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Abstract
We study the existence of homoclinic solutions for the following second-order
self-adjoint discrete Hamiltonian system: �[p(n)�u(n – 1)] – L(n)u(n) +∇W(n,u(n)) = 0,
where p(n), L(n), andW(n, x) are N-periodic in n, and ∇W(n, x) is asymptotically linear
in x as |x| → ∞.
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1 Introduction
Discrete Hamiltonian systems can be applied in many areas, such as physics, chemistry,
and so on. For more discussions on discrete Hamiltonian systems, we refer the reader to
[, ]. In this paper, we consider the second-order self-adjoint discrete Hamiltonian system

�[
p(n)�u(n – )

]
– L(n)u(n) + ∇W

(
n, u(n)

)
= , (.)

where n ∈ Z, u ∈ R
N , �u(n) = u(n + ) – u(n) is the forward difference, p, L : Z → R

N×N

and W : Z×R
N →R.

As usual, we say that a solution u(n) of system (.) is homoclinic (to ) if u(n) →  as
n → ±∞. In addition, if u(n) �≡  then u(n) is called a nontrivial homoclinic solution.

In recent years, several authors studied homoclinic orbits for system (.) or its special
forms via critical point theory. For example, see [–]. We emphasize that in all these pa-
pers the nonlinear term was assumed to be superlinear or sublinear at infinity. To the best
of our knowledge, the existence of homoclinics for asymptotically linear discrete Hamil-
tonian systems has not been previously studied.

In this paper, we assume that p(n) and L(n) are N-periodic N ×N real symmetric ma-
trices. Let A is an operator defined as follows:

(Au)(n) = �[
p(n)�u(n – )

]
– L(n)u(n), ∀n ∈ Z.

Then it is easy to check that A is a bounded self-adjoint operator in l(Z,RN ), where
l(Z,RN ) is defined in Section . By the Floquet theorem, it is easy to verify that A has
only continuous spectrum σ (A), which is a union of bounded closed intervals.

© 2015 Wang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

http://dx.doi.org/10.1186/s13662-015-0390-1
mailto:wxp31415@sina.com


Wang Advances in Difference Equations  (2015) 2015:52 Page 2 of 10

When p(n) and L(n) are positive definite, σ (A) ⊂ (, +∞). In this case, the mountain
pass theorem of Ambrosetti and Rabinowitz is a very useful tool for finding critical points
of the energy functionals associated to (.). However, when p(n) or L(n) is not positive
definite,  is a saddle point rather than a local minimum of the functional associated to
(.), which is strongly indefinite. This case is difficult because the mountain-pass reduc-
tion of the definite case is not available, and it is not known if the Palais-Smale sequences
are bounded. We choose this case as the object of the present paper.

To state our results, we first introduce the following assumptions:
(PL) p(n) and L(n) are N-periodic N ×N real symmetric matrices, and

sup
[
σ (A) ∩ (–∞, )

]
:= � <  < �̄ := inf

[
σ (A) ∩ (,∞)

]
; (.)

(W) W (n, x) is continuously differentiable in x for every n ∈ Z, W (n, ) = ,
W (n, x) ≥ , and W (n, x) is N-periodic in n;

(W) ∇W (n, x) = o(|x|) as |x| →  uniformly for n ∈ Z;
(W) W (n, x) = 

 M(n)x · x + W∞(n, x), where M(n) is an N-periodic N ×N real
symmetric matrix, infn∈Z,|x|= M(n)x · x > �̄, ∇W∞(n, x) = o(|x|) as |x| → ∞,
uniformly for n ∈ Z;

(W) W̃ (n, x) := 
∇W (n, x) · x – W (n, x) ≥ , ∀(n, x) ∈ Z×R

N , and there exists a
δ ∈ (,�) with � = min{–�, �̄} such that

|∇W (n, x)|
|x| ≥ � – δ ⇒ W̃ (n, x) ≥ δ.

Now, we are ready to state the main result of this paper.

Theorem . Assume that p, L, and W satisfy (PL), (W), (W), (W), and (W). Then
system (.) possesses a nontrivial homoclinic solution.

Remark . The following functions satisfy (W)-(W):

W (n, x) = a(n)|x|
[

 –


ln(e + |x|)
]

, (.)

W (n, x) =
∫ |x|


α(n, s)s ds, (.)

where a(n) and α(n, s) are N-periodic positive function in n, α(n, s) is non-decreasing for
s ∈ [,∞), α(n, s) →  as s →  and α(n, s) → b(n) as s → ∞ with infZ b > �̄, uniformly in
n ∈ Z.

2 Proof of theorem
Let

S =
{{

u(n)
}

n∈Z : u(n) ∈R
N , n ∈ Z

}
.

As usual, for  ≤ q < ∞, set

lq(
Z,RN )

=
{

u ∈ S :
∑

n∈Z

∣∣u(n)
∣∣q < ∞

}
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and

l∞
(
Z,RN )

=
{

u ∈ S : sup
n∈Z

∣∣u(n)
∣∣ < ∞

}
,

and their norms are defined by

‖u‖q =
(∑

n∈Z

∣
∣u(n)

∣
∣q

)/q

, ∀ u ∈ lq(
Z,RN )

;

‖u‖∞ = sup
n∈Z

∣∣u(n)
∣∣, ∀u ∈ l∞

(
Z,RN )

,

respectively. In particular, l(Z,RN ) is a Hilbert space with the following inner product:

(u, v)l =
∑

n∈Z
u(n) · v(n), ∀u, v ∈ l(

Z,RN )
.

Let {E(λ) : –a ≤ λ ≤ b} and |A| be the spectral family and the absolute value of A,
respectively, and |A|/ be the square root of |A|. Set U = id – E() – E(–). Then U com-
mutes with A, |A| and |A|/, and A = U |A| is the polar decomposition of A (see [,
Theorem ..]).

As in [], let E = l(Z,RN ) and

E– = E()E, E+ =
[
id – E()

]
E.

For any u ∈ E, it is easy to see that

u– := E()u ∈ E–, u+ :=
[
id – E()

]
u ∈ E+, u = u– + u+, (.)

and

Au– = –|A|u–, Au+ = |A|u+, ∀u ∈ E. (.)

Let

(u, v) =
(|A|/u, |A|/v

)
l , ∀u, v ∈ E. (.)

Then E is a Hilbert space with the above inner product, and the corresponding norm is

‖u‖ =
∥∥|A|/u

∥∥
, ∀u ∈ E. (.)

By virtue of (.)-(.), one has the decomposition E = E– ⊕ E+ orthogonal with respect
to both (·, ·)l and (·, ·). Moreover,

–�
∥∥u–∥∥

 ≤ ∥∥u–∥∥ ≤ a
∥∥u–∥∥

, �̄
∥∥u+∥∥

 ≤ ∥∥u+∥∥ ≤ b
∥∥u+∥∥

, ∀u ∈ E, (.)

and

�‖u‖
 ≤ ‖u‖ ≤ max{a, b}‖u‖

, ∀u ∈ E. (.)
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Let X be a real Hilbert space with X = X– ⊕ X+ and X–⊥X+. For a functional ϕ ∈
C(X,R), ϕ is said to be weakly sequentially lower semi-continuous if for any uk ⇀ u in
X one has ϕ(u) ≤ lim infn→∞ ϕ(uk), and ϕ′ is said to be weakly sequentially continuous if
limk→∞〈ϕ′(uk), v〉 = 〈ϕ′(u), v〉 for each v ∈ X.

Lemma . ([, Theorem .]) Let X be a real Hilbert space with X = X– ⊕ X+ and
X–⊥X+, and let ϕ ∈ C(X,R) of the form

ϕ(u) =


(∥∥u+∥

∥ –
∥
∥u–∥

∥) – ψ(u), u = u– + u+ ∈ X– ⊕ X+.

Suppose that the following assumptions are satisfied:
(LS) ψ ∈ C(X,R) is bounded from below and weakly sequentially lower

semi-continuous;
(LS) ψ ′ is weakly sequentially continuous;
(LS) there exist r > ρ >  and e ∈ X+ with ‖e‖ =  such that

κ := infϕ
(
S+

ρ

)
> supϕ(∂Q),

where

S+
ρ =

{
u ∈ X+ : ‖u‖ = ρ

}
, Q =

{
se + v : v ∈ X–, s ≥ ,‖se + v‖ ≤ r

}
.

Then for some c ≥ κ , there exists a sequence {un} ⊂ X satisfying

ϕ(un) → c,
∥∥ϕ′(un)

∥∥(
 + ‖un‖

) → . (.)

Such a sequence is called a Cerami sequence on the level c, or a (C)c sequence.

Now we define a functional  on E by

(u) =



∑

n∈Z

[
p(n + )�u · �u + L(n)u · u)

]
–

∑

n∈Z
W (n, u). (.)

For any u ∈ E, there exists an n ∈ N such that |u(n)| ≤  for |n| ≥ n. Hence, under as-
sumptions (PL), (W), and (W), the functional  is of class C(E,R). Moreover,

〈
′(u), v

〉
=

∑

n∈Z

[
p(n + )�u · �v + L(n)u · v

]
–

∑

n∈Z
∇W (n, u) · v, ∀u, v ∈ E. (.)

By virtue of (.), (.), (.), and (.), one has

(u) =


(∥∥u+∥

∥ –
∥
∥u–∥

∥) –
∑

n∈Z
W (n, u), ∀u ∈ E, (.)

and

〈
′(u), v

〉
=

(
u+, v

)
–

(
u–, v

)
–

∑

n∈Z
∇W (n, u) · v, ∀u, v ∈ E. (.)
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Furthermore, the critical points of  in E are solutions of system (.) with u(±∞) = ;
see [, ].

Let

�(u) =
∑

n∈Z
W (n, u), ∀u ∈ E. (.)

Then, by standard arguments, we can prove the following two lemmas.

Lemma . Suppose that (PL), (W), and (W) are satisfied. Then � is nonnegative,
weakly sequentially lower semi-continuous, and � ′ is weakly sequentially continuous.

Lemma . Suppose that (PL), (W), and (W) are satisfied. Then there is a ρ >  such
that κ := inf(S+

ρ ) > , where S+
ρ = ∂Bρ ∩ E+.

Let m := infn∈Z,|x|= M(n)x · x. Then (W) implies that m > �̄. Since σ (A) is a union of
closed intervals, we can choose e ∈ [E(m) – E(�̄)]E ⊆ E+, where �̄ < m < m. Thus,

�̄‖e‖
 ≤ ‖e‖ ≤ m‖e‖

 < m‖e‖
 ≤

∑

n∈Z
M(n)e · e. (.)

Lemma . Suppose that (PL), (W), (W), and (W) are satisfied. Then there is a r > 
such that sup(∂Q) ≤ , where

Q =
{

w + se : w ∈ E–, s ≥ ,‖w + se‖ ≤ r
}

. (.)

Proof Obviously, (w) ≤  for w ∈ E–. It is sufficient to show that (w + te) ≤  for t ≥ ,
w ∈ E– and ‖w + te‖ ≥ r for large r > . Arguing indirectly, assume that for some sequence
{wk + tke} ⊂ E– ⊕ R

+e with ‖wk + tke‖ → ∞, (wk + tke) ≥  for all k ∈ N. Set vk = (wk +
tke)/‖wk + tke‖ = v–

k + ske, then ‖v–
k + ske‖ = . Passing to a subsequence, we may assume

that vk ⇀ v in E, then vk(n) → v(n) for all n ∈ Z, v–
k ⇀ v– in E, sk → s, and

(wk + tke)
‖wk + tke‖ =

s
k


‖e‖ –


∥∥v–

k
∥∥ –

∑

n∈Z

W (n, wk + tke)
‖wk + tke‖ ≥ . (.)

Clearly, (.) yields s > . By virtue of (.), there exists a finite set � ⊂ Z such that

s‖e‖ –
∥∥v–∥∥ –

∑

n∈�

M(n)
(
se + v–) · (se + v–)

< . (.)

From (W) and (.), one has

 ≤ s
k


‖e‖ –


∥
∥v–

k
∥
∥ –

∑

n∈�

W (n, wk + tke)
‖wk + tke‖

=
s

k


‖e‖ –


∥
∥v–

k
∥
∥ –




∑

n∈�

M(n)vk · vk –
∑

n∈�

W∞(n, wk + tke)
‖wk + tke‖ .

Clearly, |W∞(n, x)| ≤ c|x| for some c >  and W∞(n, x)/|x| →  as |x| → ∞. Since vk ⇀

v in E, then vk(n) → v(n) for n ∈ �. Hence, one has
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∑

n∈�

W∞(n, wk + tke)
‖wk + tke‖ =

∑

n∈�

W∞(n, wk + tke)
|wk + tke| |vk|

≤ c
∑

n∈�,|v(n)|=

|vk| +
∑

n∈�,|v(n)|�=

W∞(n, wk + tke)
|wk + tke| |vk|

= o().

Hence

 ≤ s‖e‖ –
∥
∥v–∥

∥ –
∑

n∈�

M(n)
(
se + v–) · (se + v–)

,

a contradiction to (.). �

Lemma . Suppose that (PL), (W), (W) and (W) are satisfied. Then there exist a con-
stant c >  and a sequence {uk} ⊂ E satisfying

(uk) → c,
∥
∥′(uk)

∥
∥(

 + ‖uk‖
) → . (.)

Proof Lemma . is a direct corollary of Lemmas ., ., ., and .. �

Lemma . Suppose that (PL), (W), (W), (W), and (W) are satisfied. Then any se-
quence {uk} ⊂ E satisfying (.) is bounded in E.

Proof In view of (.), there exists a constant C >  such that

C ≥ (uk) –


〈
′(uk), uk

〉
=

∑

n∈Z
W̃ (n, uk). (.)

To prove the boundedness of {uk}, arguing by contradiction, suppose that ‖uk‖ → ∞. Let
vk = uk/‖uk‖. Then ‖vk‖ = . Passing to a subsequence, we may assume that vk ⇀ v in E,
then vk(n) → v(n) for all n ∈ Z. Let

�k =
{

n ∈ Z :
|∇W (n, uk)|

|uk| ≤ � – δ

}
.

Then by using �‖vk‖
 ≤ ‖vk‖, one has

∑

n∈�k

|∇W (n, uk)|
|uk| |vk|

∣
∣v+

k – v–
k
∣
∣ ≤ (� – δ)

∑

n∈�k

|vk|
∣
∣v+

k – v–
k
∣
∣

≤ (� – δ)‖vk‖
 ≤  –

δ

�
. (.)

If δ := lim supk→∞ ‖vk‖∞ = , then it follows from (W), (W), and (.) that

∑

n∈Z\�k

|∇W (n, uk)|
|uk| |vk|

∣
∣v+

k – v–
k
∣
∣

≤ ‖vk‖∞
∥∥v+

k – v–
k
∥∥∞

∑

n∈Z\�k

|∇W (n, uk)|
|uk|
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≤ C‖vk‖∞
∑

n∈Z\�k

W̃ (n, uk)

≤ C‖vk‖∞ = o(). (.)

From (.), (.), (.), and (.), one gets

 + o() =
‖uk‖ – 〈′(uk), u+

k – u–
k 〉

‖uk‖

≤
∑

n∈Z

|∇W (n, uk)|
|uk| |vk|

∣∣v+
k – v–

k
∣∣

=
∑

n∈�k

|∇W (n, uk)|
|uk| |vk|

∣∣v+
k – v–

k
∣∣ +

∑

n∈Z\�k

|∇W (n, uk)|
|uk| |vk|

∣∣v+
k – v–

k
∣∣

≤  –
δ

�
+ o(), (.)

a contradiction. Thus δ > .
Going if necessary to a subsequence, we may assume the existence of nk ∈ Z such that

∣
∣vk(nk)

∣
∣ = ‖vk‖∞ >

δ


.

Choose integers ik and mk with  ≤ mk ≤ N –  such that nk = ikN + mk . Let ṽk(n) = vk(n +
ikN), then

∣
∣ṽk(mk)

∣
∣ >

δ


, ∀k ∈ N . (.)

Now we define ũk(n) = uk(n + ikN). Since p(n), L(n), and W (n, x) are N-periodic in n, then
ũk/‖uk‖ = ṽk and ‖ũk‖ = ‖uk‖. Passing to a subsequence, we have ṽk ⇀ ṽ in E, then ṽk(n) →
ṽ(n) for all n ∈ Z. Obviously, (.) implies that ṽ(n) �=  for some n ∈ {, , . . . , N – }. Let

E =
{

u ∈ E :
{

n ∈ Z :
∣
∣u(n)

∣
∣ > 

}
is finite set

}
.

For any φ ∈ E, there exists an n ∈ N such that φ(n) =  for all |n| > n. Setting φk(n) =
φ(n – ikN), then it follows from (W) and (.) that

〈′(uk),φk〉
‖uk‖

=
∑

n∈Z

[
p(n + )�vk · �φk + L(n)vk · φk –

∇W (n, uk) · φk

‖uk‖
]

=
∑

n∈Z

[
p(n + )�vk · �φk +

(
L(n) – M(n)

)
vk · φk –

∇W∞(n, uk) · φk

‖uk‖
]

=
∑

n∈Z

[
p(n + )�ṽk · �φ +

(
L(n) – M(n)

)
ṽk · φ –

∇W∞(n, ũk) · φ
‖ũk‖

]
. (.)
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Note that
∣
∣∣
∣
∑

n∈Z

∇W∞(n, ũk) · φ
‖ũk‖

∣
∣∣
∣ =

∣
∣∣
∣
∑

|n|≤n

∇W∞(n, ũk) · φ
‖ũk‖

∣
∣∣
∣ ≤

∑

|n|≤n

|∇W∞(n, ũk)|
|ũk| |ṽk||φ| = o().

Hence, it follows from (.) and (.) that

∑

n∈Z

[
p(n + )�ṽk · �φ +

(
L(n) – M(n)

)
ṽk · φ]

= o(), (.)

which yields

∑

n∈Z

[
p(n + )�ṽ · �φ +

(
L(n) – M(n)

)
ṽ · φ]

= . (.)

This shows that ṽ is an eigenfunction of the operator B, where

(Bu)(n) = �[
p(n)�u(n – )

]
–

(
L(n) – M(n)

)
u(n), ∀n ∈ Z.

But B has only continuous spectrum in E. This contradiction shows that {un} is bounded.
�

Proof of Theorem . In view of Lemmas . and ., there exists a bounded sequence
{uk} ⊂ E satisfying (.). Thus there exists a constant C >  such that

√
�‖uk‖∞ ≤ √

�‖uk‖ ≤ ‖uk‖ ≤ C, ∀k ∈N. (.)

Hence, by (W) and (W), there exists a constant C >  such that

∣
∣W̃ (n, x)

∣
∣ ≤ c�

C

|x| + C|x|, ∀(n, x) ∈ Z×R

N , |x| ≤ C√
λ

. (.)

If δ := lim supk→∞ ‖uk‖∞ = , then

∑

n∈Z

∣∣uk(n)
∣∣ ≤ ‖uk‖∞

∑

n∈Z

∣∣uk(n)
∣∣ ≤ C


�

‖uk‖∞ = o(). (.)

From (.), (.), (.), (.), (.), and (.), one has

c = (uk) –


〈
′(uk), uk

〉
+ o()

=
∑

n∈Z
W̃ (n, uk) + o()

≤ c�

C


∑

n∈Z

∣
∣uk(n)

∣
∣ + C

∑

n∈Z

∣
∣uk(n)

∣
∣ + o()

≤ c


+ o().

This contradiction shows that δ > .



Wang Advances in Difference Equations  (2015) 2015:52 Page 9 of 10

Going if necessary to a subsequence, we may assume the existence of nk ∈ Z such that

∣
∣uk(nk)

∣
∣ = ‖uk‖∞ >

δ


.

Choose integers ik and mk with  ≤ mk ≤ N –  such that nk = ikN + mk . Let vk(n) = uk(n +
ikN), then

∣∣vk(mk)
∣∣ >

δ


, ∀k ∈N. (.)

Since p(n), L(n), and W (n, x) are N-periodic in n, we have ‖vk‖ = ‖uk‖ and

(vk) → c,
∥∥′(vk)

∥∥(
 + ‖vk‖

) → . (.)

Passing to a subsequence, we have vk ⇀ v in E, vk(n) → v(n) for all n ∈ Z. Obviously, (.)
implies that v �= . It is easy to show that ′(v) = . �
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