Wang Advances in Difference Equations (2015) 2015:52 ® Advances in Difference Equations
DOI 10.1186/513662-015-0390-1 a SpringerOpen Journal

RESEARCH Open Access

Homoclinic orbits for asymptotically linear
discrete Hamiltonian systems

Xiaoping Wang"

"Correspondence:
wxp31415@sina.com Abstract

Department of Mathematics, . . . .
Xiaagnan College, Chenzhou We study the existence of homoclinic solutions for the following second-order

Hunan 423000, PR. China self-adjoint discrete Hamiltonian system: Alp(n)Au(n = 1)1 = L(n)u(n) + VW(n,u(n)) =0,
where p(n), L(n), and W(n, x) are N-periodic in n, and VW(n, x) is asymptotically linear
inxas |x| - oo.

MSC: 39A11; 58E05; 70HO5

Keywords: homoclinic solution; discrete Hamiltonian system; asymptotically linear;
strongly indefinite functional

1 Introduction
Discrete Hamiltonian systems can be applied in many areas, such as physics, chemistry,
and so on. For more discussions on discrete Hamiltonian systems, we refer the reader to

[1, 2]. In this paper, we consider the second-order self-adjoint discrete Hamiltonian system
A[p(n)Au(n - 1)] — L(n)u(n) + VW(n, u(n)) =0, (1.1)

where n € Z, u € RV, Au(n) = u(n + 1) — u(n) is the forward difference, pL:Z— RN N
and W:Z x RV - R.

As usual, we say that a solution u#(n) of system (1.1) is homoclinic (to 0) if (1) — 0 as
n — +00. In addition, if u#(n) # 0 then u(n) is called a nontrivial homoclinic solution.

In recent years, several authors studied homoclinic orbits for system (1.1) or its special
forms via critical point theory. For example, see [3—18]. We emphasize that in all these pa-
pers the nonlinear term was assumed to be superlinear or sublinear at infinity. To the best
of our knowledge, the existence of homoclinics for asymptotically linear discrete Hamil-
tonian systems has not been previously studied.

In this paper, we assume that p(n) and L(n) are N-periodic ' x A/ real symmetric ma-
trices. Let A is an operator defined as follows:

(Au)(n) = A[p(n)Au(n - 1)] —L(n)u(n), Vnecl.

Then it is easy to check that A is a bounded self-adjoint operator in *(Z, RN ), where
P(Z,RV) is defined in Section 2. By the Floquet theorem, it is easy to verify that .A has

only continuous spectrum o (.A), which is a union of bounded closed intervals.
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When p(n) and L(#n) are positive definite, o (A) C (0, +00). In this case, the mountain
pass theorem of Ambrosetti and Rabinowitz is a very useful tool for finding critical points
of the energy functionals associated to (1.1). However, when p(n) or L(n) is not positive
definite, O is a saddle point rather than a local minimum of the functional associated to
(1.1), which is strongly indefinite. This case is difficult because the mountain-pass reduc-
tion of the definite case is not available, and it is not known if the Palais-Smale sequences
are bounded. We choose this case as the object of the present paper.

To state our results, we first introduce the following assumptions:

(PL) p(n) and L(n) are N-periodic A/ x N real symmetric matrices, and

sup[o (A) N (-00,0)] := A <0 < A :=inf[o(A) N (0,00)]; (1.2)

(W1) W(n,x) is continuously differentiable in x for every n € Z, W(n,0) =0,
W(n,x) >0, and W (n,x) is N-periodic in #;

(W2) VW(n,x) = o(|x|) as |x| = 0 uniformly for n € Z;

(W3) W(n,x)=3M(n)x-x+ We(n,x), where M(n) is an N-periodic N x A real
symmetric matrix, inf,ez, 51 M(n)x - x > A, VWeoo(n,x) = o(|x]) as |x| = oo,
uniformly for n € Z;

(W4) W(n,x):= %VW(n,x) cx— W(n,x) >0, V(nx) € Z x RN, and there exists a
8o € (0, Ap) with Ag = min{—A, A} such that

VW (n,x)| ~
T >Ao-8 = W(nx) >5.

x
Now, we are ready to state the main result of this paper.

Theorem 1.1 Assume that p, L, and W satisfy (PL), (W1), (W2), (W3), and (W4). Then
system (1.1) possesses a nontrivial homoclinic solution.

Remark 1.2 The following functions satisfy (W1)-(W4):

W(n,x) = a(n)|x|? [1 (1.3)

1
B In(e + |x|):|’

Ja¢]
W(n,x):/ a(n,s)sds, (1.4)
0

where a(n) and «(#n,s) are N-periodic positive function in #, «(#, s) is non-decreasing for
s €[0,00), a(n,5) — 0 ass — 0 and a(n,s) — b(n) as s — oo with infz b > A, uniformly in
new.

2 Proof of theorem
Let

S= {{u(n)}nEZ cu(n) € RV, ne Z}.

As usual, for 1 < g < 00, set

1(2,RN) = {u €Sy |um|’ < oo}

nez
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and

ZOO(Z,RN) = [u es: sup|u(n)| < oo},

nez

and their norms are defined by

v
||M||q=<2]u(n)‘q) q, Vuelq(Z,RN);

nez

llelloo = suplu(n)|, Vue lm(Z,RN),
ne’

respectively. In particular, /2(Z, RV) is a Hilbert space with the following inner product:

(0, V) = Z u(n) -v(n), Vu,vel® (Z, RN).

nez

Let {€(X) : —ap < A < bp} and | A| be the spectral family and the absolute value of A,
respectively, and |.A|Y? be the square root of |Al. Set U = id — £(0) — £(0-). Then U com-
mutes with A, |A| and | A|"2, and A = U|A| is the polar decomposition of A (see [19,
Theorem 4.3.3]).

As in [20], let E = 2(Z,R) and

E =E(0)E,  E'=[id-£(0)]E.

For any u € E, it is easy to see that

w=EOueE, u=[d-E0)|uecE’, wu=u +u’, 2.1)
and

Au™ = —|Alu~, Aut =|Alu*, VYucE. (2.2)
Let

(w,v) = (IA["*u,|AI"*v) o, Vu,veE. (2.3)

Then E is a Hilbert space with the above inner product, and the corresponding norm is

llull = [|lAMu

, VueE (2.4)
By virtue of (2.1)-(2.4), one has the decomposition E = E~ @ E* orthogonal with respect
to both (-,-)p and (-, -). Moreover,

2

Ay <lu P <aouly Alutly < * < bl

Yu € E, (2.5)
and

Aollull3 < llull* < max{ao, bo}llull, VueE. (2.6)
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Let X be a real Hilbert space with X = X~ @ X* and X~ 1L X". For a functional ¢ €
CHX,R), ¢ is said to be weakly sequentially lower semi-continuous if for any u; — u in
X one has ¢(u) <liminf,_, o ¢(ux), and ¢’ is said to be weakly sequentially continuous if
limy_, oo (@' (215), v) = (¢'(u), v) for each v € X.

Lemma 2.1 ([21, Theorem 2.1]) Let X be a real Hilbert space with X = X~ @& X* and
X~ LX*, and let ¢ € CL(X,R) of the form

o= (= ) -9, = v exox

Suppose that the following assumptions are satisfied:
(LS1) ¥ € CY(X,R) is bounded from below and weakly sequentially lower
semi-continuous;
(LS2) ' is weakly sequentially continuous;
(LS3) there existr> p >0 and e € X* with ||e|| = 1 such that

K :=infg(S}) > supp(8Q),
where
S, = {ueX+ s ul| :p}, Q= {se+v:veX‘,sz 0,|se+v| < r}.
Then for some ¢ > «, there exists a sequence {u,} C X satisfying
Q) = ¢, @' )| (1 + lluall) — 0. 2.7)
Such a sequence is called a Cerami sequence on the level c, or a (C). sequence.

Now we define a functional ® on E by

D(u) = % Z[p(n +1)Au- Au+ L(n)u - u)] - Z W (n, u). (2.8)

nez nez

For any u € E, there exists an 79 € N such that |u(n)| <1 for |n| > ny. Hence, under as-
sumptions (PL), (W1), and (W2), the functional @ is of class C!(E,R). Moreover,

(Cb’(u), V> = Z[p(n +1)Au-Av+L(n)u - v] - Z VW(n,u)-v, Vu,veLE. (2.9)

nez nez

By virtue of (2.1), (2.2), (2.3), and (2.4), one has

0w = (|~ [ |) - o Wonw, Vuek, (2.10)
nez
and
(CD’(u),v> =(u'v) = (u,v) - Z VW(n,u)-v, VYu,veE. (2.11)

nez
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Furthermore, the critical points of ® in E are solutions of system (1.1) with u(£o00) = 0;
see [6, 10].
Let

() = Z W(n,u), YucE. (2.12)

nez

Then, by standard arguments, we can prove the following two lemmas.

Lemma 2.2 Suppose that (PL), (W1), and (W2) are satisfied. Then ¥V is nonnegative,
weakly sequentially lower semi-continuous, and V' is weakly sequentially continuous.

Lemma 2.3 Suppose that (PL), (W1), and (W2) are satisfied. Then there is a p > 0 such
that k :=inf ®(S}) > 0, where S,=0B,NE".

Let my := infyez, 151 M(n)x - x. Then (W3) implies that m1g > A. Since o (A) is a union of
closed intervals, we can choose e € [E(m;) — E(A)]E C E*, where A < my < mg. Thus,

Allell3 < llell* < myllell3 < mollell3 < Y M(n)e-e. (213)

nez

Lemma 2.4 Suppose that (PL), (W1), (W2), and (W3) are satisfied. Then there isa ry >0
such that sup ®(0Q) < 0, where

Q:{w+se:weE‘,sZO,||w+se||fro}. (2.14)

Proof Obviously, ®(w) < 0 for w € E~. It is sufficient to show that ®(w + te) <0 for £ > 0,
w e E™ and ||w + te|| > r for large r > 0. Arguing indirectly, assume that for some sequence
{wr + tre} C E~ @ Rte with ||wy + tre|| — 00, ®(wi + tre) > 0 for all k € N. Set vy = (wy +
tre)/ | wi + trell = vi + sge, then ||v; + sge| = 1. Passing to a subsequence, we may assume
that vy — vin E, then v (n) — v(n) forall m € Z, v, = v~ in E, s — s, and

O(wy + tre) s 1, _ W(n, wi + tre)
K el - S |- Y o

lwi + trell?

2.15
lwi + trell> 2 (2.15)

nez

Clearly, (2.15) yields s > 0. By virtue of (2.13), there exists a finite set I1 C Z such that

2e|l* - Hv‘ ||2 - ZM(n)(se + V_) . (se + V_) <0. (2.16)

nell

From (W3) and (2.15), one has

2 1 W(n, t
0< SEk”e”z—g”"ZHZ_Zm

2
= lwi+ tell

7 1, 1 Woo (1, wi + tre)
= el =S vill* = 5 D Mlnwie v =37 ==

2
oy = llwi+ teell

Clearly, | W (1, %)| < colx|? for some ¢y > 0 and Wi (11, %)/|x|2 — 0 as |x| — oo. Since vy —
vin E, then vi(n) — v(n) for n € T1. Hence, one has
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Z Weo(n, Wi + tie) Z Weo(n, wi + tie) vl
TooVh TR T R o By,
2 2
o llwi el o wic+ tiel
Weo (1, Wi + Ere)
< ¢ Vi| + —— |
2w+ D ol
nell,|v(n)|=0 nell,|v(n)|#0
=o(1).
Hence
) _ _
0<s*|el® - ”v || - ZM(n)(se+ v ) . (se+ v ),
nell
a contradiction to (2.16). a

Lemma 2.5 Suppose that (PL), (W1), (W2) and (W3) are satisfied. Then there exist a con-
stant ¢ > 0 and a sequence {uy} C E satisfying

D) —> ¢, || )| (1 + llurll) — 0. (2.17)
Proof Lemma 2.5 is a direct corollary of Lemmas 2.1, 2.2, 2.3, and 2.4. O

Lemma 2.6 Suppose that (PL), (W1), (W2), (W3), and (W4) are satisfied. Then any se-
quence {uy} C E satisfying (2.17) is bounded in E.

Proof In view of (2.17), there exists a constant Cy > 0 such that

Co > () - %(qf(uk), we) =Y W) (2.18)

nez

To prove the boundedness of {u}, arguing by contradiction, suppose that [lu|| — co. Let
vi = ug/||uk||. Then ||vg|| = 1. Passing to a subsequence, we may assume that vy — vin E,
then vi(n) — v(n) for all n € Z. Let

YW, 14)]

HkZ{I’IEZ. SA()—(S()}.
Iz

Then by using Ao||vk||5 < [[vkl|?, one has

VW (1, ug)| _ _
D el = vl = (o= 80) 3wl - i
nelly Uk nelly
2 8o
= (Ao—50)IIVk||2§1—A—. (2.19)
0

If § :=limsup;_, o, [|Vklloo = 0, then it follows from (W3), (W4), and (2.18) that

VW (1, )| T
Z 7|Vk||vk_vk|
neZ\I |I/lk|
VW(n,
< Welloe [V =il D '@#k)'

neZ\Iy

Page 6 of 10
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<Cilvilloo Y Winm)
neZ\I

< Gllvlloo = 0(1). (2.20)

From (2.10), (2.11), (2.19), and (2.20), one gets

Nk |1 = (D (), i = i)

1+0() =
[
VW (n, u)| _
=) i - vl
nez |uk|
VW (n,u)] _ VW (r, ui)| _
= Z—| | |vk|‘v,t—vk’+ Z TWH‘V,’;—V,(’
nelly Uk neZ\I Uk
o
<1-— +0(1), (2.21)
Ao

a contradiction. Thus § > 0.

Going if necessary to a subsequence, we may assume the existence of nx € Z such that

b
[vi(m)| = lvilloo > >
Choose integers iy and my with 0 < my < N —1 such that ng = ixN + my. Let v (n) = vie(n +
itN), then

)
|V ()| > > Vk e N. (2.22)

Now we define i1x (1) = ux(n + iy N). Since p(n), L(n), and W (n,x) are N-periodic in #, then
il ||\ uk|l = Vi and ||uk|| = ||ukll- Passing to a subsequence, we have 7 — vin E, then V(1) —
v(n) for all n € Z. Obviously, (2.22) implies that ¥(n) # 0 for some n € {0,1,...,N —1}. Let

Ey= {u €eE: {n el: |u(n)| > 0} is finite set}.

For any ¢ € Ey, there exists an 1y € N such that ¢(n) = 0 for all |n| > ng. Setting ¢r(n) =
¢(n — ixN), then it follows from (W3) and (2.9) that

(D (i), Prc)

ol

= Z pn+1)Av - Adp + L(m)vg - g —

nez =

VW (n,u) - ¢k]
I

=Y | pn+ 1) A - Ay + (L) = M) vic - i —

neZ =

VW n, uy) - ¢ki|
(73]

=Y | pn+ DAV - A+ (Lln) — M(m)) 7% - ¢ —

nez =

(2.23)

Nl I '
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Note that
T P I P P T
Hence, it follows from (2.17) and (2.23) that
> [ptn+ DA - A + (L) — M)k - ¢] = 0(1), (2.24)
e
which yields
Y [pn+1)A7- A¢ + (L(n) - M(m))7 - ¢] = 0. (2.25)
ez

This shows that v is an eigenfunction of the operator B, where
(Bu)(n) = A[p(n)Au(n - 1)] - (L(n) —M(n))u(n), Vu € 7.

But B has only continuous spectrum in E. This contradiction shows that {u,} is bounded.
O

Proof of Theorem 1.1 In view of Lemmas 2.5 and 2.6, there exists a bounded sequence
{ur} C E satisfying (2.17). Thus there exists a constant Cs > 0 such that

VAolltilloo =/ Nollugllz < llull < Cs,  VkeN. (2:26)

Hence, by (W1) and (W2), there exists a constant Cy > 0 such that

% Ao, 3 N G
Wn,x)| < —|x|* + Calx|°>, V(m,x) €Z xR, x| < —. 2.27
| W (n,%)| 2C§.|| 4l (n,%) ||\/)T0 (2.27)
If § := limsup_, o, |t |loo = O, then
3 2 _ G
Dl < aselloo D || = 2 aelloo = 0(0). (2.28)
0

nez nez

From (2.10), (2.11), (2.17), (2.26), (2.27), and (2.28), one has

c = D(uy) - %(Q/(uk),uk) +0(1)

= Z \77(;7, ur) +o(1)

nez
CA() 2 3
=50 Z|”’<(”l)| +Cy Z|Mk(n)| +0(1)
2C3 nez ne’Z
< g +o(1).

This contradiction shows that § > 0.
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Going if necessary to a subsequence, we may assume the existence of n; € Z such that

8
|k (mie)| = Nluarell oo > 2

Choose integers i and my with 0 < m < N —1 such that ng = ixN + my. Let vi(n) = ug(n +

irN), then
1)
’vk(mk)‘ > X Vk € N. (2.29)
Since p(n), L(n), and W (n,x) are N-periodic in 1, we have ||vg| = ||ux|l and
D) > || YW1+ llvell) — 0. (2.30)

Passing to a subsequence, we have vy — vin E, vx(n) — v(n) for all n € Z. Obviously, (2.29)
implies that v # 0. It is easy to show that ®'(v) = 0. O
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