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Abstract
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1 Introduction
The study of stability problems for functional equations has originally been raised by
Ulam []: under what condition does there exist a homomorphism near an approximate
homomorphism? In , Hyers [] had answered affirmatively the question of Ulam for
Banach spaces. The theorem of Hyers was generalized by Aoki [] for additive mappings
and by Rassias [] for linear mappings by considering an unbounded Cauchy difference.
The work of Rassias [] has had a lot of influence in the development of a generalization
of the Hyers-Ulam stability concept. The terminology Hyers-Ulam-Rassias stability orig-
inates from these historical backgrounds and this terminology is also applied to the case
of other functional equations (see [–]).

In particular, Kannappan [] introduced the following functional equation:

f (x + y + z) + f (x) + f (y) + f (z) = f (x + y) + f (y + z) + f (z + x) (.)

and proved that a function on a real vector space is a solution of (.) if and only if
there exist a symmetric biadditive function B and an additive function A such that f (x) =
B(x, x) + A(x). For this reason, we call (.) as the mixed type quadratic and additive func-
tional equation. In addition, Jung [] investigated stability of (.) on restricted domains
and applied the result to the study of an interesting asymptotic behavior of the quadratic
functions. More generally, Jun and Kim [] solved the general solutions and proved the
stability of the following functional equation, which is a generalization of (.):

f

( n∑
i=

xi

)
+ (n – )

n∑
i=

f (xi) =
∑

≤i<j≤n

f (xi + xj) (n > ).
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Najati and Moghimi [] introduced another type quadratic and additive functional equa-
tion

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (x) – f (x)

and investigated the stability of this equation in quasi-Banach spaces.
Recently, Lee et al. [] introduced the following Jensen type quadratic and additive

functional equation:

f
(

x + y + z


)
+ 

[
f
(

x – y


)
+ f

(
y – z



)
+ f

(
z – x



)]
= 

[
f (x) + f (y) + f (z)

]
(.)

and proved the stability of this equation. Also they established the general solutions of
(.) as follows:

Let X and Y be real vector spaces. A mapping f : X → Y satisfies (.) if and only if there
exists a quadratic mapping Q : X → Y satisfying

Q(x + y) + Q(x – y) = Q(x) + Q(y) (.)

and an additive mapping A : X → Y satisfying

A(x + y) = A(x) + A(y) (.)

such that

f (x) = Q(x) + A(x)

for all x ∈ X.
We refer to [–] for stability results of the mixed type and Jensen type functional

equations. Also we refer to [–] for more stability results of another functional equa-
tions.

In this paper, we prove the stability of (.) in addition to a suitable condition of the
function. In Section , we first induce two lemmas which plays a crucial role in the proof
of stability theorems. Based on the two lemmas, we evaluate the stability of (.) under
the approximately even condition and the approximately odd condition in Section  and
Section , respectively. Using similar approaches, we prove the stability of (.) under the
approximately quadratic condition and the approximately additive condition in Section 
and Section , respectively.

2 Preliminaries
Throughout this paper, we assume that X is a real vector space and Y is a Banach space.
For simplicity, given a mapping f : X → Y , we use the abbreviation

Df (x, y, z) := f
(

x + y + z


)
+ 

[
f
(

x – y


)
+ f

(
y – z



)
+ f

(
z – x



)]

– 
[
f (x) + f (y) + f (z)

]
for all x, y, z ∈ X. Here we need the following lemmas.
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Lemma . Let ϕ : X × X × X → [,∞) be a given mapping. Suppose that a mapping
f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ϕ(x, y, z) (.)

for all x, y, z ∈ X. We then have

∥∥∥∥f (x) –
n + 
 · n f

(
nx

)
+

n – 
 · n f

(
–nx

)
+

n – 
 · n f ()

∥∥∥∥
≤

n∑
k=

[
k– + 
 · k ϕ

(
kx, kx, –kx

)
+

k– – 
 · k ϕ

(
–kx, –kx, kx

)]
(.)

for all x ∈ X and n ∈ N.

Proof Putting y = x, z = –x in (.) yields

∥∥∥∥g
(

x


)
– g(x) + g(–x)

∥∥∥∥ ≤ ϕ(x, x, –x) (.)

for all x ∈ X, where g(x) := f (x) + 
 f (). Replacing x by x in (.) and dividing by  gives

∥∥∥∥g(x) –



g(x) +



g(–x)
∥∥∥∥ ≤ 


ϕ(x, x, –x) (.)

for all x ∈ X. We use mathematical induction on n to prove lemma. Note that (.) proves
the validity of inequality (.) for the case n = . Assume that inequality (.) holds for
some n ∈N. Using (.) we have the following relation:

∥∥∥∥g(x) –
n+ + 
 · n+ g

(
n+x

)
+

n+ – 
 · n+ g

(
–n+x

)∥∥∥∥
≤

∥∥∥∥g(x) –
n + 
 · n g

(
nx

)
+

n – 
 · n g

(
–nx

)∥∥∥∥
+

n + 
 · n

∥∥∥∥g
(
nx

)
–




g
(
n+x

)
+




g
(
–n+x

)∥∥∥∥
+

n – 
 · n

∥∥∥∥–g
(
–nx

)
+




g
(
–n+x

)
–




g
(
n+x

)∥∥∥∥
≤

n+∑
k=

(
k– + 
 · k ϕ

(
kx, kx, –kx

)
+

k– – 
 · k ϕ

(
–kx, –kx, kx

))

for all x ∈ X. This proves the validity of inequality (.) for the case n + . �

Lemma . Let ϕ : X × X × X → [,∞) be a given mapping. Suppose that a mapping
f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ϕ(x, y, z) (.)
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for all x, y, z ∈ X. We then have

∥∥∥∥f (x) –
n + n


f
(

x
n

)
–

n – n


f
(

–
x
n

)
–

n – 


f ()
∥∥∥∥

≤
n–∑
k=

[
 · k + k


ϕ

(
x
k ,

x
k , –

x
k

)
+

 · k – k


ϕ

(
–

x
k , –

x
k ,

x
k

)]
(.)

for all x ∈ X and n ∈ N.

Proof Putting y = x, z = –x in (.) gives

∥∥∥∥g
(

x


)
– g(x) + g(–x)

∥∥∥∥ ≤ ϕ(x, x, –x) (.)

for all x ∈ X, where g(x) := f (x) + 
 f (). Interchanging x with –x in (.) we have

∥∥∥∥g
(

–
x


)
– g(–x) + g(x)

∥∥∥∥ ≤ ϕ(–x, –x, x) (.)

for all x ∈ X. It follows from (.) and (.) that

∥∥∥∥g(x) – g
(

x


)
– g

(
–

x


)∥∥∥∥ ≤ 

ϕ(x, x, –x) +



ϕ(–x, –x, x) (.)

which proves the validity of inequality (.) for the case n = . Applying (.) we obtain

∥∥∥∥g(x) –
n+ + n+


g
(

x
n+

)
–

n+ – n+


g
(

–
x

n+

)∥∥∥∥
≤

∥∥∥∥g(x) –
n + n


g
(

x
n

)
–

n – n


g
(

–
x
n

)∥∥∥∥
+

n + n



∥∥∥∥g
(

x
n

)
– g

(
x

n+

)
– g

(
–

x
n+

)∥∥∥∥
+

n – n



∥∥∥∥g
(

–
x
n

)
– g

(
–

x
n+

)
– g

(
x

n+

)∥∥∥∥
≤

n∑
k=

[
 · k + k


ϕ

(
x
k ,

x
k , –

x
k

)
+

 · k – k


ϕ

(
–

x
k , –

x
k ,

x
k

)]

for all x ∈ X. This proves the validity of inequality (.) for the case n + . �

In order to prove the stability of (.), we suppose that ϕ : X × X × X → [,∞) is a
mapping satisfying one of the conditions (A) and (B),

(A)
∞∑

k=


k ϕ

(
kx, ky, kz

)
< ∞,

(B)
∞∑

k=

kϕ

(
x
k ,

y
k ,

z
k

)
< ∞
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for all x, y, z ∈ X. Also we assume that ψ : X → [,∞) is a mapping satisfying one of the
conditions (A) and (B),

(A) lim
n→∞

ψ(nx)
n = ,

(B) lim
n→∞ nψ

(
x
n

)
= 

for all x ∈ X.

3 Approximately even case
Now we are going to state and prove the stability of (.) under the approximately even
condition.

Theorem . Let ϕ : X × X × X → [,∞) satisfy the condition (A) and ψ : X → [,∞)
satisfies the condition (A). Suppose that a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ϕ(x, y, z) (.)

for all x, y, z ∈ X and

∥∥f (x) – f (–x)
∥∥ ≤ ψ(x) (.)

for all x ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (.) such
that

∥∥∥∥f (x) – Q(x) +



f ()
∥∥∥∥

≤
∞∑

k=

[
k– + 
 · k ϕ

(
kx, kx, –kx

)
+

k– – 
 · k ϕ

(
–kx, –kx, kx

)]
(.)

for all x ∈ X.

Proof It follows from Lemma . and (.) that we have

∥∥∥∥f (x) –
f (nx)

n +
n – 
 · n f ()

∥∥∥∥
≤

n∑
k=

[
k– + 
 · k ϕ

(
kx, kx, –kx

)
+

k– – 
 · k ϕ

(
–kx, –kx, kx

)]

+
n – 
 · n ψ

(
nx

)
(.)

for all x ∈ X and n ∈N. By virtue of (.), for n, m ∈N with n > m, we obtain

∥∥∥∥ f (mx)
m –

f (nx)
n

∥∥∥∥
=


m

∥∥∥∥f
(
mx

)
–

f (n–m · mx)
n–m

∥∥∥∥
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≤
n–m∑
k=

[
k– + 
 · k+m ϕ

(
k+mx, k+mx, –k+mx

)
+

k– – 
 · k+m ϕ

(
–k+mx, –k+mx, k+mx

)]

+
n–m – 

 · n ψ
(
nx

)
+

n–m – 
 · n

∥∥f ()
∥∥ (.)

for all x ∈ X. Since the right-hand side of inequality (.) tends to  as m → ∞, the se-
quence {–nf (nx)} is a Cauchy sequence. Completeness of Y allows us to assume that
there exists a mapping Q so that

Q(x) := lim
n→∞ –nf

(
nx

)

for all x ∈ X. Replacing x, y, z by nx, ny, nz in (.) and dividing both sides by n yields


n

∥∥Df
(
nx, ny, nz

)∥∥ ≤ 
n ϕ

(
nx, ny, nz

)

for all x, y, z ∈ X. Taking the limit in the above inequality we have

Q
(

x + y + z


)
+ 

[
Q

(
x – y



)
+ Q

(
y – z



)
+ Q

(
z – x



)]

= 
[
Q(x) + Q(y) + Q(z)

]
(.)

for all x, y, z ∈ X. Similarly, we get Q(–x) = Q(x) for all x ∈ X by (.). Putting y = x, z = –x
in (.) and using the evenness of Q we obtain Q( x

 ) = Q(x) for all x ∈ X. Setting y = ,
z = –x in (.) gives Q( x

 ) = Q(x) for all x ∈ X. Thus, we can rewrite (.) as

Q(x + y + z) + Q(x – y) + Q(y – z) + Q(z – x) = 
[
Q(x) + Q(y) + Q(z)

]
(.)

for all x, y, z ∈ X. Putting z =  in (.) we see that Q satisfies the quadratic functional
equation (.). Letting n → ∞ in (.) we finally obtain the result (.).

In order to prove the uniqueness of Q we assume that Q′ : X → Y be another quadratic
mapping satisfying (.). From the quadratic property of Q and Q′ we calculate

∥∥Q(x) – Q′(x)
∥∥

=


n

∥∥Q
(
nx

)
– Q′(nx

)∥∥
≤ 

n

∥∥∥∥Q
(
nx

)
– f

(
nx

)
–




f ()
∥∥∥∥ +


n

∥∥∥∥f
(
nx

)
– Q′(nx

)
+




f ()
∥∥∥∥

≤ 
n

∞∑
k=

[
k– + 
 · k ϕ

(
k+nx, k+nx, –k+nx

)
+

k– – 
 · k ϕ

(
–k+nx, –k+nx, k+nx

)]

for all x ∈ X and n ∈ N. Taking n → ∞ in the preceding inequality we immediately find
the uniqueness of Q. �

As a consequence of the above theorem we have the following corollaries immediately.
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Corollary . Let ε ≥ , p < , and ψ : X → [,∞) satisfy the condition (A). Suppose
that a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ε

(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X (x, y, z ∈ X\{} if p < ) and

∥∥f (x) – f (–x)
∥∥ ≤ ψ(x)

for all x ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (.) such
that

∥∥∥∥f (x) – Q(x) +



f ()
∥∥∥∥ ≤ p

 – p ε‖x‖p

for all x ∈ X (x ∈ X\{} if p < ).

Corollary . Let ε ≥  and ψ : X → [,∞) satisfy the condition (A). Suppose that a
mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ε

for all x, y, z ∈ X and

∥∥f (x) – f (–x)
∥∥ ≤ ψ(x)

for all x ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (.) such
that

∥∥∥∥f (x) – Q(x) +



f ()
∥∥∥∥ ≤ 


ε

for all x ∈ X.

We have the following result, which is analogous to Theorem . for the functional equa-
tion (.).

Theorem . Let ϕ : X × X × X → [,∞) satisfy the condition (B) and ψ : X → [,∞)
satisfy the condition (B). Suppose that a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ϕ(x, y, z) (.)

for all x, y, z ∈ X and

∥∥f (x) – f (–x)
∥∥ ≤ ψ(x) (.)
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for all x ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (.) such
that

∥∥f (x) – Q(x)
∥∥

≤
∞∑

k=

[
 · k + k


ϕ

(
x
k ,

x
k , –

x
k

)
+

 · k – k


ϕ

(
–

x
k , –

x
k ,

x
k

)]
(.)

for all x ∈ X.

Proof Putting x = y = z =  in (.) yields f () = . According to Lemma . and (.) we
have

∥∥∥∥f (x) – nf
(

x
n

)∥∥∥∥
≤

n–∑
k=

[
 · k + k


ϕ

(
x
k ,

x
k , –

x
k

)
+

 · k – k


ϕ

(
–

x
k , –

x
k ,

x
k

)]

+
n – n


ψ

(
x
n

)
(.)

for all x ∈ X and n ∈N. From (.) we verify

∥∥∥∥mf
(

x
m

)
– nf

(
x
n

)∥∥∥∥
= m

∥∥∥∥f
(

x
m

)
– n–mf

(
x

n–m · m

)∥∥∥∥
≤

n–m–∑
k=

[
 · k+m + k+m


ϕ

(
x

k+m ,
x

k+m , –
x

k+m

)

+
 · k+m – k+m


ϕ

(
–

x
k+m , –

x
k+m ,

x
k+m

)]
+

n – n+m


ψ

(
x
n

)
(.)

for all x ∈ X and m, n ∈ N with n > m. Since the right-hand side of inequality (.) tends
to  as m → ∞, we may define a mapping

Q(x) := lim
n→∞ nf

(
x
n

)

for all x ∈ X. Replacing x, y, z by x
n , y

n , z
n in (.) and multiplying both sides by n,

and after taking the limit in the resulting inequality, we see that Q satisfies (.). Using a
similar method to the proof of Theorem . we see that Q is the unique quadratic mapping
satisfying (.). Now letting n → ∞ in (.) we arrive at the desired result (.). �

Corollary . Let ε ≥ , p > , and ψ : X → [,∞) satisfy the condition (B). Suppose that
a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ε

(‖x‖p + ‖y‖p + ‖z‖p)
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for all x, y, z ∈ X and

∥∥f (x) – f (–x)
∥∥ ≤ ψ(x)

for all x ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (.) such
that

∥∥f (x) – Q(x)
∥∥ ≤ p+

p – 
ε‖x‖p

for all x ∈ X.

4 Approximately odd case
In this section, we establish the stability of (.) under the approximately odd condition.

Theorem . Let ϕ : X × X × X → [,∞) satisfy the condition (A) and ψ : X → [,∞)
satisfy the condition (A). Suppose that a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ϕ(x, y, z) (.)

for all x, y, z ∈ X and

∥∥f (x) + f (–x)
∥∥ ≤ ψ(x) (.)

for all x ∈ X. Then there exists a unique additive mapping A : X → Y satisfying (.) such
that ∥∥∥∥f (x) – A(x) +




f ()
∥∥∥∥

≤
∞∑

k=

[
k– + 
 · k ϕ

(
kx, kx, –kx

)
+

k– – 
 · k ϕ

(
–kx, –kx, kx

)]
(.)

for all x ∈ X.

Proof It follows from Lemma . and (.) that
∥∥∥∥f (x) –

f (nx)
n +

n – 
 · n f ()

∥∥∥∥
≤

n∑
k=

[
k– + 
 · k ϕ

(
kx, kx, –kx

)
+

k– – 
 · k ϕ

(
–kx, –kx, kx

)]

+
n – 
 · n ψ

(
nx

)
(.)

for all x ∈ X and n ∈N. From (.) we figure out
∥∥∥∥ f (mx)

m –
f (nx)

n

∥∥∥∥ =


m

∥∥∥∥f
(
mx

)
–

f (n–m · mx)
n–m

∥∥∥∥
≤

n–m∑
k=

[
k– + 
 · k+m ϕ

(
k+mx, k+mx, –k+mx

)
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+
k– – 
 · k+m ϕ

(
–k+mx, –k+mx, k+mx

)]

+
n–m – 
 · n–m ψ

(
nx

)
+

n–m – 
 · n–m

∥∥f ()
∥∥ (.)

for all x ∈ X and m, n ∈N with n > m. Taking the limit as m → ∞ in (.) we verify that the
right-hand side of inequality (.) tends to . Thus, the mentioned sequence is convergent
to the mapping A; that is,

A(x) := lim
n→∞ –nf

(
nx

)

for all x ∈ X. Replacing x, y, z by nx, ny, nz in (.) and dividing both sides by n, and
after taking the limit in the resulting inequality, we see that

A
(

x + y + z


)
+ 

[
A

(
x – y



)
+ A

(
y – z



)
+ A

(
z – x



)]

= 
[
A(x) + A(y) + A(z)

]
(.)

for all x, y, z ∈ X. By virtue of (.) we have A(–x) = –A(x) for all x ∈ X. Setting y = x,
z = –x in (.) yields A( x

 ) = A(x) for all x ∈ X. Similarly, putting y = , z = –x in (.)
gives A( x

 ) = A(x) for all x ∈ X. Thus, we can rewrite (.) as

A(x + y + z) + 
[
A(x – y) + A(y – z) + A(z – x)

]
= 

[
A(x) + A(y) + A(z)

]
(.)

for all x, y, z ∈ X. Replacing z by –x in (.) we have

A(x + y) + A(x – y) = A(x) (.)

for all x, y ∈ X. Replacing x, y by x+y
 , x–y

 in (.) we see that A satisfies the Cauchy func-
tional equation (.). Letting n → ∞ in (.) we finally obtain the result (.).

To show the uniqueness of A we assume that A′ : X → Y be another quadratic mapping
satisfying (.). Obviously, we have A(nx) = nA(x) and A′(nx) = nA′(x) for all x ∈ X.
According to the additive property of A and A′ we figure out

∥∥A(x) – A′(x)
∥∥

=


n

∥∥A
(
nx

)
– A′(nx

)∥∥
≤ 

n

∥∥∥∥A
(
nx

)
– f

(
nx

)
–




f ()
∥∥∥∥ +


n

∥∥∥∥f
(
nx

)
– A′(nx

)
+




f ()
∥∥∥∥

≤ 
n

∞∑
k=

[
k– + 
 · k ϕ

(
k+nx, k+nx, –k+nx

)
+

k– – 
 · k ϕ

(
–k+nx, –k+nx, k+nx

)]

for all n ∈N and x ∈ X, which means the uniqueness of A. �

From the theorem above we obtain the following corollaries immediately.
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Corollary . Let ε ≥ , p < , and ψ : X → [,∞) satisfy the condition (A). Suppose
that a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ε

(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X (x, y, z ∈ X\{} if p < ) and

∥∥f (x) + f (–x)
∥∥ ≤ ψ(x)

for all x ∈ X. Then there exists a unique additive mapping A : X → Y satisfying (.) such
that

∥∥∥∥f (x) – A(x) +



f ()
∥∥∥∥ ≤ p

 – p ε‖x‖p

for all x ∈ X (x ∈ X\{} if p < ).

Corollary . Let ε ≥  and ψ : X → [,∞) satisfy the condition (A). Suppose that a
mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ε

for all x, y, z ∈ X and

∥∥f (x) + f (–x)
∥∥ ≤ ψ(x)

for all x ∈ X. Then there exists a unique additive mapping A : X → Y satisfying (.) such
that

∥∥∥∥f (x) – A(x) +



f ()
∥∥∥∥ ≤ 


ε

for all x ∈ X.

We have the following result, which is analogous to Theorem ..

Theorem . Let ϕ : X × X × X → [,∞) satisfy the condition (B) and ψ : X → [,∞)
satisfy the condition (B). Suppose that a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ϕ(x, y, z) (.)

for all x, y, z ∈ X and

∥∥f (x) + f (–x)
∥∥ ≤ ψ(x) (.)
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for all x ∈ X. Then there exists a unique additive mapping A : X → Y satisfying (.) such
that

∥∥f (x) – A(x)
∥∥

≤
∞∑

k=

[
 · k + k


ϕ

(
x
k ,

x
k , –

x
k

)
+

 · k – k


ϕ

(
–

x
k , –

x
k ,

x
k

)]
(.)

for all x ∈ X.

Proof From Lemma . and the approximately odd condition (.) we have

∥∥∥∥f (x) – nf
(

x
n

)∥∥∥∥
≤

n–∑
k=

[
 · k + k


ϕ

(
x
k ,

x
k , –

x
k

)
+

 · k – k


ϕ

(
–

x
k , –

x
k ,

x
k

)]

+
n – n


ψ

(
x
n

)
(.)

for all x ∈ X and n ∈N. By (.) we obtain

∥∥∥∥mf
(

x
m

)
– nf

(
x
n

)∥∥∥∥
= m

∥∥∥∥f
(

x
m

)
– n–mf

(
x

n–m · m

)∥∥∥∥
≤

n–m–∑
k=

[
 · k+m + k+m


ϕ

(
x

k+m ,
x

k+m , –
x

k+m

)

+
 · k+m – k+m


ϕ

(
–

x
k+m , –

x
k+m ,

x
k+m

)]
+

n–m – n


ψ

(
x
n

)
(.)

for all x ∈ X and m, n ∈ N with n > m. Since the right-hand side of inequality (.) tends
to  as m → ∞, the sequence {nf (–nx)} is a Cauchy sequence. Thus, we can define a
mapping

A(x) := lim
n→∞ nf

(
x
n

)

for all x ∈ X. Replacing x, y, z by x
n , y

n , z
n in (.) and multiplying both sides by n, and

after taking the limit in the resulting inequality, we see that A satisfies (.). Using a similar
method to the proof of Theorem . we see that A is the unique additive mapping satisfying
(.). Taking the limit as n → ∞ in (.) we finally obtain the result (.). �

Corollary . Let ε ≥ , p > , and ψ : X → [,∞) satisfy the condition (B). Suppose that
a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ε

(‖x‖p + ‖y‖p + ‖z‖p)
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for all x, y, z ∈ X and

∥∥f (x) + f (–x)
∥∥ ≤ ψ(x)

for all x ∈ X. Then there exists a unique additive mapping A : X → Y satisfying (.) such
that

∥∥f (x) – A(x)
∥∥ ≤ p+

p – 
ε‖x‖p

for all x ∈ X (x ∈ X\{} if p < ).

5 Approximately quadratic case
We are going to prove the stability of (.) under the approximately quadratic condition.

Theorem . Let ϕ : X × X × X → [,∞) satisfy the condition (A) and ψ : X → [,∞)
satisfy the condition (A). Suppose that a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ϕ(x, y, z) (.)

for all x, y, z ∈ X and

∥∥f (x) – f (–x)
∥∥ ≤ ψ(x) (.)

for all x ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (.) such
that

∥∥∥∥f (x) – Q(x) +



f ()
∥∥∥∥

≤
∞∑

k=

[
k– + 
 · k ϕ

(
kx, kx, –kx

)
+

k– – 
 · k ϕ

(
–kx, –kx, kx

)]
(.)

for all x ∈ X.

Proof Setting y = x, z = –x in (.) gives

∥∥∥∥f
(

x


)
– f (x) + f (–x) + f ()

∥∥∥∥ ≤ ϕ(x, x, –x) (.)

for all x ∈ X and n ∈N. Combining (.), (.) and Lemma . we have

∥∥∥∥f (x) –
f (nx)

n +
n +  · n – 

 · n f ()
∥∥∥∥

≤
n∑

k=

[
k– + 
 · k ϕ

(
kx, kx, –kx

)
+

k– – 
 · k ϕ

(
–kx, –kx, kx

)]

+
n – 
 · n ϕ

(
–nx, –nx, nx

)
+

n – 
 · n ψ

(
n–x

)
(.)
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for all x ∈ X and n ∈N. For n, m ∈N with n > m, we verify by (.) that

∥∥∥∥ f (mx)
m –

f (nx)
n

∥∥∥∥
=


m

∥∥∥∥f
(
mx

)
–

f (n–m · mx)
n–m

∥∥∥∥
≤

n–m∑
k=

[
k– + 
 · k+m ϕ

(
k+mx, k+mx, –k+mx

)
+

k– – 
 · k+m ϕ

(
–k+mx, –k+mx, k+mx

)]

+
n–m – 

 · n ϕ
(
–nx, –nx, nx

)
+

n–m – 
 · n ψ

(
n–x

)
+

n–m +  · n–m – 
 · n

∥∥f ()
∥∥ (.)

for all x ∈ X. Since the right-hand side of inequality (.) tends to  as m → ∞, we can
define a mapping

Q(x) := lim
n→∞ –nf

(
nx

)

for all x ∈ X. Replacing x, y, z by nx, ny, nz in (.) and dividing both sides by n, and
after taking the limit in the resulting inequality we see that Q satisfies (.). Letting n → ∞
in (.) we have the result (.). The rest of the proof is similar to that of the proof of
Theorem .. �

The following corollaries are immediate consequences of the above theorem.

Corollary . Let ε ≥ , p < , and ψ : X → [,∞) satisfy the condition (A). Suppose
that a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ε

(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X (x, y, z ∈ X\{} if p < ) and

∥∥f (x) – f (–x)
∥∥ ≤ ψ(x)

for all x ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (.) such
that

∥∥∥∥f (x) – Q(x) +



f ()
∥∥∥∥ ≤ p

 – p ε‖x‖p

for all x ∈ X (x ∈ X\{} if p < ).

Corollary . Let ε ≥  and ψ : X → [,∞) satisfy the condition (A). Suppose that a
mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ε
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for all x, y, z ∈ X and

∥∥f (x) – f (–x)
∥∥ ≤ ψ(x)

for all x ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (.) such
that

∥∥∥∥f (x) – Q(x) +



f ()
∥∥∥∥ ≤ 


ε

for all x ∈ X.

We have the following result, which is analogous to Theorem ..

Theorem . Let ϕ : X × X × X → [,∞) satisfy the condition (B) and ψ : X → [,∞)
satisfy the condition (B). Suppose that a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ϕ(x, y, z) (.)

for all x, y, z ∈ X and

∥∥f (x) – f (–x)
∥∥ ≤ ψ(x) (.)

for all x ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (.) such
that

∥∥f (x) – Q(x)
∥∥

≤
∞∑

k=

[
 · k + k


ϕ

(
x
k ,

x
k , –

x
k

)
+

 · k – k


ϕ

(
–

x
k , –

x
k ,

x
k

)]
(.)

for all x ∈ X.

Proof It follows from (.), (.), and Lemma . that we have

∥∥∥∥f (x) – nf
(

x
n

)∥∥∥∥
≤

n–∑
k=

[
 · k + k


ϕ

(
x
k ,

x
k , –

x
k

)
+

 · k – k


ϕ

(
–

x
k , –

x
k ,

x
k

)]

+
n – n


ϕ

(
–

x
n , –

x
n ,

x
n

)
+

n – n


ψ

(
x

n+

)
(.)

for all x ∈ X and n ∈N. From (.) we obtain

∥∥∥∥mf
(

x
m

)
– nf

(
x
n

)∥∥∥∥
= m

∥∥∥∥f
(

x
m

)
– n–mf

(
x

n–m · m

)∥∥∥∥
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≤
n–m–∑

k=

[
 · k+m + k+m


ϕ

(
x

k+m ,
x

k+m , –
x

k+m

)

+
 · k+m – k+m


ϕ

(
–

x
k+m , –

x
k+m ,

x
k+m

)]

+
n – n+m


ϕ

(
–

x
n , –

x
n ,

x
n

)
+

n – n+m


ψ

(
x

n+

)
(.)

for all x ∈ X and m, n ∈ N with n > m. Note that the right-hand side of inequality (.)
tends to  as m → ∞. This means the sequence {nf (–nx)} is a Cauchy sequence. Now
we define a mapping

Q(x) := lim
n→∞ nf

(
x
n

)

for all x ∈ X. Replacing x, y, z by x
n , y

n , z
n in (.) and multiplying both sides by n, and

after taking the limit in the resulting inequality, we see that Q satisfies (.). Letting n → ∞
in (.) we have the result (.). Using a similar method to the proof of Theorem . we
see that Q is the unique quadratic mapping satisfying (.). �

Corollary . Let ε ≥ , p > , and ψ : X → [,∞) satisfy the condition (B). Suppose that
a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ε

(‖x‖p + ‖y‖p + ‖z‖p)
for all x, y, z ∈ X and

∥∥f (x) – f (–x)
∥∥ ≤ ψ(x)

for all x ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (.) such
that

∥∥f (x) – Q(x)
∥∥ ≤ p+

p – 
ε‖x‖p

for all x ∈ X.

6 Approximately additive case
In this section, we establish the stability of (.) under the approximately additive condi-
tion.

Theorem . Let ϕ : X × X × X → [,∞) satisfy the condition (A) and ψ : X → [,∞)
satisfy the condition (A). Suppose that a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ϕ(x, y, z) (.)

for all x, y, z ∈ X and

∥∥f (x) + f (–x)
∥∥ ≤ ψ(x) (.)
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for all x ∈ X. Then there exists a unique additive mapping A : X → Y satisfying (.) such
that ∥∥∥∥f (x) – A(x) +




f ()
∥∥∥∥

≤
∞∑

k=

[
k– + 
 · k ϕ

(
kx, kx, –kx

)
+

k– – 
 · k ϕ

(
–kx, –kx, kx

)]
(.)

for all x ∈ X.

Proof It follows from (.), (.), and Lemma . that we have
∥∥∥∥f (x) –

f (nx)
n +

n +  · n – 
 · n f ()

∥∥∥∥
≤

n∑
k=

[
k– + 
 · k ϕ

(
kx, kx, –kx

)
+

k– – 
 · k ϕ

(
–kx, –kx, kx

)]

+
n – 
 · n ϕ

(
–nx, –nx, nx

)
+

n+ – 
 · n ψ

(
n–x

)
(.)

for all x ∈ X and n ∈N. From (.) we figure out
∥∥∥∥ f (mx)

m –
f (nx)

n

∥∥∥∥
=


m

∥∥∥∥f
(
mx

)
–

f (n–m · mx)
n–m

∥∥∥∥
≤

n–m∑
k=

[
k– + 
 · k+m ϕ

(
k+mx, k+mx, –k+mx

)
+

k– – 
 · k+m ϕ

(
–k+mx, –k+mx, k+mx

)]

+
n–m – 
 · n–m ϕ

(
–nx, –nx, nx

)
+

n–m+ – 
 · n–m ψ

(
n–mx

)
+

n–m +  · n–m – 
 · n–m

∥∥f ()
∥∥ (.)

for all x ∈ X and m, n ∈ N with n > m. We remark that the right-hand side of inequality
(.) tends to  as m → ∞. Define a mapping

A(x) := lim
n→∞ –nf

(
nx

)
for all x ∈ X. Replacing x, y, z by nx, ny, nz in (.) and dividing both sides by n, and
after taking the limit in the resulting inequality, we see that A satisfies (.). Letting n → ∞
in (.) we obtain the result (.). The remains of the proof are similar to that of the proof
of Theorem .. �

From the theorem above we have the following corollaries.

Corollary . Let ε ≥ , p < , and ψ : X → [,∞) satisfy the condition (A). Suppose
that a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ε

(‖x‖p + ‖y‖p + ‖z‖p)
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for all x, y, z ∈ X (x, y, z ∈ X\{} if p < ) and

∥∥f (x) + f (–x)
∥∥ ≤ ψ(x)

for all x ∈ X. Then there exists a unique additive mapping A : X → Y satisfying (.) such
that

∥∥∥∥f (x) – A(x) +



f ()
∥∥∥∥ ≤ p

 – p ε‖x‖p

for all x ∈ X (x ∈ X\{} if p < ).

Corollary . Let ε ≥  and ψ : X → [,∞) satisfy the condition (A). Suppose that a
mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ε

for all x, y, z ∈ X and

∥∥f (x) + f (–x)
∥∥ ≤ ψ(x)

for all x ∈ X. Then there exists a unique additive mapping A : X → Y satisfying (.) such
that

∥∥∥∥f (x) – A(x) +



f ()
∥∥∥∥ ≤ 


ε

for all x ∈ X.

We have the following result, which is analogous to Theorem ..

Theorem . Let ϕ : X × X × X → [,∞) satisfy the condition (B) and ψ : X → [,∞)
satisfy the condition (B). Suppose that a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ϕ(x, y, z) (.)

for all x, y, z ∈ X and

∥∥f (x) + f (–x)
∥∥ ≤ ψ(x) (.)

for all x ∈ X. Then there exists a unique additive mapping A : X → Y satisfying (.) such
that

∥∥f (x) – A(x)
∥∥

≤
∞∑

k=

[
 · k + k


ϕ

(
x
k ,

x
k , –

x
k

)
+

 · k – k


ϕ

(
–

x
k , –

x
k ,

x
k

)]
(.)

for all x ∈ X.
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Proof Combining (.), (.), and Lemma . we have∥∥∥∥f (x) – nf
(

x
n

)∥∥∥∥
≤

n–∑
k=

[
 · k + k


ϕ

(
x
k ,

x
k , –

x
k

)
+

 · k – k


ϕ

(
–

x
k , –

x
k ,

x
k

)]

+
n – n


ϕ

(
–

x
n , –

x
n ,

x
n

)
+

(n – n)


ψ

(
x

n+

)
(.)

for all x ∈ X and n ∈ N. We claim that {nf (–nx)} is a Cauchy sequence. From (.) we
obtain∥∥∥∥mf

(
x

m

)
– nf

(
x
n

)∥∥∥∥
= m

∥∥∥∥f
(

x
m

)
– n–mf

(
x

n–m · m

)∥∥∥∥
≤

n–m–∑
k=

[
 · k+m + k+m


ϕ

(
x

k+m ,
x

k+m , –
x

k+m

)

+
 · k+m – k+m


ϕ

(
–

x
k+m , –

x
k+m ,

x
k+m

)]

+
n–m – n


ϕ

(
–

x
n , –

x
n ,

x
n

)
+

n–m+ – n+


ψ

(
x
n

)
(.)

for all x ∈ X and m, n ∈ N with n > m. Since the right-hand side of inequality (.) tends
to  as m → ∞, the sequence {nf (–nx)} is a Cauchy sequence. Define a mapping

A(x) := lim
n→∞ nf

(
x
n

)

for all x ∈ X. Replacing x, y, z by x
n , y

n , z
n in (.) and multiplying both sides by n,

and after taking the limit in the resulting inequality, we see that A satisfies (.). Using a
similar method to the proof of Theorem . we see that A is the unique additive mapping
satisfying (.). Finally taking the limit as n → ∞ in (.) we have the result (.). �

Corollary . Let ε ≥ , p > , and ψ : X → [,∞) satisfy the condition (B). Suppose
that a mapping f : X → Y satisfies

∥∥Df (x, y, z)
∥∥ ≤ ε

(‖x‖p + ‖y‖p + ‖z‖p)
for all x, y, z ∈ X and

∥∥f (x) + f (–x)
∥∥ ≤ ψ(x)

for all x ∈ X. Then there exists a unique additive mapping A : X → Y satisfying (.) such
that

∥∥f (x) – A(x)
∥∥ ≤ p+

p – 
ε‖x‖p

for all x ∈ X.
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