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Abstract
In this paper, we obtain a maximum principle for controlled fractional Fokker-Planck
equations. We prove the well-posedness of a stochastic differential equation driven
by an α-stable process. We give some estimates of the solutions by fractional calculus.
A linear-quadratic example is given at the end of the paper.
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1 Introduction
The real world is full of uncertainty; using stochastic models one may gain real benefits.
Thus, stochastic differential equations driven by Brownian motions have been studied ex-
tensively. In spite of many obvious advantages, some models based on Brownian diffusion
usually fail to provide a satisfactory description of many dynamical processes. We illus-
trate this by some practical phenomena as follows: long-range correlations, lack of scale
invariance, discontinuity of the trajectories and so on [, ]. To capture such anomalous
properties of physical systems, one introduces the fractional Fokker-Planck equations.

Recently, Magdziarz [] and Lv et al. [] obtained the stochastic representation on the
fractional Fokker-Planck equation with time and space dependent drift and diffusion co-
efficients. They found that the corresponding stochastic process is driven by an inverse
α-stable subordinator and Brownian motion. The fractional Fokker-Planck equation can
be described by the following stochastic process (see []):

dx(t) = f
(
x(t)

)
dSα(t) + g

(
x(t)

)
dB

(
Sα(t)

)
,

with initial value x() = ξ . The above stochastic process is driven by the inverse α-stable
subordinator and Brownian motion. Here, the inverse α-stable subordinator Sα(t) is inde-
pendent of B(τ ). We explain Sα(t) in Section .

In order to make the relevant decisions (controls) based on the most updated informa-
tion, the decision makers (controllers) must select an optimal decision among all possible
ones to achieve the best expected result related to their goals. Such optimization problems
are called stochastic optimal control problems. The range of stochastic optimal control
problems covers a variety of physical, biological, economic, and management systems.

Generally, one solves the optimal control problem by the Pontryagin maximum prin-
ciple. Starting with [–], backward stochastic differential equations have been used to

© 2015 Wang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

http://dx.doi.org/10.1186/s13662-015-0382-1
mailto:wqx1035@163.com


Wang Advances in Difference Equations  (2015) 2015:45 Page 2 of 13

describe the necessary conditions that the optimal control must satisfy. We also refer to
[–] and the references therein for some other works. In this paper, α-stable processes
involve some fractional calculations. We use fractional derivatives (of Riemann-Liouville
type) to prove the well-posedness of the equations and give some estimates.

In this paper, we consider an optimal control problem for fractional Fokker-Planck equa-
tions. We examine this issue because it has a very wide range of physical applications. For
instance, surface growth, transport of fluid in porous media [], two-dimensional rotating
flow [], diffusion on fractals [], or even in multidisciplinary areas such as in analyzing
the behavior of CTAM micelles dissolved in salted water [] or econophysics [].

This paper is organized as follows. We begin with the well-posedness of the stochastic
differential equations driven by α-stable process by Picard iteration, then we give some
estimates of the solution for the controlled fractional Fokker-Planck equation in Section .
In Section , we establish necessary and sufficient conditions for optimal pairs. A linear-
quadratic optimal control problem is proposed in Section , a Riccati differential equation
is derived, and the explicit expression of the optimal control is obtained. The conclusion
is in Section .

2 Preliminaries
2.1 Statement of the problem
Let (�,F , P) be a probability space with filtration Ft . The controlled stochastic system is
described as follows:

{
dx(t) = b(t, x(t), u(t)) dSα(t) + σ (t, x(t), u(t)) dB(Sα(t)),
x() = ξ , t ∈ [, T],

()

where b(t, x(t), u(t)) : [, T] ×R
n ×U [, T] →R

n, σ (t, x(t), u(t)) : [, T] ×R
n ×U [, T] →

R
n are given functionals, ξ is the initial value, u(t) is the control process, and x(t) is the

corresponding state process. The inverse α-stable subordinator is defined in the following
way:

Sα(t) = inf
{
τ >  : Uα(τ ) > t

}
,

where Uα(τ ) is a strictly increasing α-stable Lévy process. Uα is a pure-jump process
whose Laplace transform is given by E(e–kUα (τ )) = e–τkα ,  < α < . For every jump of Uα(τ ),
there is a corresponding flat period of its inverse Sα(t).

The space of admissible controls is defined as

U [, T] �
{

u : [, T] × � →R
n
∣
∣∣u is Ft-adapted stochastic process and

E
(∫ T



∣
∣u(t)

∣
∣ dt

)
< +∞

}
.

The cost functional is

J
(
u(t)

)
= E

{∫ T


l
(
t, x(t), u(t)

)
dSα(t) + h

(
x(T)

)}
, ()
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where l(t, x(t), u(t)) : [, T]×R
n ×U [, T] →R

n and h(t) : Rn →R
n are given continuously

differentiable functionals. We introduce the following basic assumptions which will be
assumed throughout the paper.

(H) b, σ , l, g are continuously differentiable with respect to x. There exists a constant
L >  such that, for ϕ(t, x, u) = b(t, x, u), σ (t, x, u), we have:
. |ϕ(t, x, u) – ϕ(t, x̂, û)| ≤ L(|x – x̂| + |u – û|), ∀t ∈ [, T], x, x̂ ∈R

n, u, û ∈ U [, T].
. |ϕ(t, x)| ≤ C( + |x|), x ∈ R

n, t ∈ [, T].
(H) The maps b, σ , l, h are C in x with bounded (denoted by M) derivatives. There

exists a constant L >  such that for ϕ(t, x, u) = b(t, x, u), σ (t, x, u), we have

∣
∣ϕx(t, x, u) – ϕx(t, x̂, û)

∣
∣ ≤ L

(|x – x̂| + |u – û|),

∀t ∈ [, T], x, x̂ ∈R
n, u, û ∈ U [, T].

Then we can pose the following optimal control problem.

Problem (A) Find a pair (x∗(t), u∗(t)) ∈R
n × U [, T] such that

J
(
u∗(t)

)
= inf

u(t)∈U [,T]
J
(
u(t)

)
. ()

Now, we introduce the variational equation of (),

⎧
⎪⎨

⎪⎩

dx̂(t) = (bx(t)x̂(t) + bu(t)û(t)) dSα(t) + (σx(t)x̂(t)
+ σu(t)û(t)) dB(Sα(t)),

x̂(t) = , t ∈ [, T],
()

and the adjoint equation of (), respectively,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dy(t) = –[bx(t, x(t), u(t))y(t) + lx(t, x(t), u(t))
+ σx(t, x(t), u(t))z(t)] dSα(t)
+ z(t, x(t), u(t)) dB(Sα(t)),

y(T) = hx(x(T)), t ∈ [, T].

()

The Hamiltonian of our optimal control problem is obtained as follows:

H(t, x, u, y, z) = l
(
t, x(t), u(t)

)
+ b

(
t, x(t), u(t)

)
y(t) + σ

(
t, x(t), u(t)

)
z(t). ()

2.2 Well-posedness of the problem
To obtain our results of maximum principle, we need the following results.

Proposition . (Itô formula; see [, Theorem .]) Suppose that x(·) has a stochastic
differential

dx = F dSα + G dB(Sα)

for F ∈ L
(, T), G ∈ L

(, T). Assume u : R × [, T] → R is continuous and that ∂u
∂t , ∂u

∂x ,
∂u
∂x exist and are continuous. Set

Y (t) := u
(
x(t), t

)
.
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Then Y has the stochastic differential equation

dY =
∂u
∂t

dt +
∂u
∂x

(
F dSα + G dB(Sα)

)
+




∂u
∂x G dSα ,  < α < . ()

Lemma . (See []) Let Sα(t) be the inverse α-stable subordinator, g(t) be an integrable
function. Then

E
[∫ t


g
(
Sα(τ )

)
dSα(τ )

]
=


	(α)

∫ t


(t – τ )α–E

[
g
(
Sα(τ )

)]
dτ .

Lemma . (See []) The following equation holds for any continuous function f (t):

E
[∫ t


f (τ )g

(
Sα(τ )

)
dSα(τ )

]
=

∫ t


f (τ )D–α

τ E
[
g
(
Sα(τ )

)]
dτ .

Here the operator D–α
t f (t) = 

	(α)
∂
∂t

∫ t
 (t – s)α–f (s) ds is the fractional derivative of

Riemann-Liouville type. Especially, the derivative of a constant C need not be zero
D–α

t C = tα–

	(α) C.

Remark . We get
∫ t

  dSα(t) =
∫ t

 D–α
t dt = tα

α	(α) . It is bounded when α ∈ (, ). We set
tα

α	(α) < P.

Theorem . Let b and σ be measurable functions satisfying (H) and (H), T >  and T
be independent of X(). Then the stochastic differential equation

dX(t) = b
(
t, X(t)

)
dSα(t) + σ

(
t, X(t)

)
dB

(
Sα(t)

)
, t ∈ [, T] ()

has a unique solution X(t).

Proof Define Y ()(t) = X() and Y (k)(t) = Y (k)(t)(ω). We consider the equation

Y (k+)(t) = X() +
∫ t


b
(
s, Y (k)(s)

)
dSα(s) +

∫ t


σ
(
s, Y (k)(s)

)
dB

(
Sα(s)

)
. ()

Then, for k ≥ , t ≤ T , we have

E
∥∥Y (k+)(t) – Y (k)(t)

∥∥

= E
∥∥∥
∥

∫ t



(
b
(
s, X(k)(t)

)
– b

(
s, X(k–)(t)

))
dSα(s)

+
∫ t



(
σ
(
s, X(k)(t)

)
– σ

(
s, X(k–)(t)

))
dB

(
Sα(s)

)
∥
∥∥
∥



≤ 
tα

α	(α)
E

∫ t



∥
∥(

b
(
s, X(k)(t)

)
– b

(
s, X(k–)(t)

))∥∥ dSα(s)

+ E
∫ t



∥∥(
σ
(
s, X(k)(t)

)
– σ

(
s, X(k–)(t)

))∥∥ dSα(s)

≤ (P + )
tα

α	(α)
LE

∫ t



∥
∥X(k)(t) – X(k–)(t)

∥
∥ dSα(t)



Wang Advances in Difference Equations  (2015) 2015:45 Page 5 of 13

and

E
∥
∥Y ()(t) – Y ()(t)

∥
∥ ≤ tα

α	(α)
(
 + E|X|

) tα

α	(α)
+

tα

α	(α)
(
 + E|X|

)

≤ tα

α	(α)
(
 + E|X|

)( tα

α	(α)
+ 

)

≤ At,

where the constant A depends on L, P, and E|X|. Hence we obtain

E
∥∥Y (k+)(t) – Y (k)(t)

∥∥ ≤ (
(P + )PL)k(At)k ≤ (At)k .

Here the constant A depends on L, P, and E|X|. We set At < 
 , m ≥ n ≥ . Then

∥∥Y (m)(t) – Y (n)(t)
∥∥

L(,T) =

∥
∥∥
∥∥

m–∑

k=n

Y (k+)(t) – Y (k)(t)

∥
∥∥
∥∥

L(,T)

≤
m–∑

k=n

(
E
[∫ T



∣
∣Y (k+)(t) – Y (k)(t)

∣
∣ dSα(t)

] 

)

≤
m–∑

k=n

(∫ T


(At)k dSα(t)

) 


≤
m–∑

k=n

(
P(At)k) 

 → 

as m, n → ∞. Therefore {Y (n)(t)}∞n= is a Cauchy sequence in L(, T). Hence Y (n)(t)∞n= is
convergent in L(, T). Define

X(t) := lim
n→∞ Y (n)(t).

Next, we prove that X(t) satisfies (). For all n and t ∈ [, T], we have

Y (n+)(t) = X() +
∫ t


b
(
s, Y (n)(s)

)
dSα(s) +

∫ t


σ
(
s, Y (n)(s)

)
dB

(
Sα(s)

)
.

Then we get
∫ t


b
(
s, Y (n)(s)

)
dSα(s) →

∫ t


b
(
s, X(s)

)
dSα(s) as n → ∞.

Also
∫ t


σ
(
s, Y (n)(s)

)
dB

(
Sα(s)

) →
∫ t


σ
(
s, X(s)

)
dB

(
Sα(s)

)
as n → ∞.

We conclude that for all t ∈ [, T] we have

X(t) = X() +
∫ t


b
(
s, X(s)

)
dSα(s) +

∫ t


σ
(
s, X(s)

)
dB

(
Sα(s)

)
.

That is, X(t) satisfies ().
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Now we prove uniqueness. Let X(t) and X(t) be solutions of () with the same initial
values. Then

E
∥∥X(t) – X(t)

∥∥ = E
∥
∥∥
∥

∫ t



(
b
(
s, X(s)

)
– b

(
s, X(s)

))
dSα(s)

+
∫ t



(
σ
(
s, X(s)

)
– σ

(
s, X(s)

)
dB

(
Sα(s)

))
∥
∥∥
∥



≤ 
tα

α	(α)
E

∫ t



∥
∥(

b
(
s, X(s)

)
– b

(
s, X(t)

))∥∥ dSα(s)

+ E
∫ t



∥∥(
σ
(
s, X(s)

)
– σ

(
s, X(s)

))∥∥ dSα(s)

≤ (P + )
tα

α	(α)
LE

∫ t



∥
∥X(s) – X(s)

∥
∥ dSα(s).

From Lemmas . and ., we get

E
∥∥X(t) – X(t)

∥∥

≤ (P + )
tα

α	(α)
LE

∫ t



∥
∥X(s) – X(s)

∥
∥ sα–

	(α)
ds

≤ (P + )PLCE
∫ t



∥∥X(s) – X(s)
∥∥ ds.

By the Gronwall inequality, we conclude that

E
∥∥X(t) – X(t)

∥∥ =  for all t ∈ [, T].

The uniqueness is proved. �

2.3 Some estimates of the solution
Let u∗ and v be two admissible controls. For any ε ∈ R, we denote uε = u∗ + ε(v – u∗).
Corresponding to uε and u∗, there are two solutions xε(·) and x∗(·) to (). That is,

x∗(t) = ξ +
∫ t


b
(
s, x∗(s), u∗(s)

)
dSα(s) +

∫ t


σ
(
s, x∗(s), u∗(s)

)
dB

(
Sα(s)

)
,

xε(t) = ξ +
∫ t


b
(
s, xε(s), uε(s)

)
dSα(s) +

∫ t


σ
(
s, xε(s), uε(s)

)
dB

(
Sα(s)

)
.

Theorem . Let (H)-(H) hold. Then, for any K ≥ ,

sup
t∈[,T]

E
∣∣xε(t) – x∗(t)

∣∣ = O
(
ε), ()

sup
t∈[,T]

E|x̂| = O
(
ε), ()

sup
t∈[,T]

E
∣
∣xε(t) – x∗(t) – x̂(t)

∣
∣ = O

(
ε). ()
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Proof We have

sup
t∈[,T]

E
∣∣xε(t) – x∗(t)

∣∣

= sup
t∈[,T]

E
∣∣
∣∣

∫ t



(
b
(
s, xε(s), uε(s)

)
– b

(
s, x∗(s), u∗(s)

))
dSα(s)

+
∫ t



(
σ
(
s, xε(s), uε(s)

)
– σ

(
s, x∗(s), u∗(s)

))
dB

(
Sα(s)

)
∣
∣∣∣



≤ sup
t∈[,T]

E
{

tα

α	(α)

∣∣
∣∣

∫ t



(
b
(
s, xε(s), uε(s)

)
– b

(
s, x∗(s), u∗(s)

)) dSα(s)
∣∣
∣∣

+
∣∣
∣∣

∫ t



(
σ
(
s, xε(s), uε(s)

)
– σ

(
s, x∗(s), u∗(s)

)) dSα(s)
∣∣
∣∣

}

≤ sup
t∈[,T]


tα

α	(α)
L(P + )

{∫ T


E
(∣∣xε(s) – x∗(s)

∣∣)dSα(s)

+
Tα

α	(α)
εE

(
v – u∗)

}
.

From Lemmas . and . and the Gronwall inequality, we get

sup
t∈[,T]

E
∣∣xε(t) – x∗(t)

∣∣

≤ 
tα

α	(α)
L(P + )

{∫ T


E
(∣∣xε(s) – x∗(s)

∣∣) sα–

	(α)
ds +

Tα

α	(α)
εE

(
v – u∗)

}

≤ CP,Lε
,

where CP,L is a constant that depends on P, L. This proves (). Similarly, we can prove ().
We set η(t) = xε(t) – x∗(t) – x̂(t). Then

∣∣η(t)
∣∣ =

∣
∣∣∣

∫ T



{∫ 


bx

(
s, x∗(s) + θ

(
xε(s) – x∗(s)

)
, uε(s)

)
dθ

(
xε(s) – x∗(s)

)

+
∫ 


bu

(
s, x∗(s), u∗(s) + θ

(
uε(s) – u∗(s)

))
dθ

(
uε(s) – u∗(s)

)

– bx(s)x̂(s) – bu(s)û(s)
}

dSα(s)

+
∫ T



{∫ 


σx

(
s, x∗(s) + θ

(
xε(s) – x∗(s)

)
, uε

)
dθ

(
xε(s) – x∗(s)

)

+
∫ 


σu

(
s, x∗, u∗(s) + θ

(
uε(s) – u∗(s)

))
dθ

(
uε(s) – u∗(s)

)

– σx(s)x̂(s) – bu(s)û(s)
}

dB
(
Sα(s)

)
∣∣∣
∣



=
∣
∣∣∣

∫ T



{∫ 


bx

(
s, x∗(s) + θ

(
xε(s) – x∗(s)

)
, uε

)
dθη(s)

+
[∫ 


bx

(
s, x∗(s) + θ

(
xε(s) – x∗(s)

)
, uε(s)

)
dθ – bx(s)

]
x̂(s)
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+
∫ 


bu

(
s, x∗, u∗(s) + θ

(
uε(s) – u∗(s)

))
dθ

(
uε(s) – u∗(s)

)

– bu(s)û(s)
}

dSα(s)

+
∫ T



{∫ 


σx

(
s, x∗(s) + θ

(
xε(s) – x∗(s)

)
, uε

)
dθη(s)

+
[∫ 


σx

(
s, x∗(s) + θ

(
xε(s) – x∗(s)

)
, uε

)
dθ – σx(s)

]
x̂(s)

+
∫ 


σu

(
s, x∗, u∗(s) + θ

(
uε(s) – u∗(s)

))
dθ

(
uε(s) – u∗(s)

)

– σu(s)û(s)
}

dBSα(s)
∣∣
∣∣



≤ 
∣
∣∣
∣

∫ T



{∫ 


bx

(
s, x∗(s) + θ

(
xε(s) – x∗(s)

)
, uε

)
dθη(s)

+
[∫ 


bx

(
s, x∗(s) + θ

(
xε(s) – x∗(s)

)
, uε

)
dθ – bx(s)

]
x̂(s)

+
∫ 


bu

(
s, x∗, u∗(s) + θ

(
uε(s) – u∗(s)

))
dθ

(
uε(s) – u∗(s)

)

– bu(s)û(s)
}

dSα(s)
∣
∣∣
∣

+ 
∣∣
∣∣

∫ T



{∫ 


σx

(
s, x∗(s) + θ

(
xε(s) – x∗(s)

)
, uε

)
dθη(s)

+
[∫ 


σx

(
s, x∗(s) + θ

(
xε(s) – x∗(s)

)
, uε

)
dθ – σx(s)

]
x̂(s)

+
∫ 


σu

(
s, x∗, u∗(s) + θ

(
uε(s) – u∗(s)

))
dθ

(
uε(s) – u∗(s)

)

– σu(s)û(s)
}

dSα(s)
∣
∣∣
∣

≤ 
∫ T



(∫ 


bx

(
s, x∗(s) + θ

(
xε(s) – x∗(s)

)
, uε

)
)

dθη(s)

+
[∫ 


bx

(
s, x∗(s) + θ

(
xε(s) – x∗(s)

)
, uε

)
dθ – bx(s)

]

x̂(s)

+
∫ 


bu

(
s, x∗, u∗(s) + θ

(
uε(s) – u∗(s)

)) dθ
(
uε(s) – u∗(s)

)

– bu(s)û(s) dSα(s)

+ 
∫ T



(∫ 


σx

(
s, x∗(s) + θ

(
xε(s) – x∗(s)

)
, uε

)
)

dθη(s)

+
[∫ 


σx

(
s, x∗(s) + θ

(
xε(s) – x∗(s)

)
, uε

)
dθ – bx(s)

]

x̂(s)

+
∫ 


σu

(
s, x∗, u∗(s) + θ

(
uε(s) – u∗(s)

)) dθ
(
uε(s) – u∗(s)

)

– σu(s)û(s) dSα(s). ()
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From Lemmas . and . and the Gronwall inequality, we get

sup
t∈[,T]

E
∣∣η(t)

∣∣ ≤ E
∫ T



(
Cη

(s) + εC
)

dSα(s)

≤
∫ T


CEη(s)

sα–

	(α)
ds + εC

Tα

	(α)α

≤ εMC,C , ()

where C = (M + LC), C = (LC – M)(v – û) + M(v – u∗), MC,C is a constant that
depends on C, C. �

3 The maximum principle
Now, we give the sufficient conditions of Problem (A).

Theorem . Let (H) and (H) hold. Let (x∗(t), u∗(t)) be an admissible pair, and (y(t), z(t))
satisfies (). Moreover, the Hamiltonian H(t) and h(t) are convex, and

H
(
t, x∗(t), u∗(t), y(t), z(t), l(t)

)
= min

u∈U [,T]
H

(
t, x(t), u(t), y(t), z(t), l(t)

)
. ()

Then u∗(t) is an optimal control.

Proof Fix u ∈ U [, T] with corresponding solution x = x(u). Then

J
(
x∗(t), u∗(t)

)
– J

(
x(t), u(t)

)
= I + I, ()

where

I = E
∫ T


l
(
t, x∗(t), u∗(t)

)
– l

(
t, x(t), u(t)

)
dSα(t),

I = E
(
h
(
x∗(T)

)
– h

(
x(T)

))
.

By the definition of H , we get

I = E
[∫ T



{
H

(
t, x∗(t), u∗(t), y(t), z(t), l(t)

)
– H

(
t, x(t), u(t), y(t), z(t), l(t)

)

–
(
b
(
t, x̂(t), û(t)

)
(t) – b

(
t, x(t), u(t)

))
y(t)

–
(
σ
(
t, x̂(t), û(t)

)
– σ

(
t, x(t), u(t)

))
z(t)

}
dSα

]
. ()

We use the convexity of h(t) to obtain the inequality

I = E
(
h
(
x∗(T)

)
– h

(
x(T)

))

≤ E
(
hx

(
x̂(T)

)(
x∗(T) – x(T)

))

≤ E
(
y(T)

(
x∗(T) – x(T)

))
. ()
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Applying the Itô formula to hx(x̂(T))(x∗(T) – x(T)) and taking the expectation, we get

E
(
y(T)

(
x∗(T) – x(T)

))

= E
(
y(T)

(
x∗(T) – x(T)

)
– y()

(
x∗() – x()

))

= E
(∫ T


y(t)

(
b
(
t, x∗(t), u∗(t)

)
– b

(
t, x(t), u(t)

))

+ z(t)
(
σ
(
t, x∗(t), u∗(t)

)
– σ

(
t, x(t), u(t)

))

– Hx
(
t, x(t), u(t), y(t), z(t), l(t)

)(
x∗(t) – x(t)

)
dSα(t)

)
.

Substituting the last equation into (), we obtain

J
(
x∗(t), u∗(t)

)
– J

(
x(t), u(t)

)

≤ E
∫ T



[(
H

(
t, x∗(t), u∗(t), y(t), z(t), l(t)

)
– H

(
t, x(t), u(t), y(t), z(t), l(t)

))

– Hx
(
t, x(t), u(t), y(t), z(t), l(t)

)(
x∗(t) – x(t)

)]
dSα(t).

Since H(t) is convex, we get

J
(
x∗(t), u∗(t)

)
– J

(
x(t), u(t)

) ≤ .

Then u∗(t) is an optimal control. �

Then we give the necessary conditions of the stochastic control problem.

Theorem . Assume that b, σ satisfy (H) and (H), u∗(t) ∈ U [, T] is the optimal control
of ()-(). Then (y(t), z(t)) is the solution of () such that

∫ T



〈
Hu

(
t, x∗(t), u∗(t), y(t), z(t)

)
, u(t)

〉
dSα(t) = . ()

Proof In order to treat the problem, we have

d
dε

Ju+εv(t)
∣
∣∣
∣
ε=

= E
{∫ T



(
lx(t)x̂(t) + lu(t)û(t)

)
dSα(t) + hx

(
x(T)

)
x̂(T)

}
. ()

Let (y(t), z(t)) be the solution of (). Then applying the differential chain rule to
〈y(t), x̂(t)〉, we have the following duality relation:

hx
(
x(T)

)
x̂(T) = y(T)x̂(T) – y()x̂()

=
∫ T



[
y(t)bu(t)û(t) + z(t)σu(t)û(t) – x̂(t)lx(t)

]
dSα(t)

+
∫ T



[
y(t)σx(t)x̂(t) + y(t)σu(t)û(t)

+ x̂(t)z(t)
]

dB
(
Sα(t)

)
. ()
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Combining () with () and by the optimality of u∗(t), we obtain

d
dε

Ju+εv(t)
∣∣
∣∣
ε=

= E
∫ T



(
lu(t)û(t) + y(t)bu(t)û(t) + z(t)σu(t)û(t)

)
dSα(t)

= E
∫ T



〈
Hu

(
t, x∗(t), u∗(t), y(t), z(t)

)
, û(t)

〉
dSα(t) = . ()

�

4 Application
In this section, we consider a linear-quadratic (LQ) optimal control problem as follows:

{
dx(t) = (A(t)x(t) + C(t)u(t)) dSα(t) + (D(t)x(t) + E(t)u(t)) dB(Sα(t)),
x(t) = η, t ∈ [, T],

()

where A(·), C(·), D(·), E(·) are given matrix valued deterministic functions. η is the initial
value, the cost functional is

J
(
x(t), u(t)

)
=




E
{∫ T



[
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

]
dSα(t)

+ xT (T)S(T)x(T)
}

, ()

where Q(t), R(t), S(t) are positive-definite matrices. xT (t) is the transposition of x(t).
The optimal control of the LQ problem can be stated as follows.

Problem (B) Find a pair (x∗(t), u∗(t)) ∈R
n × U [, T] such that

J
(
u∗(t)

)
= inf

u(t)∈U [,T]
J
(
u(t)

)
. ()

We will proceed to a reduction of our Riccati equations. We assume P is a semimartin-
gale with the following decomposition:

dP(t) = �(t) dSα(t) + �(t) dB
(
Sα(t)

)
, t ∈ [, T]. ()

Applying the Itô formula to d(xT (t)P(t)x(t)), we obtain

d
(
xT (t)P(t)x(t)

)

=
{

xT(
PA + AT P + � + DT PD + �D + DT�

)
x

+ uT(
CT P + ET PD + ET�

)
x + uT ET PEu

}
dSα(t)

+
{

xT DT Px + uT ET Px + x�x + xT PDx + xT PEu
}

dB
(
Sα(t)

)
. ()

We denote

K = R + ET PE,

L = CT P + ET PD + ET�.
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Taking expectations on both sides of (), adding these to () and using the square com-
pletion technique, we get

J
(
x(t), u(t)

)

=



E
∫ T

s

{
xT(

PA + AT P + � + DT PD + �D + DT� + Q
)
x

+ uT(
CT P + ET PD + ET�

)
x + uT(

ET PE + R
)
u
}

dSα(t)

+



xT (s)P(s)x(s) +



E
[
xT (T)

(
S(T) – P(T)

)
x(T)

]

=



E
∫ T

s

{
xT(

PA + AT P + � + DT PD + �D + DT� + Q – LT K–L
)
x

+
(
u + K–Lx

)T K
(
u + K–Lx

)}
dSα(t)

+



xT (s)P(s)x(s) +



E
[
xT (T)

(
S(T) – P(T)

)
x(T)

]
. ()

Now, if (P,�) satisfies the Riccati equation, i.e.

� = –
(
PA + AT P + DT PD + �D + DT� + Q – LT K–L

)
.

We set P(T) = S(T). Then we get the stochastic Riccati equation as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(t) = {–(P(t)A(t) + A′(t)P(t) + D′(t)P(t)D(t) + �(t)D(t)
+ D′(t)�(t) + Q(t)) + (CT (t)P(t) + ET (t)p(t)D(t)
+ ET (t)�(t))T (R(t) + E′(t)P(t)E(t))–(CT (t)P(t)
+ ET (t)p(t)D(t) + ET (t)�(t))}dSα(t) + �(t) dB(Sα(t)),

P(T) = S(T),
K(t) = R(t) + D′(t)P(t)D(t) > , P-a.s.,∀t ∈ [, T].

()

Theorem . If the stochastic Riccati equation () admits a solution, then the stochastic
LQ problem ()-() is well-posed.

Proof We know that (P,�) satisfies the Riccati equation () with K = R + ET PE > . Then

J
(
x(t), u(t)

)

=



E
∫ T

s

(
u + K–Lx

)T K
(
u + K–Lx

)
dSα(t) +




xT (s)P(s)x(s)

≥ 


xT (s)P(s)x(s) > –∞, P-a.s.

Therefore, the stochastic LQ problem is well-posed. �

Remark . We see that if the Riccati equation () admits a solution (P,�), then the
optimal feedback control would be

u(t) = –K–(t)L(t)x(t)

= –
(
R(t) + ET (t)P(t)E(t)

)–(CT (t)P(t) + ET (t)PD(t) + ET (t)�(t)
)
x(t).
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5 Conclusion
In this paper, we present some results as regards controlled fractional Fokker-Planck equa-
tions. The well-posedness of the system has been proved by Picard iteration. Some esti-
mates of the solution of the controlled system have been given. Because some terms con-
tain α-stable processes, we use the fractional integral to solve the problem. The necessary
and sufficient conditions of Pontryagin type for the optimal controls have been proved.
As an application, a LQ problem has been shown.
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