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Abstract
In this paper, a hyperchaotic memristor oscillator system is introduced. A new type of
synchronization design is proposed to achieve combination synchronization among
three different memristor oscillator systems. This all-new control technique can be
applied to the general nonlinear systems. The theoretical analysis is verified with
numerical simulations showing excellent agreement.
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1 Introduction
In recent years, lots of memristor oscillator systems have been used with the purpose of
generating signals which are found in radio, satellite communications, switching power
supply, etc. [–]. By using a passive two-terminal memristor, the memristor oscillator
can be fully implemented on-chipwith some simple circuit elements.Memristor oscillator
systems are good to be used for developing memristive devices and memristive comput-
ing. The non-volatile memory of memristor oscillator system has tremendous potential
in the dynamic memory and neural synapses []. Furthermore, the property can provide
us with newmethods for high performance computing. Along with the widening of mem-
ristor applications, it is necessary to do some deep and detailed research on the related
nonlinear dynamics [–]. Nonlinear dynamics of memristor oscillator systems is ex-
traordinarily complex [–, , , ]. Chaotic behavior, sequence of period-doubling bi-
furcations, inverse sequence of chaotic band, and intermittent chaos are found in various
memristor oscillator systems [–, , ]. It should be emphasized that hyperchaos with
more than one positive Lyapunov exponents has always been a research focus in the fields
of lasers, nonlinear oscillators, nonlinear control, secure communication, and so on. Can
we design a hyperchaotic memristor oscillator system and investigate its hyperchaotic dy-
namics?Apparently, this problem is not only of theoretical issue but also a problemof tech-
economy as regards electronic circuits. At present, there is little literature on this topic.
Based on this consideration, this paper will make a contribution in the context of hyper-
chaotic memristor oscillator system. In this paper, a fourth-order hyperchaotic memristor
oscillator system is systematically illustrated.
Chaotic behavior may be unpredictable, uncoordinated, and constantly shifting under

many circumstances. Because of this, chaotic dynamics, synchronization of coupled dy-
namic systems, and secure communications are always some hot research fields [, –
]. Thus, chaotic systems and the related chaos synchronization problems are important
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and challenging. By considering linear or nonlinear observers and designing suitable syn-
chronizing signals, a mass of synchronization schemes are developed, such as complete
synchronization [, –], anti-synchronization [–], phase synchronization [,
–], lag synchronization [, –], projective synchronization [, –], com-
bination synchronization [, ]. In the conventional drive-response synchronization
schemes, there is just one drive system and one response system. This type of synchro-
nization scheme can be viewed as one-to-one system design and implementation. One-
to-one system design and implementation would seem singularly unsuited in many fields
of engineering application. In reality, the transmitted signals in secure communication via
one-to-one system design and implementation are less vulnerable tomalicious attacks and
decoding. In many cases, we need to split the transmitted signals into several parts, and
then different drive systems load different parts. Therefore, a natural and interesting ques-
tion is whether we can design some novel synchronization schemes between multi-drive
systems and one response system, or between multi-drive systems and multi-response
systems? And no matter what the theories say, or what the actual engineering aspects are,
these questions are definitely worth exploring. For this reason, based on the combination
synchronization in [, ], our other objective in this paper is to study the hyperchaos
synchronization between two drive memristor oscillator systems and one response mem-
ristor oscillator system. The analysis framework and theoretical results in this paper may
play an important role in designing memristor oscillatory circuits, sensitive control sys-
tems, and signal generation, etc.
Motivated by the above discussions, in this paper, we first introduce and study a hyper-

chaotic memristor oscillator system. Then we propose a new type of hyperchaos combi-
nation synchronization scheme based on two drive systems and one response system. The
generalization of synchronization scheme will provide a wider scope for engineering de-
signs and applications. Finally, numerical simulations demonstrate the effectiveness and
feasibility of the proposed control scheme. The proposed method in this paper can be
applied to the general nonlinear systems.

2 Preliminaries
In this paper, consider a fourth-order memristor oscillator system with its dynamics de-
scribed by the following equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ̇(t) = v(t),
v̇(t) = 

CR
v(t) – 

CR
v(t) + G

C
v(t) – 

C
W (ϕ(t))v(t),

v̇(t) = 
CR

v(t) – 
CR

v(t) + 
C

�(t),
�̇(t) = – 

Lv(t) –
R
L �(t),

()

where v(t) and v(t) denote voltages, C and C represent capacitors, W (ϕ(t)) is mem-
ductance function, R and R are resistors, ϕ(t), �(t), L and G are magnetic flux, current,
inductor and conductance, respectively.
Using themathematical model of a cubicmemristor [, , ], thememductance function

is given by

W
(
ϕ(t)

)
= a + bϕ(t), ()

where a and b are parameters.
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Figure 1 Dynamics of Lyapunov exponents from
the fourth-order memristor oscillator system.

Figure 2 3D Projection of the hyperchaotic
attractor from the fourth-order memristor
oscillator system, x11 vs. x12 vs. x13.

From () and (), it follows that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ̇(t) = v(t),
v̇(t) = 

CR
v(t) – 

CR
v(t) + G

C
v(t) – a

C
v(t) – b

C
ϕ(t)v(t),

v̇(t) = 
CR

v(t) – 
CR

v(t) + 
C

�(t),
�̇(t) = – 

Lv(t) –
R
L �(t).

()

By merging similar items,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ̇(t) = v(t),
v̇(t) = 

CR
v(t) – [ 

CR
– G

C
+ a

C
]v(t) – b

C
ϕ(t)v(t),

v̇(t) = 
CR

v(t) – 
CR

v(t) + 
C

�(t),
�̇(t) = – 

Lv(t) –
R
L �(t).

()

Let x(t) = ϕ(t), x(t) = v(t), x(t) = v(t), x(t) = �(t), α = 
CR

, α = 
CR

– G
C

+ a
C
,

α = b
C
, α = 

CR
, α = 

C
, α = 

L , α = R
L , then () can be rewritten as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ = x,

ẋ = αx – αx – αxx,

ẋ = αx – αx + αx,

ẋ = –αx – αx.

()

Choose parameters α = ., α = –., α = ., α = , α = , α = , α = .,
the initial state x() = ., x() = ., x() = ., x() = ., by means of a com-
puter program with MATLAB, the corresponding Lyapunov exponents of system () are
., ., –., –.. The numerical result is shown in Figure ,
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Figure 3 3D Projection of the hyperchaotic
attractor from the fourth-order memristor
oscillator system, x11 vs. x12 vs. x14.

Figure 4 3D Projection of the hyperchaotic
attractor from the fourth-order memristor
oscillator system, x11 vs. x13 vs. x14.

Figure 5 3D Projection of the hyperchaotic
attractor from the fourth-order memristor
oscillator system, x12 vs. x13 vs. x14.

where the first two Lyapunov exponents are positive. Clearly, it implies that memristor
oscillator system () is hyperchaotic. Figures - describe the hyperchaotic attractors.

Remark  Although various chaotic memristor oscillator systems have been analyzed ex-
tensively in recent years, the hyperchaotic memristor oscillator system is rarely reported
and investigated directly. However, the memristor oscillator system () achieves hyper-
chaotic characteristics. Thus, hyperchaotic memristor oscillator system () is important
for our understanding of the hyperchaotic memristive system.

Now we introduce the scheme of combination synchronization that is needed later.
Consider the first drive system

χ̇ = f(χ). ()

The second drive system is given by

χ̇ = f(χ), ()

http://www.advancesindifferenceequations.com/content/2014/1/86
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and the response system is described by

χ̇ = f(χ) + u(χ,χ,χ), ()

where state vectors χ = (χ,χ, . . . ,χn)T , χ = (χ,χ, . . . ,χn)T , χ = (χ,χ, . . . ,
χn)T , vector functions f(·), f(·), f(·) : �n → �n, u(χ,χ,χ) = (u,u, . . . ,un)T : �n ×
�n × · · · × �n → �n is the appropriate control input that will be designed in order to
obtain a certain control objective.

Definition  The drive systems (), (), and the response system () are said to be com-
bination synchronization if there exist n-dimensional constant diagonal matrices A, A,
and A �=  such that

lim
t→+∞‖e‖ = lim

t→+∞‖AX +AX –AX‖ = , ()

where ‖ · ‖ is vector norm, e = (e, e, . . . , en)T is the synchronization error vector, X =
diag(χ,χ, . . . ,χn), X = diag(χ,χ, . . . ,χn), X = diag(χ,χ, . . . ,χn).

Remark  In Definition , matrices A, A, and A are often called the scaling matrices.
The schemeof combination synchronization is an improvement and extension of the exist-
ing synchronization schemes in the literature.When the scalingmatricesA =  orA = ,
the combination synchronization will degrade into complete synchronization. When the
scalingmatricesA = A = , the combination synchronizationwill change into chaos con-
trol.

3 Synchronization criteria
In this paper, consider system () as the first drive system and the second drive system is
given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = x,
ẋ = βx – βx – βxx,
ẋ = βx – βx + βx,
ẋ = –βx – βx,

()

the response system is described by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = x + u,
ẋ = γx – γx – γxx + u,
ẋ = γx – γx + γx + u,
ẋ = –γx – γx + u,

()

where β, β, β, β, β, β, β, γ, γ, γ, γ, γ, γ, and γ are parameters, u, u, u, u
are the appropriate control inputs that will be designed.

http://www.advancesindifferenceequations.com/content/2014/1/86
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In our combination synchronization scheme, let A = diag(a,a,a,a), A =
diag(a,a,a,a), A = diag(a,a,a,a), thus

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e = ax + ax – ax,
e = ax + ax – ax,
e = ax + ax – ax,
e = ax + ax – ax.

()

Obviously, we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ė = aẋ + aẋ – aẋ,
ė = aẋ + aẋ – aẋ,
ė = aẋ + aẋ – aẋ,
ė = aẋ + aẋ – aẋ.

()

Combining with (), (), and (), then the synchronization error system () can be
transformed into the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė = ax + ax – a(x + u),
ė = a(αx – αx – αxx) + a(βx – βx – βxx)

– a(γx – γx – γxx + u),
ė = a(αx – αx + αx) + a(βx – βx + βx)

– a(γx – γx + γx + u),
ė = a(–αx – αx) + a(–βx – βx) – a(–γx – γx + u).

()

Theorem  If the controller is chosen as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = 
a

[a(x + x) + a(x + x) – a(x + x) + ax – ax
+ ax – ax – ax + ax],

u = 
a

[a[αx + ( – α)x – αxx]
+ a[βx + ( – β)x – βxx]
– a[γx + ( – γ)x – γxx] – ax + ax – ax
+ ax + ax – ax],

u = 
a

[a[αx + ( – α)x + αx] + a[βx + ( – β)x + βx]
– a[γx + ( – γ)x + γx] – ax + ax
– ax + ax + ax – ax],

u = 
a

[a(–αx – αx) + a(–βx – βx)
– a(–γx – γx) + ax – ax
+ ax + ax – ax + ax – ax + ax – ax],

()

then the driven systems () and () will achieve combination synchronization with the
response system ().

Proof Choose the following Lyapunov function:

V
(
e(t)

)
= V (e, e, e, e) =



(
e + e + e + e

)
. ()

http://www.advancesindifferenceequations.com/content/2014/1/86
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Calculating the upper right Dini-derivativeD+V ofV alongwith the trajectory of system
(), we have

D+V = eė + eė + eė + eė

= e
[
ax + ax – a(x + u)

]
+ e

[
a

(
αx – αx – αxx

)

+ a
(
βx – βx – βxx

)
– a

(
γx – γx – γxx + u

)]

+ e
[
a(αx – αx + αx) + a(βx – βx + βx)

– a(γx – γx + γx + u)
]

+ e
[
a(–αx – αx) + a(–βx – βx)

– a(–γx – γx + u)
]
. ()

Substituting () into (), then

D+V = e
[
–(ax + ax – ax) – (ax + ax – ax)

+ (ax + ax – ax)
]

+ e
[
–(ax + ax – ax) – (ax + ax – ax)

+ (ax + ax – ax)
]

+ e
[
–(ax + ax – ax) – (ax + ax – ax)

+ (ax + ax – ax)
]

+ e
[
–(ax + ax – ax) – (ax + ax – ax)

+ (ax + ax – ax)
]

= e(–e – e + e) + e(–e – e + e) + e(–e – e + e) + e(–e – e + e)

= –e – e – e – e

= –eTe, ()

where e = (e, e, e, e, e)T .
Let t >  be arbitrarily given, integrating the above equation () from  to t, then

∫ t



∥∥e(s)∥∥ ds =
∫ t


–V̇ ds = V

(
e()

)
–V

(
e(t)

) ≤ V
(
e()

)
,

where ‖ · ‖ is the Euclidean vector norm.
According to Barbalat’s lemma, we have ‖e(t)‖ →  as t → +∞. Hence, (e, e, e, e) →

(, , , ) as t → +∞. It implies that the driven systems () and () can achieve combi-
nation synchronization with the response system (). The proof is completed. �

Next, some corollaries can be directly derived from Theorem .
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Corollary  If the controller is chosen as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = 
a

[a(x + x) – a(x + x) + ax – ax – ax + ax],
u = 

a
[a[αx + ( – α)x – αxx] – a[γx + ( – γ)x – γxx]

– ax + ax + ax – ax],
u = 

a
[a[αx + ( – α)x + αx] – a[γx + ( – γ)x + γx]

– ax + ax + ax – ax],
u = 

a
[a(–αx – αx) – a(–γx – γx) + ax – ax + ax

– ax + ax – ax],

then the driven system () will achieve complete synchronization with the response system
().

Corollary  If the controller is chosen as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = 
a

[a(x + x) – a(x + x) + ax – ax – ax + ax],
u = 

a
[a[βx + ( – β)x – βxx] – a[γx + ( – γ)x – γxx]

– ax + ax + ax – ax],
u = 

a
[a[βx + ( – β)x + βx] – a[γx + ( – γ)x + γx]

– ax + ax + ax – ax],
u = 

a
[a(–βx – βx) – a(–γx – γx)

+ ax – ax + ax – ax + ax – ax],

then the driven system () will achieve complete synchronization with the response system
().

Corollary  If the controller is chosen as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u = 
a

[–a(x + x) – ax + ax],
u = 

a
[–a[γx + ( – γ)x – γxx] + ax – ax],

u = 
a

[–a[γx + ( – γ)x + γx] + ax – ax],
u = 

a
[–a(–γx – γx) – ax + ax – ax],

then system () is asymptotically stabilizable.

Remark  The results obtained in Theorem  and Corollaries - either yield new, or
extend, to a large extent, most of the existing results. To the best of our knowledge, few
authors have considered synchronization control of the hyperchaoticmemristor oscillator
system. In fact, the control design of hyperchaoticmemristor oscillator system is necessary
and rewarding, in order to understand the memristive dynamics.

4 An illustrative example
In this section, a numerical example is given to verify the feasibility and effectiveness of
the proposed control technique via computer simulations.
Assuming that parameters α = β = γ = ., α = β = γ = –., α = β = γ = .,

α = β = γ = , α = β = γ = , α = β = γ = , α = β = γ = ., the scaling matrices

http://www.advancesindifferenceequations.com/content/2014/1/86
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Figure 6 Time response curve for
synchronization error e1.

Figure 7 Time response curve for
synchronization error e2.

Figure 8 Time response curve for
synchronization error e3.

A = diag(a,a,a,a) = diag(, , , ), A = diag(a,a,a,a) = diag(, , , ), A =
diag(a,a,a,a) = diag(, , , ), the controller is chosen as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u = x + x – x + x + x – x – x – x + x,
u = .x + .x – .xx + .x + .x – .xx

– .x – .x + .xx – x – x + x,
u = x + x – x,
u = x – x + .x + x – x + .x – x + x – .x,

according to Theorem , then the driven systems () and () will achieve combination
synchronization with the response system (). Figures - depict the time response of
the synchronization error e = (e, e, e, e)T .
It is worth pointing out that the result in the above numerical example cannot be ob-

tained by using any existing results.
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Figure 9 Time response curve for
synchronization error e4.

5 Concluding remarks
This paper has introduced a hyperchaotic memristor oscillator system and presented a
novel control method using combination scheme to drive two memristor oscillator sys-
tems to synchronize one response memristor oscillator system. The resulting hyperchaos
synchronization via combination scheme is also verified by computer simulations. It is
believed that the derived results and analytical techniques have great potential in control-
ling various hyperchaotic systems and hyperchaotic circuits, which open up a wide area
for further research of chaos and hyperchaos memristive dynamics.
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