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Abstract

In this paper, we investigate the existence and multiplicity results of positive solutions
for a boundary value problem of nonlinear fractional differential equations. The
differential operator is taken in the Riemann-Liouville sense and the nonlinear term
depends on the fractional derivative of an unknown function. We derive first the
associated Green’s function and prove its properties. Consequently, the considered
problem is deduced to an equivalent integral equation. Next, by means of the
Leggett-Williams fixed point theory, we obtain the existence and multiplicity results
of positive solutions.

Keywords: boundary value problem; fractional differential equation; fixed point
theorem

1 Introduction

Fractional derivatives are generalizations for derivative of integral order. There are several
kinds of fractional derivatives, such as Riemann-Liouville fractional derivative, Marchaud
fractional derivative, Caputo’s derivative, Griinwald-Letnikov fractional derivative, etc. In
the last few decades, fractional-order models have been found to be more adequate than
integer-order models for some real world problems. Fractional derivatives provide an ex-
cellent tool for the description of memory and hereditary properties of various materials
and processes. This is the main advantage of fractional differential equations in compari-
son with classical integer-order models. Fractional differential equations arise in many en-
gineering and scientific disciplines as the mathematical modeling of systems and processes
in the fields of physics, chemistry, aerodynamics, electrodynamics of complex medium,
polymer rheology, and so forth, involves derivatives of fractional order. Fractional differ-
ential equations also serve as an excellent tool for the description of hereditary properties
of various materials and processes. In consequence, the subject of fractional differential
equations is gaining much importance and attention. For details, see [1-9] and the ref-
erences therein. In [10-17], the authors discussed the existence of solutions for boundary
value problems (BVPs) of nonlinear fractional differential equations. There is a large num-
ber of papers dealing with the solvability of nonlinear fractional differential equations.
However, the theory of BVPs for nonlinear fractional differential equations is still in the
initial stages and many aspects of this theory need to be explored.
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In [18], Bai and Lii used some fixed point theorems on cone to show the existence and
multiplicity of positive solutions for a Dirichlet-type problem of the nonlinear fractional
differential equation

D% u(t) +f(tu(t)=0, 0<t<l,
u(0) = u(1) =0,

where 1 < o < 2 is a real number, D{, is a fractional derivative in the sense of Riemann-
Liouville, and f : [0,1] x [0, +00) — [0, +00) is continuous.

In [19], Li et al. considered the following three point BVPs of fractional order differential
equations

Dyou(t) +f(tu(t) =0, 0<t<l,
u(0)=0,  Dh.u(l) = aDj.u(f),

where Df, is the Riemann-Liouville fractional derivative of order 1 <o <2,0< 8 <1,
0<a<1,£€(0,1),at*P2<1-8,0<a-B-1andf:[0,1] x [0,+00) = [0, +00)
satisfies Carathéodory type conditions.

Motivated by the result of [18, 19], we are concerned with the nonlinear differential equa-
tion of fractional order

{D‘(’,ﬁu(t) +f(tu(t), Dy u(t)) =0, 0<t<l, 1.1)

u(0) =0, u(l) + Dg+u(1) =ku(&) + ngm(n),

where Df, is the Riemann-Liouville fractional derivative of order 1 <o <2,0 <8 <1,
Ene(0,1),0<pu<l1<a-B,1<a-p1-k*1>0,1-n*P1>0,andf:[0,1] x
[0, +00) x (=00, +00) — [0, +00) is continuous.

To obtain positive solutions of BVP (1.1), the following fixed point theorem in cones,
which can be found in [20], is fundamental.

Theorem 1.1 (Leggett-Williams fixed point theorem) Let P be a cone in a real Banach
space E, P, = {x € P | ||x|| <}, 6 be a nonnegative continuous concave functional on P
such that 6(x) < ||x|| for all x € P,, and P(0,b,d) = {x € P | b < 0(x), ||x|| < d}. Suppose that
T:P.— P, is completely continuous and there exist constants 0 < a < b <d < c such that

(C1) {xeP6,b,d)]|6(x)>Db}#0, and 6(Tx) > b for x € P(0,b,d);
(C2) 1 Tx|l < a for ||x|| < a;
(C3) 6(Tx) > b for x € P(0,b,c), with || Tx|| > d.

Then T has at least three fixed points x1, x, and x3, which satisfy
[l%1]l < a, b<0(xy) and a<|xs3| with6(x3)<b.

Remark 1.2 If there holds d = ¢, then condition (C;) implies condition (C3) of Theo-

rem 1.1.

The rest of this paper is organized as follows. In Section 2, we introduce some basic
definitions, the associated Green’s function and its properties are derived. In Section 3,
we obtain the existence and multiplicity results of positive solutions for BVP (1.1).
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The following assumptions will stand throughout this paper:

H) 1<a<20<p=<L&ne(01),0<pu<ll<a-B,l<a-ul-ki' >0,
1-I* P >0;
(H2) f:10,1] x [0, +00) x (—00, +00) — [0, +00) is continuous.

2 Basic definition and preliminary results
In this section, we introduce preliminary facts and some basic results, which are used
throughout this paper [21, 22].

Definition 2.1 The Riemann-Liouville fractional integral of order « > 0 for a function
y:(0,00) = R is defined as

NS T A (C),
Igy(t) = r@) /0 s ds, a>0

provided the right-hand side is pointwise defined on (0, 00).

Definition 2.2 The Riemann-Liouville fractional derivative of order « > 0 for a function
9:(0,00) — R is defined by

L (AN
D°+y(t)_F(n—a)<dt> /0 (t—s)a—"“ds’ n=[al+1

provided the right-hand side is pointwise defined on (0, 00).

Lemma 2.3 Let o > 0. If we assume u € C(0,1) N L(0,1), then the fractional differential
equation D§, u(t) = 0 has the unique solution

u(t) = %7 + c2%7?

o—n

+tcutt T,
wherec; €R,i=1,2,...,n(n=[a] +1).

Lemma 2.4 Assume that u € C(0,1) N L(0,1) with a fractional derivative of order o > 0
that belongs to u € C(0,1) N L(0,1). Then

I8DE u(t) = u(t) + et + cpt* 2 + -+ 4 ¢, t* 7",
forsomec; €R,i=1,2,...,n.
Remark 2.5 [12] The following properties are useful for our discussion:
() 1§10 y(8) = I y(6), D3 I8, y(0) = y(2), & > 0, B > 0, y(£) € L(0, 1);
(ii) I§. Dg.y(t) = y(t), 0 < < 1, y(¢) € C[0,1] and Dg. y(t) € C(0,1) N L(0,1);

(iii) Ig. : C[0,1] = CI[0,1], a > 0.

Lemma 2.6 [19] Assume that y(t) € L[0,1] and «, B are two constants such that o >1 >
B>0.Then

B ‘ _ o)l _ F(Ol) ! _ )a-B-1
%Au@ywmﬁﬁﬁﬁuw ¥(6) ds.
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In the following, we present Green’s function of the fractional differential equation BVP.

Lemma 2.7 Giveny € C[0,1] and 1 < o < 2, the problem

D u(t) +y(t) =0, 0<t<l, 21)
w0)=0,  u(l)=0, '
is equivalent to
1
)= [ Gila0it 9509 ds
0
where
1 | 1=l —(t-s)*1, 0<s<t<l,
Gile, 0it,5) = & (17" 2= 9T O=s=sis (2:2)
[(a) | 2711 -s) 1, 0<t<s<l

Proof In view of Lemma 2.3, the equation D, u(£) + y(t) = 0 is equivalent to the integral
equation

1

t
u(t) = —m /o (t—s)*y(s)ds + ¢yt + ot 2.

The boundary condition #(0) = 0 implies that c; = 0. Thus

1

M(t) = —m

t
/ (t—s)""y(s)ds + crt* 7.
0

In view of the boundary condition #(1) = 0, we conclude that

1
a= ﬁ /0 (1—5)*y(s)ds.

Therefore, the unique solution of problem (2.1) is

1 t
u(t) = —m /0 (t—s)"ty(s)ds +

tvz—l 1 ol
F(a),/o (1—9)*"y(s)ds.

The unique solution of (2.1) is expressed as

1

1 t 1
u(t) = m /0 [t“_l(l —8)* (¢ - s)“‘l]y(s) ds + m t 711 - 5)*y(s) ds

1
_ / G (@, 031, )y(s) ds.
0

The proof is complete. 0

Lemma 2.8 Ifa —pu > 1, then the function Gy(«, 0;t,s) defined by (2.2) satisfies the follow-
ing conditions:
(i) Gi(,0;t,5) >0, Gi(«,0;t,8) < Ji(e,0;8) forall t,s € [0,1], where
Ji(@,035) = g5 (1= )"
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(ii) there exists a positive function p,(s) € C(0,1) such that
mingefy,,5,] Gi(@, 052, 8) = pi(s)i(e, 055), s € (0,1), where 0 < yy < 81 < 1;

(iii)
Dg+G1(ay0;tyS)
1 e -t =9, 0<s<t<],
S D(a—p) | e rta—-s)e O0<t<s<l
and
1 ')
DY, Gi(a,0;t,5) < —— (1 —5)*"' = ————Ji(«, 0;5).
0+ Gl S)_l"(ot—p.)( s) F(ot—,u)]l(a s)

Proof On the one hand, by the definition of G;(«, 0;1,s), we have

a-1
ta—l(l _ S)oz—l _ (t _ S)ot—l — ta—l |:(1 _s)ot—l _ <1 _ ;) :|

2 ta—l [(1 _S)at—l _ (1 _ S)a—l] Z O,

which implies that Gi(, 0;¢,5) > 0, 0 < t,s < 1. Obviously, Gi(«, 0;¢,5) < Ji(«, 0;s) for all
t,s € [0,1]. On the other hand, let gi(«, 0;¢,5) = t* (1 —5)*1 - (¢ —5)*1,0 <s <t <1land
2(0,0;2,8) =t*1(1-5)*1,0 <t <s<1. Then

dgi (o, 0;t,5)

_ _ a-201 _ -l _ (¢ _ a2
7 = (x 1)[t 1-59) (t—3s) ]

a-2
- (@ -1)#2[(1 _gel (1 - ;) }

<(@-De*?[(1-9" - (1-9"?] =0,

which implies that g1 (o, 0; -, s) is nonincreasing for all s € (0,1]. Since g,(«, 0; -, s) is nonde-

creasing for all s € (0,1), then we have

,0581,
gl(ar(co1 ?, 5€ (0,7l
min_ Gi(e,034,5) = § min{al00s) L@Ondy ey, 5],
te(yr,81] @0 1;(41) T(x)
S se 1)
,0561,
_[#5 se@nl,
- 0511,
B, e lp,)
80‘—1(1_ )oz—l_(a _ )D,,l
g se@nl,
- a-1_ge-1
%’ se [71,1),

where y; < ] < 8 is the solution of the equation

8;1—1(1 _ s)a—l _ (51 _ S)a—l — ylot—l(l _ S)ot—l.
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Thus, we set

8(1)( l(l_s)a—l_(al_s)oc—l
)= awer S €(0,n],
lel—17 RS [rl) 1)1

the proof is complete. d

Lemma 2.9 Givenye C[0,1]and1<a <2,0<B<1,a-B-1>0, the problem

D§.u(t) +y(t)=0, 0<t<],
5 (2.3)
u(0) =0, Dy.u(1) =0,
is equivalent to
1
u(t) :/ Ga(w, B;t,8)y(s) ds,
0
where
1 e lQ-s)*Plo(@-s*!, 0<s<t<l,
G t, - T~ 2.4
20 fitss) = ){t"‘l(l—s)"“ﬂ‘l, 0O<t<s<l 24)

Proof In view of Lemma 2.3, the equation Dg, u(¢) + y(¢) = 0 is equivalent to the integral

equation

u(t) = —ﬁ /0 (t—s)"y(s)ds + eyt + cot* 72

The boundary condition #(0) = 0 implies that ¢, = 0. Thus

1 t
M”z_FGSA(VWVJﬂﬂm+c¢*%

By Lemma 2.6, we have

1 ¢ r
D’§+ u(t) = _F(a——,B)/O t-9)*"y(s)ds+ a1 i (a),B) ep-1

In view of the boundary condition Dg+ u(1) = 0, we conclude that

=

_ e-p-1
r@fus) »(s)ds.

Therefore, the unique solution of problem (2.3) is

—5)* P y(s) ds.

— a-1
u(t) = - 1_‘()/(L‘ s)
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The unique solution of (2.3) is expressed as

1

1 t 1
u(t) = m /0 [t"‘_l(l —s)* P (¢ - s)“‘l]y(s) ds + @ t P - s)”‘_’g_ly(s) ds

1
=/ Ga(a, B;t,8)y(s) ds.
0
The proof is complete. d

Lemma2.10 Ifa—p >1,a -8 > 1, then the function Gy («a, B; t,s) defined by (2.4) satisfies
the following conditions:
(i) Gala,B5t,8) >0, Galw, Bst,s) < Jale, Bss) for all t,s € [0,1], where
Ja(t, B;8) = w1 = 9)*F 7
(ii) there exists a positive function py(s) € C(0,1) such that
MiNgefyy,5,] Ga(at, B5t,8) = pa(s)a(e, B5 ), s € (0,1), where 0 < yp < 83 < 1;

(iii)
Dy Ga(a, B3 1,5)
~ 1 et — ) Bl _(p )l 0<s<t<l,
U Do —p) | 11 - s)eF, 0<t<s<l
and
DV, Gy(a, B5t,5) < ;(l—s)"‘_’g_1 = &] (a, B;5)
o+ T2\, 05 4, _F(o[—,u) F(a_M)Z y[Pr9).

Proof On the one hand, by the definition of Gy(«, B;¢,s), we have

a-1
e [(1—9”"3‘1 - (1 - i) ]

> ta—l [(1 _ S)ot—ﬂ—l _ (1 _ S)a—l] >0,

which implies that G, («, B;¢,5) > 0, 0 < £,5 < 1. Obviously, Ga(«, B;t,s) < J2(e, B;s) for all
t,s € [0,1]. On the other hand, let gi(a, B;,5) = t* 11 —s)* P 1 —(t —5)* L, 0<s<t<1
and g&(a, B;t,8) = t* (1 -5)*#P1,0 <t <s <1 Then

dg («, B;t,s) _

_ =201 _ 2Bl _ (4 _ a2
7 (o 1)[t 1-3s) (t-s) ]

a-2
e )
< (@-De [ -9 P - (1-95)*2] <0,

which implies that gi (o, B; -, s) is nonincreasing for all s € (0,1]. Since g (e, B;-,s) is non-
decreasing for all s € (0,1), then we have

,B382,
%: NS (O’ J’z],
min _Gs(a, B;t,s) = | min{@f2s), 2EA - g [y, 6],

M) 7 ()

%’ s € [62,1)

tely2,82]
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B8,
%; Se(o7r2]x

elehnd e (p,1)

8121—1 (l_s)oc—ﬁ—l_wz _S)ot—l
T(@) )
st F
T (@) ’

se (O;Vz],

s € [r,1),
where y;, < ry < 8, is the solution of equation
83‘1(1 —)¥ Py —s)* L = 2"“1(1 B R

Thus, we set

8571 (1-5)¥P~1 (85 —s)*~!

pa(s) = { (1-5)a=F-1 ’

VzOFR RS [7"2, 1);

s€(0,r],

the proof is complete. d

Lemma 2.11 Given y € C[0,1] and 1 <a <2,0<B <1, if A=1—-k&* !+ Fl(;f‘ffs)(l —
n*=P=1) £ 0, the problem

(2.5)

D ut) +y(t)=0, 0<t<l,
w(©0)=0,  u()+Dfu() = ku(§) + DL, u(y),

is equivalent to

u(t) = /1 G(t,5)y(s)ds,
0

where

1
G(t,s) = X [(1 —k€* ) Gi(a, 05, 5) + kt* ' Gi(at, 05 &, 5)

[ ()@ - ")

r@—p) Gsy(a, B;t,s) + It*7 Gy (o — B, 0; n,s)], (2.6)

Proof In view of Lemma 2.3, the equation D, u(£) + y(t) = 0 is equivalent to the integral
equation

1

u(t) = —@ /(; (t—s)"y(s)ds + eyt + cpt* 2

The boundary condition #(0) = 0 implies that ¢, = 0. Thus

u(t) = /t(t —5)*Ly(s)ds + ¢yt
0

1
T(@)

By Lemma 2.6, we have

D ult) = _1"(01;—;‘3) /0 (t-s) P ys)ds+ ¢ 7”2(?)}3) pep-l
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In view of the boundary condition u(1) + Dg+ u(l) = ku(&) + ng+ u(n), we conclude that

— 1 1 ! a-1 k : -1
cl——[m/(l—s) y(s)ds—m/ (6 =) y(s)ds

e m/‘lsaﬁl M- m/,”‘aﬁl ]

Therefore, the unique solution of problem (2.5) is

ut) = ——— 7n@%b@@

ﬁLl_a—l LI
. Lufuwawwruf@s)mm

/Xls“ﬁlﬂﬁ— /(ns“ﬁl ]

The unique solution of (2.5) is expressed as

1T1-k a-1 t 1
u(t) = Z[ F(i) </0 [t"“l(l S ey s)”“l]y(s) ds + /t 2711 - ) y(s) ds>

o— & 1
+fia;([;[5’%1—sr*1—(s—sfﬂy@yn+l£ gxnl_swly@yh)
-y a—p-1 t
11”(07_ B) </0 [ =-9)* P = (£ —9)*]y(s)ds
1
fre1

n
a—B-1(1 _ ae—-B-1 _ (. Na—p-1
* T(a - p) (/0 [7) 1-9) (n-s) ]y(s) ds

1
+ fn P -5 P y(s) dS)]

1 1
= %[(1 - k%“"_l) /0 Gi(a, 058, 8)y(s) ds + kt"“l/o Gi(a, 0;&,5)y(s)ds
MNa)(1 -
+

N .
_7%:_7—A<am@mmw¢

1
+ lt“_lfo Gila = B,0;n,5)y(s) ds].

The proof is complete. d

Lemma 2.12 [f condition (H;) holds, then the function G(t,s) defined by (2.6) satisfies the
following conditions:
(i) G(t,s)=>0,G(¢,s) <]J(s) forallt,s e [0,1], where

J(s) = 1 |:(1 < 1)]1(0t 0;s) + kGi(a,0;&,s)

[ ()@ -

F(O{—ﬂ) ]2(0[;,355)+lGl(Ol—ﬁ,O;]7,s):|;
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(ii) there exists a positive function p(s) € C(0,1) such that mingepy 51 G(t,s) = p(s)J(s),
s€(0,1), where0<y <8 <1.

Proof (i) From Lemma 2.8 and Lemma 2.10, we get G(t,s) > 0 and

G(t,s) < % [(1 — k&) i(et, 059) + kGy(at, 03 €, 5)

— Iye-p1
% Ja(et, Bis) + 1Gier = B, 0; ms)}

=J(s).

(ii) From Lemma 2.8 and Lemma 2.10, for ¢ € [y, 8], we have

G(t,s) = %[(l—ké"“l)Gl(a, 0;,5) + kt* ' Gy (a, 0; &, 5)

[ ()@ -y

g B Gl p, o;n,s)}

v

% [(1 — k&) pr()i (e, 055) + ky* ' Gy(ax, 05, 9)

bl
%pz(sm(a,ﬂ;s) + 1y Gy(a - B,0; 77’5)}

> % [(1 - kg*)1(a, 0;5) + kGy (o, 0; €, )
L@~ b7
INCES:)
= p(s)/(s),

Jo(a, B;s) + 1Gi(a - B,0; n,S)}

where p(s) = min{p;(s), p2(s), ¥*7*}, ¥ = max{y1, 2}, § = min{81,8,}. The proof is com-
plete. O

3 Main results
We define the space E = {u(t) | u(¢) € C[0,1] and Dy, u(t) € C[0,1]} is endowed with
the ordering u < v if u(t) < v(¢) for all ¢ € [0,1], and endowed with the norm || =

max{||ullo, |1 Dy ullo}, where ||ullo = maxeeo, ()]
Lemma 3.1 (E, || - ||) is a Banach space.

Proof Let {u,}2; be a Cauchy sequence in the space (E, || - ||). Then clearly {u,}3°; and
{Dju, )32, are Cauchy sequences in the space C[0,1]. Therefore, {u,}22; and {Dg. u,}0%,
converge to some v and w on [0,1] uniformly and v,w € C[0,1]. We need to prove that
w =Dy, v.

Note that

|1£,‘+D§+ Uy (8) = I W(t)| < ﬁ /0 (t —s)”“_1|Dg+ U, (s) — w(s)| ds

< ———— max | D", u,(t) - w(t)|.
_F(,U,+1)te[0,l]’ 0+ #n(0) ()’
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By the convergence of {Dj,u,}°;, we have lim,_, o Iy Dy, 14, () = Ij. w(¢) uniformly for

€ [0,1]. On the other hand, by Remark 2.5 one has I}, Dy, u,(t) = u,(¢). Hence, v(t) =
I, w(t), Remark 2.5 implies that it is equivalent to the relation w = D, v. This completes
the proof. O

Define the cone P C E by
P= {ueE|u(t)zO}.
Let the nonnegative continuous concave functional 6 on the cone P be defined by

0(x) = min ‘u(t)’.
y<t<$

Lemma 3.2 If conditions (H;), (Hy) hold. Let T : P — E be the operator defined by
1
Tu(t) := / G(t,9)f (s, u(s), Dy u(s)) ds, 0<t<1,
0

then T : P — P is completely continuous.

Proof The operator T : P — P is continuous in view of the non-negativeness and conti-
nuity of G(¢,s) and f (¢, u(t), Dy, u(t)).

Let Q C P be bounded, i.e., there exists a positive constant M > 0 such that ||u|| <M
forallu € Q. LetL = MAaX0 ;1,0 <u=M,-M=DL, usM [f (¢, u(t), Dy, u(t))| +1, then, for u € 2, we

have

1 1
| Tu(t)| = / G(t,5)f (s, u(s), Dy u(s)) ds < L/ J(s)ds,
0 0

1
| Dy Tu(t)| = % [(1 - kg*™) / DY, Gi(a, 05, 8)f (s, u(s), Dly u(s) ) ds
0

1
+kta—u4% | Gl(oz,O;E,s)f(s,u(s),ng(s)) ds
o)1 - In*P-1)
l"(og——,B) Gz(ot B;t, S)f(s, (s), D0+u(s))

1
+ ltaiﬂil—r(l;((f)ﬂ) / Gi(a = 8,05, 9)f (s, u(s), iy, u(s)) ds]

5%[(1—/(5“1 )/ Ji(a, Os)ds+k )/ Gi(a,0;&,5)ds

M) - 1) (@) '
) r(a—m/b(“ﬂ“

I'(x)
e )/Gl(a B,0;1,9) ]

F(a)
_F(a W) /](S)ds

Hence, T(2) is bounded.
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On the other hand, given ¢ > 0, set § = %(—) a1, where

~ 1- k%—oz—l
)

1-Ip*F-1
—_— +
e -pB)

1 1
Q +k/ Grla, 036,5) ds + 1/ Grle = B,05m,5) ds,
0 0

then, for each u € @, #1,t, € [0,1], t; < £, and £, — £; < §, one has | Tu(t,) — Tu(t)| < €. That
is to say, T'(L2) is equicontinuous.

In fact,

|Tu(t2) — TM(t1)|

1 1
/0 Glt2, 8)f (s, u(s), Dly. u(s)) ds — /(; G(t1, 9)f (s, u(s), Dy u(s)) ds

1
i (1- k&) (/ Gi(, 0; 12, 8)f (s, u(s), Dly. u(s) ) ds

0

1
—/ G, 05 11, 8)f (s, u(s), Dy, u(s)) dS>
0

1
+k(&57 - tf“l)/ Gi(a, 0;&,5)f (s, u(s), Dy u(s)) ds
0

[(e)1 =)

1
T ) </0 Ga(a, B3 ta, s)f (s, u(s), Dy, u(s)) ds

1
_/ Ga(a, B 11, 8)f (s, u(s), Dy 1(s)) ds)
0

1
+ l(zfg‘_1 - t‘l"_l) /o Gi(x - 8,0; n,s)f(s, u(s),Dé)ﬁu(s)) ds

1
- %}(1 ke f (Galer 05 £2,5) — G (et 05 1,))f (s, (), Dl u(s)) ds
0

1
+k(E -6 / Gi(o, 0;&,s)f (s, u(s), Dy u(s)) ds
0

_ Jaa-p-1 1
% /0 (Gale, B 12,9) - Galats B 1,9)f s, u(s), Dl u(s)) s

1
(-8 /0 Gi(a = B,0;m,8)f (s, u(s), Dy, u(s)) ds

L l—k-’;:a_l f o— oa— o— ! o— o— o=
SZ[W(/O (B -57)A-s) 1d5+/t2(t2 F-gT)(-s)" T ds

ty 1
v / (1871~ (1 - 5o ds) k(- ) / Gu(, 0;,5)ds
0

5]

Nl b (/tl (5 =)L -5 P ds + /l(t“‘l ) (1 -s5)*P " ds
Fa-p) \Jo > neoo

ty 1
+ / (& - -5 F? ds) +(E - / Gi(a - B,0;1,5) dsi|
t 0
1—Ip*F-1

F(a-8)

£ |:1 _ kEa—l

1
< A T@) +k/(; Gi(a,0;&,5)ds +
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1
/Gl(a ,BOn,s)ds:|( -7

LQ

= A (tgkl - tfil)'

In the following, we divide the proof into two cases.

Casel.§ <t <ty<l,

LQ LQ

L
| Tu(ty) — Tu(t)| < KQ(tg“l -7 <

Case2.0<f <6, <26,

| Tults) — Tulty)| < LKQ(tg—l ) <

gtg‘l < L—Q(Z(S)“‘1 <e.
A A -
By means of the Arzela-Ascoli theorem, we have T : P — P is completely continuous. The

O

proof is complete.

For convenience, we denote

C@) 1 : 1 ’ N = 5;‘
max( JoJ(s)ds, [, J(s) ds} J, p(8)J(s)ds

o
[(a—p)

M =

Theorem 3.3 Assume that conditions (Hy), (Hy) hold. In addition assume that there exist
nonnegative numbers 0 <a < b < % W such that max{1,I'(u + 1)} - b < cy, and

f(t,u,v) satisfies the following growth conditions:

(Hs) f(t, u,v) < Mc for (t,u,v) € [0,1] x [0,c] x [-¢,c];
(Ha) f(t,u,v) < Ma for (t,u,v) € [0,1] x [0,a] x [-a,al;
(Hs) f(t u,v) = Nb for (t,u,v) € [y,8] x [b,c] X [-¢,c].

Then BVP (1.1) has at least three positive solutions uy, uy and us, which satisfy

||u1(t) || <a, b< Q(uz(t)) < ||u2(t) || <c¢ and
a< || u3(t) || <c with H(ug(t)) <b.
Proof We show that all the conditions of Theorem 1.1 are satisfied.

If u e P, then |lul| <c. So 0 < u(t) <c, —c < Dy u(t) < ¢, t € [0,1]. Condition (Hs)
implies f (¢, u(t), Dy, u(t)) < Mc for 0 < ¢ < 1. Consequently,

|| Tu|| = max

1
/ G(t,5)f (s, u(s), Dy, u(s)) ds

1
< / J(s)f (s, u(s), Dy, u(s)) ds < Mc / J(s)ds <c,
0 0
1 1
Dy Tu=— |:(1 —kg*™) / D}y Gy(o, 05 £, 5)f (s, u(s), Dly. u(s) ) ds
A 0

+ k- IF(Ol > / Gi(a, 05, 5)f (s, u(s), Dy u(s)) ds
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a-fp-
F(oe)(l ln 1)/ DL, Gy (e, B; ts)f(s u(s), Dly. u(s)) ds

F(a)
' —

e

+ [l

)/ Gi(a - 8,0; r],s)f(s,u(s)D u(s)) ]

/ Ji(e, 0;8)Mcds
NGRS u)

v F(“ )/ Gy(a, 0; €, 5)Mcds

r(Oé)(1 - F(Ot)
INCE:)

1
+ l% /(; Gi(a - B,0; n,s)Mcds]

') 1
< 7”0[ - M)MC/(; J(s)ds <c.

/]zaﬁsMcds

Therefore, T : P, — P,. Standard applications of the Arzela-Ascoli theorem imply that
T is a completely continuous operator.

In a completely analogous argument, condition (H,4) implies that condition (C) of The-
orem 1.1 is satisfied.

To check condition (C;) of Theorem 1.1, we choose u(t) = gt", 0 <t <1.Itiseasytosee
that

y=<t<é

9(u(t)) = min (ét“> > é)/” > b,
Y 14
b b
llull = max{ max |u(z)], max |D§+u(t)|} = max{ —(u+ 1)—} =c
te[0,1] te[0,1] V4 Y

Consequently, {u € P9, b,c) | 0(u) > b} #¥. Hence, if u € P(0,b,¢), then b < u(t) <c¢, —c <
Dy u(t) < c for y <t <§. From condition (Hs), we have f (¢, u(t), Dy, u(t)) > Nb for y <
t<46.So
Q(Tu(t)) = yr;lga}Tu(t)’
5

1
> [ o6 5,5 D 9) ds > N [ p(o)(9)ds = b
0 14

i.e., 6(Tu) > b for all u € P(0, b, c). This shows that condition (C;) of Theorem 1.1 is also
satisfied.

By Theorem 1.1 and Remark 1.2, BVP (1.1) has at least three positive solutions u;, u; and
us, which satisfy

||u1(t) || <a, b< Q(uz(t)) < ||u2(t) || <c¢ and
< H u3(¢) || <c¢ with G(ug(t)) <b.

The proof is complete. d

Page 14 of 15
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