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Abstract
The Hirota bilinear method is used to handle the variant Boussinesq equations.
Multiple soliton solutions and multiple singular soliton solutions are formally
established. It is shown that the Hirota bilinear method may provide us with a
straightforward and effective mathematic tool for generating multiple soliton
solutions of nonlinear wave equations in fluid mechanics.
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1 Introduction
Many phenomena in physics, biology, chemistry, mechanics, etc. are described by non-
linear partial differential equations. Nonlinear wave phenomena of dissipation, diffusion,
reaction, and convection are very important, and they can be represented with a variety
of nonlinear wave equations. The investigation of exact solutions of these equations will
help ones to understand these phenomena better.

During the past several decades, many powerful and efficient methods have been pro-
posed to obtain the exact solutions of nonlinear wave equations, such as inverse scattering
method [], Darboux and Bäcklund transformations [, ], the Hirota bilinear method [],
the tanh method [], the extended tanh method [], the sine-cosine method [], the homo-
geneous balance method [], the homotopy perturbation method [, ], the F-expansion
method [], the Exp-function expansion method [, ], the (G′/G)-expansion method
[, ], the Kudryashov method [], the mapping method [], the extended mapping
method [], and so on.

The above methods can be used to handle the nonlinear wave equations for single soliton
solutions, but the multiple soliton solutions of the nonlinear wave equations can be ob-
tained only by three different methods: the inverse scattering method, the Bäcklund trans-
formation method, and the Hirota bilinear method. However, the Hirota bilinear method
is rather heuristic and possesses significant features that make it be ideal for the deter-
mination of multiple soliton solutions for a wide class of the nonlinear wave equations
[–]. When the Hirota bilinear method is used, computer symbolic systems such as
Maple and Mathematica allow us to perform complicated and tedious calculations.

The Boussinesq equation is a well-known model of long water wave of moderate am-
plitude, describes one dimensional, weakly nonlinear internal wave which develops at
the boundary between two immiscible fluids. In addition, the equation is a simplified
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model of the atmospheric movement equation which is applicable to mesoscale and quasi-
incompressible fluid movement, which means important physical applications in hydro-
dynamics. The Boussinesq equation also is of considerable mathematic interests because
of its rich mathematical structures. In the present research, we focus on the variant Boussi-
nesq equations, which was derived by Sachs [] in  as a model for water waves:

{
Ht + (Hu)x + uxxx = ,
ut + Hx + uux = ,

()

where u(x, t) is the velocity, H(x, t) is the height of free wave surface for fluid in the trough,
and the subscripts denote partial derivatives. In the past years, many authors have studied
Eq. (). For example, Wang [] solved Eq. () by the homogeneous balance method. Yan
and Zhang [] obtained new explicit and exact traveling wave solutions for Eq. () by an
improved sine-cosine method and the Wu elimination method. Naz et al. [] obtained
the conservation laws for Eq. () by an interesting method of increasing the order of partial
differential equations. Fan and Hon [] uniformly constructed a series of traveling wave
solutions for Eq. () by a new algebraic method. Lü [] solved Eq. () by a general Jacobi
elliptic function expansion method, and obtained Jacobi elliptic function solutions. Yuan
et al. [] constructed bifurcations of traveling wave solutions for Eq. () by the bifurcation
theory of planar dynamical systems. Li et al. [] obtained all possible smooth, cusped
solitary wave solutions for Eq. () by the phase portrait analytical technique.

The above review shows that many works to obtain the exact solutions of Eq. () have
been carried out in recent years, but the multiple soliton solutions for Eq. () have not
been obtained. The existence of multiple soliton solutions often implies the integrability
of the considered equations. The objectives of this paper are twofold. First, we aim to apply
the Hirota bilinear method to handle Eq. (). Second, we seek to establish multiple soli-
ton solutions and multiple singular soliton solutions to confirm that Eq. () is completely
integrable. The rest of this paper is organized as follows. In Section , the Hirota bilinear
method for finding the multiple soliton solutions of the nonlinear wave equations is de-
scribed. In Sections  and , the method to solve Eq. () is illustrated in detail. Multiple
soliton solutions and multiple singular soliton solutions are obtained. In Section , some
conclusions are given.

2 The Hirota bilinear method
The Hirota direct method is well known, and it gives soliton solutions by polynomials of
exponentials. We only summarize the main steps as follows.

(i) Substituting

u(x, t) = eθi , θi = kix – cit, ()

into the linear terms of the equation under discussion to determine the dispersion relation
between ki and ci.

(ii) Substituting the single soliton solution

u(x, t) = R
[
ln f (x, t)

]
x = R

fx

f
, ()
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u(x, t) = R
[
ln f (x, t)

]
xx = R

ffxx – f 
x

f  , ()

or

u(x, t) = R
[

arctan

(
f (x, t)
g(x, t)

)]
x

= R
fxg – fgx

f  + g ()

into the equation under discussion to determine R, where

f (x, t) =  + eθ . ()

(iii) For a single soliton, we use

f (x, t) =  + eθ . ()

(iv) For two soliton solutions, we use

f (x, t) =  + eθ + eθ + ae
θ+θ . ()

(v) For three soliton solutions, we use

f (x, t) =  + eθ + eθ + eθ + ae
θ+θ + ae

θ+θ + ae
θ+θ + ae

θ+θ+θ . ()

If the obtained result shows that a = aaa, then the equation gives multiple soliton
solutions and the equation is integrable.

However, for multiple singular soliton solutions, we apply the following steps:
(i) For the dispersion relation, we use

u(x, t) = eθi , θi = kix – cit. ()

(ii) Next we substitute the single soliton solution

u(x, t) = R
[
ln f (x, t)

]
x = R

fx

f
, ()

u(x, t) = R
[
ln f (x, t)

]
xx = R

ffxx – f 
x

f  , ()

or

u(x, t) = R
[

arctan

(
f (x, t)
g(x, t)

)]
x

= R
fxg – fgx

f  + g ()

into the equation under discussion to determine R, where

f (x, t) =  – eθ . ()

(iii) For a single soliton, we use

f (x, t) =  – eθ . ()
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(iv) For two soliton solutions, we use

f (x, t) =  – eθ – eθ + ae
θ+θ . ()

(v) For three soliton solutions, we use

f (x, t) =  – eθ – eθ – eθ + ae
θ+θ + ae

θ+θ + ae
θ+θ – ae

θ+θ+θ . ()

Other approaches will also be used for the multiple singular soliton solutions, as will be
examined later.

3 Multiple soliton solutions of the variant Boussinesq equations
Substituting the following equations:

{
H(x, t) = Aekix–cit ,
u(x, t) = Bekix–cit ,

()

into the linear terms of Eq. (), we obtain the dispersion relation

ci = ±k
i , ()

and as a result we have

θi = kix ∓ k
i t, ()

where A and B are constants. Using the Cole-Hopf transformation method, we assume
that the multiple solutions of Eq. () are

{
H(x, t) = R[ln f (x, t)]xx = R

ffxx–f 
x

f  ,
u(x, t) = R[ln f (x, t)]x = R

fx
f ,

()

where f (x, t), for the single soliton solution, is given by

f (x, t) =  + eθ =  + ekx∓k
 t . ()

Substituting Eq. () into Eq. (), using the result from Eq. (), and solving it for R and R,
we find

R = R = . ()

Substituting Eqs. ()-() into Eq. () we obtain the single soliton solution

⎧⎪⎨
⎪⎩

H(x, t) = k
 e

kx+k
 t

(ek
 t+ekx)

,

u(x, t) = ke
kx–k

 t

+ekx–k
 t

,
()
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Figure 1 Plots of the solution described by Eq. (24). (a) The single soliton solution H(x, t) for k1 = 0.4.
(b) The single soliton solution u(x, t) for k1 = 0.4.

⎧⎪⎨
⎪⎩

H(x, t) = k
 e

kx+k
 t

(+ekx+k
 t )

,

u(x, t) = ke
kx+k

 t

+ekx+k
 t

.
()

Figure  shows the single soliton solution for Eq. () for some special values of the solution’s
parameters in Eq. ().

For two soliton solutions, we set

f (x, t) =  + eθ + eθ + ae
θ+θ =  + ekx∓k

 t + ekx∓k
 t + ae

(k+k)x∓(k
 +k

 )t . ()

Using Eqs. () and () into Eq. () and substituting the result into Eq. (), we obtain the
phase shift by

a = , ()

and hence we set

aij = ,  ≤ i < j ≤ N . ()

The two soliton solutions are obtained by substituting Eqs. () and () into Eq. (),

⎧⎪⎨
⎪⎩

H(x, t) = e(k
 +k

 )t [k
 e

kx+k
 t+(k–k)e(k+k)x+k

e
kx+k

 t ]

(e(k
 +k

 )t+ekx+k
 t+ekx+k

 t )
,

u(x, t) = (ke
kx–k

 t+ke
kx–k

 t )

+ekx–k
 t+ekx–k

 t
,

()

⎧⎪⎨
⎪⎩

H(x, t) = k
 e

kx+k
 t+ekx+k

 t [(k–k)ekx+k
 t+k

 ]

(+ekx+k
 t+ekx+k

 t )
,

u(x, t) = (ke
kx+k

 t+ke
kx+k

 t )

+ekx+k
 t+ekx+k

 t
.

()

Figure  shows the two soliton solutions for Eq. () for some special values of the solution’s
parameters in Eq. ().

For three soliton solutions, we set

f (x, t) =  + eθ + eθ + eθ =  + ekx∓k
 t + ekx∓k

 t + ekx∓k
 t . ()
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Figure 2 Plots of the solution described by Eq. (29). (a) The two soliton solutions H(x, t) for k1 = 0.4,
k2 = 0.8. (b) The two soliton solutions u(x, t) for k1 = 0.4, k2 = 0.8.

Figure 3 Plots of the solution described by Eq. (32). (a) The three soliton solutions H(x, t) for k1 = 0.4,
k2 = 0.8, k3 = 1.55. (b) The three soliton solutions u(x, t) for k1 = 0.4, k2 = 0.8, k3 = 1.45.

Proceeding as before, we find that the three soliton solutions are given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H(x, t) = e–(k
 +k

 +k
 )t [k

 e
kx+(k

 +k
 )t+(k–k)e(k+k)x+k

 t+k
e

kx+(k
 +k

 )t ]

(+ekx–k
 t+ekx–k

 t+ekx–k
 t )

+ e–(k
 +k

 +k
 )t [(k–k)e(k+k)x+k

 t+(k–k)e(k+k)x+k
 t+k

e
kx+(k

 +k
 )t ]

(+ekx–k
 t+ekx–k

 t+ekx–k
 t )

,

u(x, t) = (ke
kx–k

 t+ke
kx–k

 t+ke
kx–k

 t )

+ekx–k
 t+ekx–k

 t+ekx–k
 t

,

()

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H(x, t) = [k
 e

kx+k
 t+(k–k)e(k+k)x+(k

 +k
 )t+k

e
kx+k

 t ]

(+ekx+k
 t+ekx+k

 t+ekx+k
 t )

+ [(k–k)e(k+k)x+(k
 +k

 )t+(k–k)e(k+k)x+(k
 +k

 )t+k
e

kx+k
 t ]

(+ekx+k
 t+ekx+k

 t+ekx+k
 t )

,

u(x, t) = (ke
kx+k

 t+ke
kx+k

 t+ke
kx+k

 t )

+ekx+k
 t+ekx+k

 t+ekx+k
 t

.

()

Figure  shows the three soliton solutions for Eq. () for some special values of the solu-
tion’s parameters in Eq. ().

The three soliton solutions are obtained by substituting Eq. () into Eq. (). This shows
that Eq. () is completely integrable and N soliton solutions can be determined for H(x, t)
and u(x, t), for finite N , where N ≥ . Based on Eqs. () and (), the general soliton
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solutions can be set as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H(x, t) =
[

∑N
i= k

i e
kix–k

i t+
∑

≤i<j≤N (ki–kj)e
(ki+kj)x–(k

i +k
j )t

]

(+
∑N

i= e
kix–k

i t )
,

u(x, t) = 
∑N

i= kie
kix–k

i t

+
∑N

i= e
kix–k

i t
,

()

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H(x, t) =
[

∑N
i= k

i e
kix+k

i t+
∑

≤i<j≤N (ki–kj)e
(ki+kj)x+(k

i +k
j )t

]

(+
∑N

i= e
kix+k

i t )
,

u(x, t) = 
∑N

i= kie
kix+k

i t

+
∑N

i= e
kix+k

i t
.

()

4 Multiple singular soliton solutions of the variant Boussinesq equations
Substituting

{
H(x, t) = Aekix–cit ,
u(x, t) = Bekix–cit ,

()

into the linear terms of Eq. () to find that the dispersion relation is

ci = ±k
i , ()

and as a result we obtain

θi = kix ∓ k
i t, ()

where A and B are constants. Using the Cole-Hopf transformation method, the multiple
singular soliton solutions of Eq. () are assumed to be

{
H(x, t) = R[ln f (x, t)]xx = R

ffxx–f 
x

f  ,
u(x, t) = R[ln f (x, t)]x = R

fx
f ,

()

where f (x, t), for the single singular soliton solution, is given by

f (x, t) =  – eθ =  – ekx∓k
 t . ()

Substituting Eq. () into Eq. () and solving for R and R we find

R = R = . ()

This means that the single singular soliton solution is given by

⎧⎪⎨
⎪⎩

H(x, t) = – k
 e

kx+k
 t

(ek
 t–ekx)

,

u(x, t) = – ke
kx–k

 t

–ekx–k
 t

,
()

⎧⎪⎨
⎪⎩

H(x, t) = – k
 e

kx+k
 t

(–+ekx+k
 t )

,

u(x, t) = – ke
kx+k

 t

–ekx+k
 t

.
()
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Figure 4 Plots of the solution described by Eq. (42). (a) The single singular soliton solution H(x, t) for
k1 = 0.4. (b) The single singular soliton solution u(x, t) for k1 = 0.4.

Figure  shows the single singular soliton solution for Eq. () for some special values of the
solution’s parameters in Eq. ().

For two singular soliton solutions, we set

f (x, t) =  – eθ – eθ + ae
θ+θ =  – ekx∓k

 t – ekx∓k
 t + ae

(k+k)x∓(k
 +k

 )t . ()

Using Eq. () into Eq. () and substituting the result into Eq. (), we obtain the phase
shift

a = , ()

and hence we set

aij = ,  ≤ i < j ≤ N . ()

The two singular soliton solutions are obtained by substituting Eqs. () and () into
Eq. (), where we find

⎧⎪⎨
⎪⎩

H(x, t) = – e(k
 +k

 )t [k
 e

kx+k
 t–(k–k)e(k+k)x+k

e
kx+k

 t ]

(–e(k
 +k

 )t+ekx+k
 t+ekx+k

 t )
,

u(x, t) = (–ke
kx–k

 t–ke
kx–k

 t )

–ekx–k
 t–ekx–k

 t
,

()

⎧⎪⎨
⎪⎩

H(x, t) = – k
 e

kx+k
 t–ekx+k

 t [(k–k)ekx+k
 t+k

 ]

(–+ekx+k
 t+ekx+k

 t )
,

u(x, t) = – (ke
kx+k

 t+ke
kx+k

 t )

–ekx+k
 t–ekx+k

 t
.

()

Figure  shows the two singular soliton solutions for Eq. () for some special values of the
solution’s parameters in Eq. ().

For three singular soliton solutions, we set

f (x, t) =  – eθ – eθ – eθ =  – ekx∓k
 t – ekx∓k

 t – ekx∓k
 t . ()
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Figure 5 Plots of the solution described by Eq. (47). (a) The two singular soliton solutions H(x, t) for
k1 = 0.4, k2 = 0.8. (b) The two singular soliton solutions u(x, t) for k1 = 0.4, k2 = 0.8.

Figure 6 Plots of the solution described by Eq. (50). (a) The three singular soliton solutions H(x, t) for
k1 = 0.4, k2 = 0.8, k3 = 1.55. (b) The three singular soliton solutions u(x, t) for k1 = 0.4, k2 = 0.8, k3 = 1.45.

Proceeding as before, we find the following three singular soliton solutions:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H(x, t) = e–(k
 +k

 +k
 )t [–k

 e
kx+(k

 +k
 )t+(k–k)e(k+k)x+k

 t–k
e

kx+(k
 +k

 )t ]

(–ekx–k
 t–ekx–k

 t–ekx–k
 t )

+ e–(k
 +k

 +k
 )t [(k–k)e(k+k)x+k

 t+(k–k)e(k+k)x+k
 t–k

e
kx+(k

 +k
 )t ]

(–ekx–k
 t–ekx–k

 t–ekx–k
 t )

,

u(x, t) = – (ke
kx–k

 t+ke
kx–k

 t+ke
kx–k

 t )

–ekx–k
 t–ekx–k

 t–ekx–k
 t

,

()

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H(x, t) = [–k
 e

kx+k
 t+(k–k)e(k+k)x+(k

 +k
 )t–k

e
kx+k

 t ]

(–ekx+k
 t–ekx+k

 t–ekx+k
 t )

+ [(k–k)e(k+k)x+(k
 +k

 )t+(k–k)e(k+k)x+(k
 +k

 )t–k
e

kx+k
 t ]

(–ekx+k
 t–ekx+k

 t–ekx+k
 t )

,

u(x, t) = – (ke
kx+k

 t+ke
kx+k

 t+ke
kx+k

 t )

–ekx+k
 t–ekx+k

 t–ekx+k
 t

.

()

Figure  shows the three singular soliton solutions for Eq. () for some special values of
the solution’s parameters in Eq. ().

Based on the last result, we can set the general singular soliton solutions as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H(x, t) =
[–

∑N
i= k

i e
kix–k

i t+
∑

≤i<j≤N (ki–kj)e
(ki+kj)x–(k

i +k
j )t

]

(–
∑N

i= e
kix–k

i t )
,

u(x, t) = – 
∑N

i= kie
kix–k

i t

–
∑N

i= e
kix–k

i t
,

()
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H(x, t) =
[–

∑N
i= k

i e
kix+k

i t+
∑

≤i<j≤N (ki–kj)e
(ki+kj)x+(k

i +k
j )t

]

(–
∑N

i= e
kix+k

i t )
,

u(x, t) = – 
∑N

i= kie
kix+k

i t

–
∑N

i= e
kix+k

i t
.

()

5 Conclusions
The Hirota bilinear method is applied to emphasize the integrability of the variant Boussi-
nesq equations. Multiple soliton solutions and multiple singular soliton solutions are for-
mally derived. The analysis confirms the fact that the variant Boussinesq equations have
N soliton solutions, and have N singular soliton solutions simultaneously. The results ob-
tained for the phase shift aij show that the system is resonance free. The method used here
is standard and direct, so we believe that multiple soliton solutions and multiple singular
soliton solutions may exist for other classes of nonlinear mathematic physics models, such
as the coupled Kadomtsev-Petviashvili system, the Davey-Stewartson system, the gener-
alized Hirota-Satsuma coupled KdV system, and so on. Further work on these aspects is
worthy of performing.
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