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Abstract

We present several oscillation criteria for a second-order nonlinear delay differential
equation with a nonpositive neutral coefficient. Two examples are given to illustrate
the main results.
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1 Introduction
In this work, we study the oscillation of a nonlinear second-order neutral delay differential

equation
(r@e)(Z@®)") +q@)f (x(c () =0, >t >0, (1.1)

where z(£) = x(t) — p(t)x(z(£)) and « > 0 is the ratio of two odd integers. Throughout, we

assume that the following hypotheses are satisfied:

(Hi) r.p,q € C([to,o0),R), r(t) > 0,0 < p(t) < po <1, q(t) > 0, and ¢q is not identically zero
for large ¢;

(Hy) 7 € C([ty,00),R), 7(¢) < ¢, and lim;_, o, T(£) = 00;

(H3) o € C([ty,0),R), /() >0, 6 (t) < t, and lim;_, o, o (£) = 00;

(Ha) f € C(R,R), uf(u) >0 for all u #0, and there exists a positive constant k such that

S(u)

MO[

>k forallu+0.

By a solution to (1.1), we mean a function x € C([T,, o), R), T, > t, which has the prop-
erty r(z')* € CY([T,, 00),R) and satisfies (1.1) on the interval [T}, c0). We consider only
those solutions of (1.1) which satisfy condition sup{|x(¢)| : £ > T} > 0 for all T > T and as-
sume that (1.1) possesses such solutions. As usual, a solution of (1.1) is called oscillatory if
it has arbitrarily large zeros on [T}, 00); otherwise, it is said to be nonoscillatory. Equation
(1.1) is termed oscillatory if all its solutions oscillate.
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In recent years, there has been increasing interest in studying oscillation of solutions to
different classes of differential equations due to the fact that they have numerous appli-
cations in natural sciences and engineering; see, e.g., Hale [1] and Wong [2]. In particular,
many papers deal with oscillatory behavior of second-order and third-order delay differ-
ential equations; see, for instance, [2-15] and the references cited therein.

In what follows, we provide some background details regarding the study of oscillation
of second-order differential equations which motivated our study. Oscillation criteria for
(1.1) and its particular cases have been reported in [2-5, 9-12, 14, 15]. A commonly used

assumption is
-1<p(t) <0,

although several authors studied the oscillation of (1.1) in the case where
—00 < —po < p(t) < 0.

In particular, Wong [2] and Yang et al. [15] obtained several oscillation theorems for (1.1)

under the assumptions that

0=<p(t)<po<1 1.2)
and

t(t)=t—-19 <t and o(t)=t—-o09<¢ (1.3)

see also the paper by Qin et al. [14] where inaccuracies in [15] were pointed out.
Baculikovéd and DZurina [6] investigated the asymptotic properties of the couple of third-

order neutral differential equations

(r@)([x(t) £p@)x(5))]")") +a@®)x” (z(2)) = 0

assuming that

oo
/ r Ve (t) dt = oo. (1.4)
to
On the basis of the ideas exploited by [6], we derive some new oscillation results for (1.1).
In the sequel, all functional inequalities are assumed to hold for all £ large enough. Without
loss of generality, we can deal only with positive solutions of (1.1).

2 Lemmas
In this section, we give two lemmas that will be useful for establishing oscillation criteria
for (1.1).

Lemma 2.1 Let conditions (Hy)-(Hy) and (1.4) be satisfied and assume that x is a positive
solution of (1.1). Then z satisfies the following two possible cases:

(C1) 2(5)>0,2(t) > 0, (r(®)(Z()*) < 0;
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(Cy) () <0,2'() > 0, (r()(Z'(#))*) <0,

fort > t1, where t1 > to is sufficiently large.

Proof Suppose that there exists a #; > £y such that x(¢) > 0, x(z(¢)) > 0, and x(c (£)) > O for
t > f. It follows from (1.1) that

(rO(Z®)") < ~kq)x (o (1)) < 0. (2.1)

Hence, r(z')* is nonincreasing and of one sign. That is, there exists a £, > #; such that
Z(t) >0 orZ(t) <0 fort > t,.

IfZ'(¢) > 0 for t > t,, then we have (C;) or (C;). We prove now that z/(£) < 0 cannot occur.
If Z/(¢t) < O for ¢ > t5, then

r(t)(z’(t))a <-c<0

for t > t, where ¢ = —r(£,)(Z(£,))* > 0. Thus, we conclude that

z(t) < z(ty) - Cl/a/t rY(s)ds.

1)

By virtue of condition (1.4), lim;_, o, z(t) = —0o. We consider now the following two cases
separately.

Case 1. If x is unbounded, then there exists a sequence {£} such that limy_, », £x = 00 and
limy_, o0 x(£x) = 00, where x(t;) = max{x(s); to < s < t}. Since lim,_, o, T(¢) = 00, T(t) > £o
for all sufficiently large k. By 7(¢) <¢,

x(t(tk)) = max{x(s);to <s< t(tk)} < max{x(s); th<s< tk} = x(ty).
Therefore, for all large k,
2(tx) = x(tx) — p(tx)x (T () = (1 - p(t))x(te) > 0,

which contradicts the fact that lim,_, , z(f) = —o0.
Case 2. If x is bounded, then z is also bounded, which contradicts lim;_, o, z(¢) = —o0.
Hence, z satisfies one of the cases (C;) and (C,). This completes the proof. O

Lemma 2.2 Assume that x is a positive solution of (1.1) and z satisfies case (Cy). Then
lim x(¢) = 0.
t—00

Proof By z< 0 and z’ > 0, we deduce that

lim z(£) =1 <0,
t—>00

where [/ is a finite constant. That is, z is bounded. As in the proof of Case 1 in Lemma 2.1,
x is also bounded. Using the fact that x is bounded, we obtain

limsupx(£) =a, 0<a<oo.

t—>00
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We claim that = 0. If @ > 0, then there exists a sequence {#,,} such that lim,,_, £, = 00

and lim,,— o %(¢,,) = a. Let & = a(l — py)/2po. Then for all large m, x(z(t,,)) < a + &, and so

a(l-
0> lim z(¢,) > lim x(¢,) — po(a +€) = w >0,
m—00 m—00 2
which is a contradiction. Thus, a = 0 and lim;_, o, x(¢) = 0. The proof is complete. O

3 Oscillation results

In what follows, we denote
t
€0 =) [ s
51

where ; > t, is sufficiently large.

Theorem 3.1 Let conditions (Hy)-(Hy) and (1.4) be satisfied. If there exists a positive func-
tion p € C!([ty, 00),R) such that, for all sufficiently large t; > t,,

* p Orle(®)] ,
/ [l(p(t)q(t) - —E"(G(t)) ] dt = oo, (3.1)

where p! (t) = max{0, p’(t)}, then every solution x of (1.1) is either oscillatory or satisfies
lim;_, o0 x(2) = 0.

Proof Without loss of generality, we may assume that there exists a ; > £y such that x(¢) >
0, x(t(¢t)) > 0, and x(o (¢)) > O for ¢ > £;. Then we have (2.1). From Lemma 2.1, z satisfies
one of the cases (C1) and (C;). We consider each of two cases separately.

Suppose first that case (C;) holds. By the definition of z,

x(t) = 2(2) + p(t)x(z (£)) = 2(2). (3.2)

Using (2.1) and condition o (¢) < t, we conclude that

r(t)(z/(t))a < r(a(t)) (z’(a(t)))a. (3.3)
It follows now from (2.1) that

E(r(s)(Z (s)))

z(t) = z(ty) + , T s)

ds > 2/ ()r*(¢) / e (s)ds = £(0)Z (). (3.4)

We define a function w by

r(t)(z ()"

w(t) = p(£) 20@) 'Z 4.
Then w(¢) > 0 for ¢ > #; and
W) = 90 r(6)(z'(2)" ‘() (&)%) p(t)ar(t)(z (t))"‘z’(a(t))a’(t). (3.5)

z%(o (2)) z%(o (2)) 2 (o (1))
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Using (2.1) and (3.2)-(3.5), we get

r(t)(z' ()"
z%(a (1))

o)
£(0(0)

o'(t) < p'(t) —kp(t)q(t) < p.(t) kp(t)q(t). (3.6)

Integrating (3.6) from £, (¢, > ;) to ¢, we obtain

¢ P, (s)r(o(s))
/tz |:k,o(s)q(s) - W] ds < w(ty),

which contradicts (3.1).
If z satisfies (C,), then lim;_, o, x(¢) = 0 due to Lemma 2.2. The proof is complete. O

Let p(#) = 1. We can obtain the following criterion for (1.1) using Theorem 3.1.

Corollary 3.1 Let conditions (H;)-(Hy) and (1.4) be satisfied. If

fooq(t) dt = oo,

then the conclusion of Theorem 3.1 remains intact.

Theorem 3.2 Let o > 1 hold and conditions (Hy)-(Ha) and (1.4) be satisfied. If there exists
a positive function p € C!([ty, 00), R) such that, for all sufficiently large t, > t,,

~ (L OProe) 7.
[ [0 - sty = 7

where p’,(t) = max{0, p'(t)}, then the conclusion of Theorem 3.1 remains intact.

Proof As above, suppose that x is a positive solution of (1.1). By virtue of Lemma 2.1,
z satisfies one of (C;) and (C;). We discuss each of the two cases separately.

Assume first that z has property (C;). We obtain (3.3) and (3.4). Define now w as in the
proof of Theorem 3.1. Then w > 0 and

P, () r(©)(Z' (1) 2 (o (2))

w'(t) < —kp(t)q(t) + o0 w(t) —ac'(t)p(t) #0@) 200) (3.8)
On the other hand, by (3.3) and (3.4),

Z@®) 1 re@®))E (@) <Z(0(t)) )“1 - £ o (1) r(t)(2 (£))" (3.9)

Zo(@) rle@)  z#(c() Z(o (1) ro(®) z(o() '
Substituting (3.9) into (3.8), we obtain

, p,(2) 2 ETN ()
o' (t) < —kp(t)q(t) + ) o(t) —ao (f)mw (®)
< -kp(t)q(t) + (L&) rlo (6) (3.10)

4ap(t)o’ e (o (t)
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Integrating (3.10) from t; (¢, > ;) to ¢, we have

' (0..())*r(o(s)
/1:2 [kp(s)q(s) - 4ap(s)o/(s)§a—1(a(s))} ds < o(ta),

which contradicts (3.7).
If z satisfies (Cy), then lim;_, o x(¢) = 0 when using Lemma 2.2. This completes the

proof. O

4 Examples and discussion
Example 4.1 For ¢t > 1, consider a second-order neutral differential equation

|:x(t) - %x(t— %)]” + 8x<t - %) =0. (4.1)

It follows from Corollary 3.1 that every solution x of (4.1) is either oscillatory or satis-
fies property lim;_. x(¢) = 0. For instance, x(¢) = sin4¢ is an oscillatory solution of this

equation.

Example 4.2 For ¢ > 1, consider a second-order nonlinear neutral differential equation
(t2 ( / 3y/ a3t _
Z(1)7) +ytx )= 0, (4.2)

where z(t) = x(£) —x(£/3)/2 and y > 0 isa constant. Let o = 3, 7(£) = 2, q(t) =t 72, o (£) = t/2,
k =y,and p(t) = ¢, and note that £(¢) > 3kt for every ky € (0,1). By virtue of Theorem 3.2,
every solution x of (4.2) is either oscillatory or satisfies lim,_,  x(¢) = 0 if y > 1/(54k2) for
some ko € (0,1). However, it follows from Theorem 3.1 that every solution x of (4.2) is
either oscillatory or satisfies lim,_, o, x(t) = 0 if y > 2/(27k3) for some k, € (0,1). Note that

2 1
—_— > —_—
27ky ~ 54k3

for every ko € (0,1). Therefore, Theorem 3.2 improves Theorem 3.1 in some cases. But
Theorem 3.1 can be applied to (1.1) in the case when 0 < & < 1. Observe that results re-
ported in [2, 14, 15] cannot be applied to (4.2) since (1.3) fails to hold for this equation.

Remark 4.1 We establish two classes of oscillation criteria for (1.1) without requiring the
restrictive conditions (1.3). Note that these results are based on the assumption (1.2) and,

as fairly noticed by one of the referees, these results cannot be applied to the case where
p(t) =1

Remark 4.2 Note that Theorems 3.1 and 3.2 and Corollary 3.1 guarantee that every so-
lution x of (1.1) is either oscillatory or satisfies lim;_, o ¥(¢) = 0 and, unfortunately, these
results cannot distinguish solutions with different behaviors. Since the sign of z is not
known, it is not easy to establish sufficient conditions which ensure that all solutions of

(1.1) are just oscillatory and do not satisfy lim,_, .o x(£) = 0.
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Remark 4.3 On the basis of Remarks 4.1 and 4.2, two interesting problems for future

research can be formulated as follows:

(P1) Isit possible to establish oscillation criteria for (1.1) without requiring condition
(1.2)?

(P2) Is it possible to suggest a different method to study (1.1) and obtain some sufficient
conditions which ensure that all solutions of (1.1) are oscillatory?
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