 ala+1)(BO+r) *
In the special cases when the population size remains constant (i.e. A = 0,and p = 0), the

Oaw*

latent period is negligible, and the model (1) reduces to a D-K rumor model with bilinear
incidence.
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Table 1 Dimension of parameters and variables used in simulations

Variable or parameter Dimension

Implication

Dimensionless

X,W, Y,z
X,W,Y,Z Hundred thousand Day™
A Hundred thousand Day™"
Bo Unity. Day™

o Unity. Day™

o Dimensionless

Y0 Dimensionless

0 Dimensionless

" Dimensionless

N Hundred thousand

Proportional population

Population

The number of immigration population
Rumor propagation coefficient

Rumor stifler coefficient

Change rate for exposed

Change rate for spreaders

Believe and spread rate

The emigration rate

Total population

0 1 z 2 % 5 5 ? 0

Figure 2 ﬂo =0.1, )»o =0.2, oo = 0.11, Yo = 0.05, 0= 0.7, n= 0.1, Ro =0.47.

X
W

0.8 0.15
0.55 0.15

0.5 0.14
0.45 0.123

0.4 0.1z
0.35 0.11

£ 0.1 t
0 4 9 [ 3 10 1z 14 z 0 z 4 I3 3 10 1z 14

0.24 Va
0.22 0.25 i
0.zz 0.2

0.z21 0.25

0.2 0.2

0.19

0.15 0-15H

0.17 ¢ 0.1 t

0 4 4 [ 3 10 1z 14 0 z % [3 8 10 1z 149

Figure3 B =0.9,10=0.1, a9 =0.5, ¥, =0.03, 0 =0.6, . = 0.1, Ry = 3.46.
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Figure 4 Variation of population for different situation with control.

6.2 Model simulation with optimal control

In this section, we perform a numerical simulation to verify the analytical results in Sec-
tion 4 and to further investigate the properties of rumor spreading model with optimal
control by using the fourth-order Runge-Kutta iteration algorithm. We will investigate
how science education and official media affect a rumor’s spreading, four kinds of situa-
tions are analyzed, respectively. We have case 1: u,, # 1, u,, = 0; case 2: u,, = 1, u,, #0; case 3:
u, #1, u, #0; case 4: u, =1, u,, = 0. u,, = 1, which means the model does not involve any
control variables for science education, and u, # 1, which means the control variables for
science education have influence on the model. Similarly, %, = 0, which means there are
not involved any control variables for official media coverage. In particular, the optimal
control model (28) reduces to model (2) under the conditions of case 4.

We include four simulations which compare the structure of solutions for the rumor
spreading problems in Figure 4(a-d). The data and parameters for the dynamics are chosen
in Table 1. It is easy to see that the optimal control and sub-optimal control are much more
effective for rumor control.

In Figure 4(a), we report the densities of ignorant population for different situations
with control or without, the density of the ignorant population remarkably decreases, but
the case 4 shows that the biggest falls in infection rates were during certain periods, the
greatest was the impact on rumor spreading. From this, we know that the optimal control
for rumor propagation can greatly reduce the spreading scale of the rumor.

In Figures 4(b) and 4(c), we report the densities of latent and infected population for dif-
ferent situation with control or without, we observe that the density of lurker and spread-
ers in each scenario increases and reaches its peak. This simply comes from the fact that
spreaders are infecting other individuals, of whom a fraction gradually progresses into the
lurker and spreader class. There is a steady decrease of the density of the spreaders from
its peak value to the steady state. During this phase, the density of the stiflers in each cor-
responding scenario steeply increases and reaches a steady state in Figure 4(d). We clearly
observe from Figure 4(b-c) that optimal control can slow down the transmission velocity
of the rumor, with the given parameter values, the lowest rate for the lurker and spreader

Page 17 of 19



Huo et al. Advances in Difference Equations (2015) 2015:54 Page 18 of 19

with case 4. The densities of lurkers and spreaders in case 1 reach a smaller peak and then
decrease faster than case 2; it means that science education is more effective than official
media coverage in rumor control.

7 Conclusions

Rumor propagation can have serious consequences; thus the study on how to take effective
measures to control its spreading is of great practical significance. In the paper, we discuss
the XWYZ model with constant immigration and latent periods. One may assume that
an ignorant individual first goes through a latent period after infection before becoming
a spreader or stifler. We derive the basic reproduction number R, and find that it deter-
mines the global dynamics of system (4); if Ry < 1, by means of the Lyapunov function and
LaSalle’s invariant set theorem, we proved the global asymptotical stable results of the RFE
Py in A and the rumor can be eradicated; if Ry > 1, by means of the Poincare-Bendixson
property, we proved the global asymptotical stable results of the unique REE P* is globally
asymptotically stable in the interior of the feasible region, so that the rumor persists at the
REE level if it is initially present.

The optimal control problem is formulated; it clearly shows that science education and
official media coverage are the most effective form of rumor control, especially, science
education is more effective than official media coverage. The science education of a popu-
lation reflects the degree of vulnerability of a typical individual to any kind of information,
and the population’s education rate is also an influential factor in rumor spreading cessa-
tion. This hypothesis stems from the plausible observations that the more an individual
is educated, the stronger is his/her ability to evaluate the credibility of the rumor, and the
quicker is his/her disinclination of the rumor. In short, educational influence on rumor
spreading needs to be considered when talking about rumor spreading control; thus, we
must emphasize the science education for the public and perform the elementary edu-
cation reform with new educational ideas. Official media coverage was still a significant
factor of rumor control. In an emergency situation, official media play the role of leader,
leveraging the information and clarifying it, inducting public opinions, and making emer-
gency under control, reducing the potential for secondary damage. Admittedly, popular-
ization of legal knowledge from the citizens to comprehensively improve the quality of
emergency eventually enhances the effectiveness of elements of educational purposes. Of-
ficial media should comply with the principles of timeliness, genuineness, and impartial-
ity. Whether the information is linked up and grasped in time and is abundant, open, and
clear, can influence the quality and result of rumor control directly. From the perspective
of a manager in emergency events, one is to minimize negative social effects with rumor
spreading when the emergency resources are under constraints. By employing Pontrya-
gin’s maximum principle, the optimal solution is acquired when the emergency response
incurs nonlinear costs.

The techniques developed in this paper are general and can be applied to similar optimal
control problems in other areas. Since some rumors spread in a certain group of people,
we then can assume that the propagation coefficient is a function of the parameters for
special populations and time, which may involve a non-autonomous system instead of an
autonomous system, and we leave this for future work.
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