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Abstract
An algorithm to approximate the initial state of a nonlinear system is described, and
its convergence is also analyzed in detail. The forward and backward observers are
used alternately and repeatedly to solve the approximation problem, and their
nudging term can be proved close to zero. Then the convergence problem based on
the observers derived by using semi-discretization and full-discretization in space is
considered.
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1 Introduction
It is important to estimate the initial state of a linear partial difference system based on
the observations over given time interval in science and engineering such as in oceanogra-
phy, meteorology, medical imaging and so on, see for []. In oceanography such problem
is called data assimilation for instance [, ]. The problem has been introduced in the
quasi-geostrophic model in oceanography successfully [] and arose in medical imaging
by impedance-acoustic tomography [, ]. More recently, the time reversal method has
been applied in the context of infinite-dimensional systems to estimate the initial data;
see [, ].
The standard nudging method for solving the approximation problem usually adds a

relaxation term to the equations of the system to construct the forward observation. Sim-
ilarly the backward observation is constructed by adding a relaxation term with opposite
sign. In this paper, performing the forward and backward observers repeatedly, our algo-
rithm can be obtained.
Firstly, the paper estimates the initial state of the inverse problems of the nonlinear dis-

tributed parameter system according to its input and output functionmeasured over some
finite time interval. The main idea is to repeatedly apply the same segment of data back
and forth in sequence by constructing two observers called the forward and backward ob-
server, respectively. Two observers are constructed by adding a relaxation termwhich goes
to  to the state equations under certain conditions and works in forward and backward
time, respectively.
Secondly, the paper considers the convergence analysis of the iterative algorithm for the

nonlinear system. The analysis is fully based on the numerical analysis derived by using
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the semi-discretization and the full-discretization successively, and the algorithm is still
based on the observers method to simplify the problems.
LetX andY beHilbert space, called the state space and output space, respectively. LetA :

D(A) → X be the generator of a strongly continuous group T of isometries on X. Assume
the operator C ∈ L(X,Y ) called the observation operator and let B : D(B) → X be the
bounded operator. The above operators describe the time reversible nonlinear system and
the system is described by the following equation:

ż(t) = (At + B)z(t), z() = z, (.)

y(t) = Cz(t), (.)

where z and y are called the state and output function, respectively. Such systems are often
used asmodels of vibrating systems, electromagnetic phenomena or in quantummechan-
ics.
Firstly, our aim is to reconstruct the initial data z of the systemwhen the output function

y on the known time interval [, τ ] is given.
The paper is organized as follows: The preliminary knowledge is introduced in Section .

The initial state is estimated just by one step iteration and the convergence is described
briefly in Section . The correlative conclusions is considered after iterating n times in
Section . The convergence accuracy is analyzed in detail for the iteration method for the
nonlinear system in Section . The numerical result is showed in Section .

2 Description
Definition . System (.)-(.) is said to be exactly observable in some time τ if there
exists kτ > , such that

∫ τ



∥∥y(t)∥∥Y dt ≤ kτ ‖z‖X , ∀z ∈D(A). (.)

If system (.)-(.) is exactly observable in some time τ , it is exactly observable in any
time. The inequality (.) is called the observation or observability inequality (see []).
That guarantees the initial state z is uniquely determined by the observed quantity y(t)
on [, τ ]. To solve the infinite-dimensional system in the paper, we assume that the system
is well-posed, i.e. the system is exactly observable.

Definition . There exists an operator Ak :D(Ak) → X that generates an exponentially
stable semigroup Tk on X and another operator H ∈ L(Y ,XK

–) where XK
– denotes the

analog of the space XK
–, such that

A = Ak –HC. (.)

Then the pair (A,C) is said to be (forward) estimatable (see []).

Definition . There exists an operator Ak
b :D(Ak

b) → X that generates an exponentially
stable semigroup Sk on X and another operator Hb ∈ L(Y ,XK

–,b) where X
K
–,b denotes the
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analog of the space XK
–, such that

–A = Ak
b –HbC. (.)

Then the pair (A,C) is said to be backward estimatable (see []).

Proposition . Assume that A is the skew-adjoint operator and T is the unitary group
generated by A, then the following assertions are equivalent:

(i) (A,C) is exactly observable.
(ii) (A,C) is forward estimatable.
(iii) (A,C) is backward estimatable.

Proof The equivalence is contained in Proposition . in []. �

3 Properties of one step iteration
Assume (A,C) is estimatable. We can construct an observer as follows: Z is the state of
the forward observer and it satisfies the differential equation

{
Ż(t) = (At + B)Z(t) –Ht(y(t) –CZ(t)),
Z() =Z,

(.)

where Z ∈ X is an arbitrary initial guess of z which can be proved independent of the
guess in the following text.
Define the estimation error by e(t) =Z(t) – z(t), then

ė(t) =
(
Akt + B

)
e(t) = (At +HCt + B)e(t).

Thus e(t) = e 
A

kteBte() = Tk
t

eBte() where Tk

t

= e 

A
kt denotes the semigroup gener-

ated by Ak at the time t
 .

By using the method of separation of variables to (.), we can obtain

Z(t) = –
∫ t


e

A

k (t–s)eB(t–s)Hsy(s)ds + e

A

kteBtZ

= –e(HC+A) t



∫ t


e(–HC–A) s


 eB(t–s)Hsy(s)ds + e(HC+A) t


 eBtZ. (.)

Now suppose (A,C) is backward estimatable.We can also construct a backward observer
as follows: Z̃ is the state of the backward observer and it satisfies the differential equation

{ ˙̃Z(t) = (At + B)Z̃(t) +Hbt(y(t) –CZ̃(t)),
Z̃(τ ) =Z(τ ).

(.)

Define the estimation error by eb(t) = Z̃(t) – z(t), then

ėb(t) =
(
–Ak

bt + B
)
eb(t) = (At –HbCt + B)eb(t).
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Thus eb(t) = e–

A

k
bt


eBte


A

k
bτ


e–Bτ eb(τ ) = Sk

τ–t


eB(t–τ )eb(τ ) where Skt

= e–


A

k
b(τ

–t) denotes

the semigroup generated by Ak
b at the time τ–t

 . Since eb(τ ) = e(τ ), we have eb(t) =
Sk

τ–t


Tk
τ

e()eBt .

Similarly, we can also get the solution of (.):

Z̃(t) =
∫ t

τ

e

A

k
b(s

–t)eB(t–s)Hbsy(s)ds + e

A

k
b(τ

–t)eB(t–τ )Z̃(τ )

= –e(–HbC+A) t



∫ τ–t


e–(–HbC+A)

(τ–s)
 eB(t–τ+s)Hb(τ – s)y(τ – s)ds

+ e(–HbC+A) t
–τ
 eB(t–τ )Z(τ ). (.)

Proposition . Z and Z̃ are given by (.) and (.), let K = –H and K ′ = –Hb, and K ,
K ′, C are the symmetric definite positive matrices. Then for any t ∈ [, τ ], if K , K ′ are large
enough, we have

lim
K→+∞Z(t) = C–y(t),

lim
K ′→+∞

Z̃(t) = C–y(t),

where K ,K ′ → +∞ means that any eigenvalue of the matrices tends to infinity.

Proof Since K , K ′, C are symmetric definite positive matrices, when K , K ′ are large
enough, KC –A and K ′C +A are definite. By utilizing the Green formula to (.), we can
obtain

Z(t) = e–(KC–A)
t


∫ t


e(KC–A)

s
 eB(t–s)Ksy(s)ds + e–(KC–A)

t
 eBtZ

= K (KC –A)–
[
y(t) – e–(KC–A)

t
 eBty()

–
∫ t


e–(KC–A)

t–s
 deB(t–s)y(s)

]
+ e–(KC–A)

t
 eBtZ.

Thus

lim
K→+∞Z(t) = lim

K→+∞K (KC –A)–y(t) = C–y(t).

Similarly, we can also prove

lim
K ′→+∞

Z̃(t) = lim
K ′→+∞

K ′(K ′C +A
)–y(t) = C–y(t). �

It can be seen that Z(t) and Z̃(t) are totally independent of the initial condition Z of
the system.

Theorem . Assume (A,C) is backward estimatable, then

Z̃() – z = Sk
τ

Tk

τ

(Z – z). (.)

http://www.advancesindifferenceequations.com/content/2014/1/82
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If we set Lt = Skt

Tk

t

and Z = , we have η = ‖Sk

τ

Tk

τ


‖ = ‖Lτ‖ < , and

z =
∞∑
n=

Lnτ Z̃(). (.)

Proof From eb(t) = Sk
τ–t


Tk

τ

eBte(), we have

Z̃() – z = Sk
τ

Tk

τ

(Z – z).

If Z = , we have

Z̃() =
(
I – Sk

τ

Tk

τ


)
z.

By Proposition . in [], we have η < , then

z = (I – Lτ )–Z̃().

Using a Neumann series, we can obtain

z =
∞∑
n=

Lnτ Z̃(),

where Lnτ denotes n times of Lτ . �

The process that computesZ(τ ) by using the forward observer (.) and then computes
Z̃() by using the backward observer (.) is just one step iteration. For accuracy, the
repeated multiple iterations should be further concerned as the above one step iteration.

4 Properties of multiple iterations
Consider the iterative algorithm on repeated estimation cycles. For n≥ , supposeH =Hb

and define Z (n)(t) and Z̃ (n)(t) as the solutions of the following systems, respectively:

⎧⎪⎨
⎪⎩
Ż (n)(t) = (At + B)Z (n)(t) –Ht(y(t) –CZ (n)(t)),
Z (n)() = Z̃ (n–)(),
Z̃ (–)() =Z,

(.)

{ ˙̃Z (n)(t) = (At + B)Z̃ (n)(t) +Ht(y(t) –CZ̃ (n)(t)),
Z̃ (n)(τ ) =Z (n)(τ ),

(.)

where Z ∈ X is an arbitrary initial guess of z which is independent of the guess and
Z̃ (n)() denotes the value Z̃() at the nth iteration.
By K = K ′ = –H = –Hb, from (.), (.), it is easy to obtain

Z (n)(t) = e–(KC–A)
t


∫ t


e(KC–A)

s
 eB(t–s)Ksy(s)ds

+ e–(KC–A)
t
 eBtZ (n)(), (.)
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and

Z̃ (n)() =
∫ τ


e–(KC+A)

(τ–s)
 eB(–τ+s)K (τ – s)y(τ – s)ds + e–(KC+A)

τ
 e–BτZ (n)(τ ).

According to the repeated iterations, Z (n)() = Z̃ (n–)() and Z̃ (n)(τ ) = Z (n)(τ ), we can
get

Z (n)() =
(
 – e–KC

τ

)–( – e–nKC

τ

)[∫ τ


e(KC–A)

s
 e–KC

τ
 e–BsKsy(s)ds

+
∫ τ


e–(KC+A)

(τ–s)
 eB(s–τ )K (τ – s)y(τ – s)ds

]
+ e–nKC

τ
 Z.

By (.) and the above equation, if n→ +∞, we have

lim
n→+∞Z (n)() = Z∞()

=
(
 – e–KC

τ

)–[∫ τ


e(KC–A)

s
 e–KC

τ
 e–BsKsy(s)ds

+
∫ τ


e–(KC+A)

(τ–s)
 eB(s–τ )K (τ – s)y(τ – s)ds

]
,

and for ∀t ∈ [, τ ], we have

lim
n→+∞Z (n)(t) = Z∞(t)

= e–(KC–A)
t


∫ t


e(KC–A)

s
 eB(t–s)Ksy(s)ds

+ e–(KC–A)
t
 eBtZ∞().

According to Proposition ., we know that

lim
K→+∞Z∞(t) = C–y(t), ∀t ∈ [, τ ].

Similarly, for ∀t ∈ [, τ ], we can get

lim
n→+∞ Z̃ (n)(t) = Z̃∞(t)

and

lim
K→+∞ Z̃∞(t) = C–y(t).

It can be seen that Zn(t) and Z̃n(t) are totally independent of the initial condition Z of
the system.

Theorem . Assume (A,C) is backward estimatable, then

Z̃ (n)() – z =
(
Sk

τ

Tk

τ


)n+(Z – z), (.)

http://www.advancesindifferenceequations.com/content/2014/1/82
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and for ∀n≥ , we have

∥∥Z̃ (n)() – z
∥∥≤ ηn+‖Z – z‖. (.)

Proof From Theorem . and Z (n)() = Z̃ (n–)(), we know that

Z̃ (n)() – z = Sk
τ

Tk

τ


(
Z (n)() – z

)
= Sk

τ

Tk

τ


(
Z̃ (n–)() – z

)
=
(
Sk

τ

Tk

τ


)(Z (n–)() – z
)
= Sk

τ

Tk

τ


(
Z̃ (n–)() – z

)
...

=
(
Sk

τ

Tk

τ


)n+(Z – z).

Since η = ‖Sk
τ

Tk

τ


‖ < , the conclusion can easily be obtained. �

Theorem . Assume (A,C) is backward estimatable, and set Z = , then

z =
∞∑
i=

Li(n+)τ Z̃ (n)(). (.)

Proof It is similar to the proof of Theorem .. �

The above iterative algorithm on the nonlinear system has been proved to be conver-
gent if the feedback term K is large enough. Z(t) and Z̃(t) in the forward and backward
observers are also totally determined by the output function y(t) of the system. Thus the
initial state can be approximated by the algorithm, but the accuracy analysis is still a prob-
lem.

5 Numerical convergence
In this section, the convergence accuracy based on the observers is treated according to
the semi-discretization and full-discretization method.
Let A = iA be the skew-adjoint operator, i.e., A = –A∗, then A :D(A) → X is the self-

adjoint operator, i.e., A = A∗
. If A is the skew-adjoint operator, we often chooseH andHb

equivalent to –C∗, i.e., Ak = iA –C∗C and Ak
b = –iA –C∗C.

The system (.)-(.) can be rewritten as

ż(t) = (iAt + B)z(t), z() = z, (.)

y(t) = Cz(t). (.)

Throughout the section, let z ∈D(A
) and z(t) ∈D(A)∩D(A

).
For simplicity, let Z = . Then the forward and backward observers (.) and (.) can

be expressed, respectively, as

{
Ż(t) = (iAt + B)Z(t) +C∗t(y(t) –CZ(t)),
Z() = ,

(.)

http://www.advancesindifferenceequations.com/content/2014/1/82
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{ ˙̃Z(t) = (iAt + B)Z̃(t) –C∗t(y(t) –CZ̃(t)),
Z̃(τ ) =Z(τ ).

(.)

According to Theorem ., we can obtain the expression of the initial state

z =
∞∑
n=

Lnτ Z̃(). (.)

The system (.)-(.) can be easily rewritten in the general form

{
u̇(t) = iAtu(t)∓C∗Ctu(t)± Bu(t) + F(t) +Dτu(t),
u() = u,

(.)

where for the forward observer (.), we set u(t) = Z(t), u = , F(t) = C∗ty(t) = C∗Ctz(t)
and D = , and for the backward observer (.), we set u(t) = Z̃(τ – t), u = Z̃(τ ) = Z(τ ),
F(t) = C∗(τ – t)y(τ – t) = C∗C(τ – t)z(τ – t) and D = –(iA +C∗C) = Ak

b.

Define the subspace D(A


 ) with the norm ‖ϕ‖ 


= ‖A 


 ϕ‖ (∀ϕ ∈ D(A



 )) in X. By the

relations of the domain, we can get the embedding relations of the domain with the cor-
responding forms of the norm,

D
(
A

) (‖ · ‖

)
↪→D(A)

(‖ · ‖
)
↪→D

(
A




) (‖ · ‖ 



)
↪→ X

(‖ · ‖ or ‖ · ‖
)
.

According to the embedding properties, we can obtain the following relations of the
norm. There existM,M,M > , for ∀α ∈ X, such that

‖α‖ ≤M‖α‖ 


≤M‖α‖ ≤M‖α‖.

In order to prove the corresponding convergence conclusions, some preparatory lemma,
which can simplify the proof procedure, has to be proved firstly.

Lemma . The initial value problem (.) is given, there exists M > , such that

∥∥u(t)∥∥
α

≤M
(‖u‖α + t‖F‖α,∞

)
, α = , , ,∥∥u̇(t)∥∥

α
≤M

[
(t + τ + )‖u‖α+ + t(t + τ + )‖F‖α+,∞

]
+ ‖F‖α,∞, α = , ,

where ‖F‖α,∞ = supt∈[,τ ] ‖F‖α .

Proof By (.), we can obtain

u(t) =

⎧⎨
⎩
∫ t
 T

k
t–s


eB(t–s)F(s)ds + Tk

t

eBtu,∫ t

 S
k
s–t


Skτ (t–s)e

B(s–t)F(s)ds + Skt(τ–t)


e–Btu.

By the triangle inequality and the boundedness of Tk , Sk , B, the first conclusion can be
obtained.

http://www.advancesindifferenceequations.com/content/2014/1/82
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By (.), we can obtain

u̇(t) =

{
Atu(t) –C∗Ctu(t) + Bu(t) + F(t),
Atu(t) +C∗Ctu(t) – Bu(t) + F(t) – (A +C∗C)τu(t).

Similarly, by the triangle inequality, the boundedness of B,C, the embedding properties,
and the first inequality, the second conclusion can also be obtained. �

5.1 Semi-discretization
In this section, let h be the mesh size andNh be the optimal truncation parameter.We can
construct the finite-dimensional subspace Xh ofD(A



 ) whereD(A



 ) denotes the domain

of the operator A


 .

Define the orthogonal projection operator P : D(A


 ) → Xh. Denote M as a constant

independently of τ , and suppose that there exist M > , θ >  and ĥ > , such that for
∀h ∈ (, ĥ),

‖Pϕ – ϕ‖ ≤Mhθ‖ϕ‖ 

, ∀ϕ ∈D

(
A




)
. (.)

The generalized solution of the system (.) on the Galerkin significance is to find u(t) ∈
D(A



 ) satisfying⎧⎪⎨
⎪⎩

〈u̇(t),ϕ〉 = 〈iAtu(t),ϕ〉 ∓ 〈C∗Ctu(t),ϕ〉 ± 〈Bu(t),ϕ〉
+ 〈F(t),ϕ〉 + 〈Dτu(t),ϕ〉,

u() = u,
(.)

for all ϕ ∈D(A


 ) and t ∈ [, τ ], where u ∈D(A

).
Start from the Galerkin method to approximate the variation formulation (.), i.e., the

semi-discretization method is to find the unique solution uh ∈ Xh satisfying the variation
formulation

⎧⎪⎨
⎪⎩

〈u̇h(t),ϕh〉 = 〈ituh(t),ϕh〉 


∓ 〈C∗Ctuh(t),ϕh〉
± 〈Buh(t),ϕh〉 + 〈Fh(t),ϕh〉 + 〈Dτuh(t),ϕh〉,

uh() = u,h,
(.)

for all ϕh ∈ Xh and t ∈ [, τ ], where u,h ∈ Xh is the given approximation of u in X, and Fh
is the corresponding approximation of F in L([, τ ],X).
Assume that yh is the corresponding approximation of y in L([, τ ],Y ), Zh and Z̃h are

the Galerkin approximations of Z and Z̃ , respectively, and Lh,t = Sk
h, t

Tk
h, t

is the approx-

imation of Lt = Skt

Tk

t

.

Proposition . There existM > , θ >  and ĥ > , such that for ∀h ∈ (, ĥ) and ∀t ∈ [, τ ],
we have

∥∥Pu(t) – uh(t)
∥∥ ≤ ‖Pu – u,h‖ +Mhθ

[(
t + tτ + t

)‖F‖,∞ + t‖F‖,∞

+
(
t + tτ + t

)‖u‖] +
∫ t


‖F – Fh‖ds.

http://www.advancesindifferenceequations.com/content/2014/1/82
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Proof For all ϕh ∈ Xh, subtracting (.) from (.), we can obtain

〈u̇ – u̇h,ϕh〉 = i〈tu – tuh,ϕh〉 


∓ 〈C∗Ctu –C∗Ctuh,ϕh
〉

± 〈Bu – Buh,ϕh〉 + 〈F – Fh,ϕh〉 + 〈Dτu –Dτuh,ϕh〉. (.)

Noting that 〈Pu – u,ϕh〉 

=  is established for ∀ϕh ∈ Xh, thus we have

〈u – uh,ϕh〉 

= 〈Pu – uh,ϕh〉 


– 〈Pu – u,ϕh〉 


= 〈Pu – uh,ϕh〉 


.

Let ϑh = 
‖Pu – uh‖, thus

‖Pu – uh‖ =
√
ϑh and ϑ̇h = Re〈Pu̇ – u̇h,Pu – uh〉.

Since 〈Pu̇ – u̇h,ϕh〉 = 〈Pu̇ – u̇,ϕh〉 + 〈u̇ – u̇h,ϕh〉 and (.), the above equation with ϕh =
Pu – uh can be rewritten as

ϑ̇h = Re〈Pu̇ – u̇h,Pu – uh〉
= 〈Pu̇ – u̇,ϕh〉 ∓ 〈C∗Ct(u – uh),ϕh

〉± 〈B(u – uh),ϕh
〉

+ 〈F – Fh,ϕh〉 +
〈
Dτ (u – uh),ϕh

〉
= 〈Pu̇ – u̇,ϕh〉 ∓ 〈C∗Ct(u – uh),ϕh

〉± 〈B(u – uh),ϕh
〉

+ 〈F – Fh,ϕh〉 –
{
,
〈C∗Cτ (u – uh),ϕh〉.

By the boundedness of B, C, we have

ϑ̇h ≤ [‖Pu̇ – u̇‖ +M(t + τ + )‖Pu – u‖ + ‖F – Fh‖
]‖Pu – uh‖. (.)

Since d
dt

√
ϑh = ϑ̇h√

ϑh
, the integration is

∫ t



ϑ̇h

‖Pu – uh‖ ds =
∫ t



d
ds
√
ϑh ds =

√
ϑh(t) –

√
ϑh()

= ‖Pu – u‖ – ‖Pu – u,h‖.

By (.), Lemma ., and the embedding property, there exist M > , θ > , and ĥ > ,
such that for ∀t ∈ [, τ ] and h ∈ (, ĥ), we have

‖Pu̇– u̇‖+M(t + τ + )‖Pu–u‖ ≤Mhθ
[
(t + τ + )‖u‖ + t(t + τ + )‖F‖,∞ + ‖F‖,∞

]
.

Then the integration of the inequality (.) can be rewritten as

∥∥Pu(t) – uh(t)
∥∥ ≤ ‖Pu – u,h‖ +

∫ t



[‖Pu̇ – u̇‖ +M(s + τ + )‖Pu – u‖]ds
+
∫ t


‖F – Fh‖ds

http://www.advancesindifferenceequations.com/content/2014/1/82
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≤ ‖Pu – u,h‖ +Mhθ

∫ t


(s + τ + )‖u‖ ds

+Mhθ

∫ t



[
s(s + τ + )‖F‖,∞ + ‖F‖,∞

]
ds +

∫ t


‖F – Fh‖ds.

Thus, after the calculation of the integration, the result can be obtained. �

By the conclusion, the error approximations of the semigroup Tk , Sk , and the operator
Lt can be derived.

Proposition . There exist M > , θ >  and ĥ > , such that for ∀h ∈ (, ĥ), n ∈ N and
∀t ∈ [, τ ], we have

∥∥Lnt u – Lnh,tu
∥∥≤Mhθ

{
 + n

[
(τ – t) + t + τ  + τ + 

]}‖u‖.
Proof By the triangle inequality, we have

∥∥Lnt u – Lnh,tu
∥∥≤ ∥∥Lnt u – PLnt u

∥∥ + ∥∥PLnt u – Lnh,tu
∥∥.

For the first term, by (.), the embedding property and η = ‖Lt‖ < , the term can be
estimated as

∥∥Lnt u – PLnt u
∥∥≤Mhθ‖u‖. (.)

For the second term, using mathematical induction, we can prove that

∥∥PLnt u – Lnh,tu
∥∥≤Mnhθ

[
(τ – t) + t + τ  + τ + 

]‖u‖. (.)

When n = , by the definition of Lt and Lh,t , we have

‖PLtu – Lh,tu‖ =
∥∥PTk

t

Skt


u – Tk

h, t
Sk
h, t

u
∥∥

≤ ∥∥PTk
t

Skt


u – Tk

h, t
Skt


u
∥∥ + ∥∥Tk

h, t

(
Skt


u – Sk

h, t
u
)∥∥. (.)

When B = F = Fh =  and Pu = u,h, let uh(t) = Tk
h, t

u and uh(τ – t) = Sk
h, t

u, respec-

tively, we have

u̇h(t) =

{
(iA –C∗C)tuh(t),
(iA +C∗C)tuh(t) – (iA +C∗C)τuh(t),

which is exactly (.).
Thus using Proposition ., we can derive the existence of M > , θ > , and ĥ > , such

that for ∀h ∈ (, ĥ) and ∀t ∈ [, τ ], we have

∥∥PTk
t

u – Tk

h, t
u
∥∥≤Mhθ

(
t + tτ + t

)‖u‖,
∥∥PSkt


u – Sk

h, t
u
∥∥≤Mhθ

[
(τ – t) + τ (τ – t) + τ – t

]‖u‖.
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For the first term of (.), using the above conclusion and the uniform boundedness of
‖Skt


‖, we get

∥∥PTk
t

Skt


u – Tk

h, t
Skt


u
∥∥≤Mhθ

(
t + tτ + t

)‖u‖.
Similarly, for the second term of (.), using the above conclusion, (.), and the uni-

form boundedness of ‖Tk
t

‖ and ‖Skt


‖, we get

∥∥Tk
h, t

(
Skt


u – Sk

h, t
u
)∥∥ ≤ ∥∥Skt


u – Sk

h, t
u
∥∥

≤ ∥∥Skt

u – PSkt


u
∥∥ + ∥∥PSkt


u – Sk

h, t
u
∥∥

≤ Mhθ‖u‖ +Mhθ
[
(τ – t) + τ (τ – t) + (τ – t)

]‖u‖.
Substituting into (.), consequently

‖PLtu – Lh,tu‖ ≤ ∥∥PTk
t

Skt


u – Tk

h, t
Skt


u
∥∥ + ∥∥Tk

h, t

(
Skt


u – Sk

h, t
u
)∥∥

≤ Mhθ
[
(τ – t) + t + τ  + τ + 

]‖u‖,
which shows that (.) holds when n = .
Now suppose that (.) holds for n –  (n≥ ). Then for n, we have

∥∥PLnt u – Lnh,tu
∥∥ ≤ ∥∥PLt(Ln–t u

)
– Lh,t

(
Ln–t u

)∥∥ + ∥∥Lh,t(Ln–t u – Ln–h,t u
)∥∥

≤ Mnhθ
[
(τ – t) + t + τ  + τ + 

]‖u‖,
which is exactly (.). Thus we obtain the result. �

Next we estimate the error in semi-discretization.

Theorem . There exist M > , θ > , and ĥ > , such that for ∀h ∈ (, ĥ) and ∀t ∈ [, τ ],
we have

‖z – z,h‖ ≤ M
[(

ηNh+

 – η
+ hθ

(
τ  + τ + 

)
N

h

)
‖z‖

+Nh

∫ τ



∥∥C∗s
(
y(s) – yh(s)

)∥∥ds].
Proof Using (.) and z,h =

∑Nh
n= Lnh,τ Z̃(), we can get

z – z,h =
∞∑

n>Nh

Lnτ Z̃() +
Nh∑
n=

(
Lnτ – Lnh,τ

)
Z̃() +

Nh∑
n=

Lnh,τ
(
Z̃() – Z̃h()

)
.

Therefore, we have

‖z – z,h‖ ≤ E + E + E, (.)

http://www.advancesindifferenceequations.com/content/2014/1/82
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where we have set
⎧⎪⎨
⎪⎩
E =

∑∞
n>Nh

‖Lnτ Z̃()‖,
E =

∑Nh
n= ‖(Lnτ – Lnh,τ )Z̃()‖,

E = (
∑Nh

n= ‖Lnh,τ‖)‖Z̃() – Z̃h()‖.

The first term, by η = ‖Lτ‖ <  and Z̃() = (I – Lτ )z, can be estimated as

E =
( ∞∑
n=Nh+

ηn

)
‖I – Lτ‖ · ‖z‖ ≤M

ηNh+

 – η
‖z‖. (.)

Similarly, the second term, by Proposition ., can be estimated as

E ≤ Mhθ

Nh∑
n=

[
 + n

(
τ  + τ + 

)]∥∥Z̃()
∥∥


≤ Mhθ
[
Nh +  +

(
τ  + τ + 

)(
N

h +Nh
)]‖z‖

≤ Mhθ
(
τ  + τ + 

)(
N

h +Nh
)‖z‖. (.)

For the third term, from Proposition . we know that ‖Lh,τ‖ is uniformly bounded, thus
we have

E ≤ MNh
∥∥Z̃() – Z̃h()

∥∥
≤ MNh

(∥∥Z̃() – PZ̃()
∥∥ + ∥∥PZ̃() – Z̃h()

∥∥). (.)

For the first term of (.), with (.), (.), and the embedding property we have

∥∥Z̃() – PZ̃()
∥∥≤Mhθ‖z‖. (.)

For the second term of (.), to estimate it we apply twice Proposition . for the time
reversed backward observer and the forward observer, respectively.
Firstly, when u(t) = Z̃(τ – t), we have F(t) = C∗(τ – t)y(τ – t), u =Z(τ ), and u,h =Zh(τ ),

∥∥PZ̃() – Z̃h()
∥∥ =

∥∥Pu(τ ) – uh(τ )
∥∥

≤ ‖Pu – u,h‖ +Mhθ
[(

τ  + τ )‖F‖,∞ + τ‖F‖,∞
+
(
τ  + τ

)‖u‖] +
∫ τ


‖F – Fh‖ds

≤ ∥∥PZ(τ ) –Zh(τ )
∥∥ +Mhθ

[(
τ  + τ )∥∥C∗y

∥∥
,∞ + τ ∥∥C∗y

∥∥
,∞

+
(
τ  + τ

)∥∥Z(τ )
∥∥


]
+
∫ τ



∥∥(τ – t)C∗(y(τ – t) – yh(τ – t)
)∥∥dt.

Then, when u(t) =Z(t), F(t) = C∗ty(t), u = u,h = , we have

∥∥PZ(τ ) –Zh(τ )
∥∥ = ∥∥Pu(τ ) – uh(τ )

∥∥≤Mhθ
[(

τ  + τ )∥∥C∗y
∥∥
,∞ + τ ∥∥C∗y

∥∥
,∞
]

+
∫ τ



∥∥tC∗(y(t) – yh(t)
)∥∥dt.
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Applying Lemma . ‖u(τ )‖ ≤M(‖u‖ + τ‖F‖,∞), we get ‖Z(τ )‖ ≤Mτ ‖C∗y‖,∞.
And we can easily obtain
∫ τ



∥∥(τ – t)C∗(y(τ – t) – yh(τ – t)
)∥∥dt = ∫ τ



∥∥tC∗(y(t) – yh(t)
)∥∥dt,

∥∥C∗y
∥∥
,∞ ≤ ∥∥C∗y

∥∥
,∞ =

∥∥C∗Cz
∥∥
,∞ ≤M‖z‖,∞ =M‖z‖.

Thus the second term of (.) can be estimated as

∥∥PZ̃() – Z̃h()
∥∥ ≤ Mhθ

[(
τ  + τ )∥∥C∗y

∥∥
,∞ + τ ∥∥C∗y

∥∥
,∞

+
(
τ  + τ

)∥∥Z(τ )
∥∥


]
+ 
∫ τ



∥∥tC∗(y(t) – yh(t)
)∥∥dt

≤ Mhθ
(
τ  + τ  + τ )‖z‖ + 

∫ τ



∥∥tC∗(y(t) – yh(t)
)∥∥dt. (.)

Therefore, substituting (.) and (.) into (.), we can obtain

E ≤MNh

[
hθ
(
τ  + τ  + τ  + 

)‖z‖ +
∫ τ



∥∥tC∗(y(t) – yh(t)
)∥∥dt]. (.)

Above all, substituting (.), (.), and (.) into (.), we can obtain

‖z – z,h‖ ≤ M
{(

ηNh+

 – η
+ hθ

[
 +
(
τ  + τ  + τ  + τ + 

)
Nh

+
(
τ  + τ + 

)
N

h
])‖z‖ +Nh

∫ τ



∥∥C∗t
(
y(t) – yh(t)

)∥∥dt},
which implies the conclusion holds. �

The choice of Nh will lead to an explicit error estimate which is just dependent on h,
and the proper choice of Nh is important. If we choose Nh = θ lnh

lnη
, then according to The-

orem ., we can get

‖z – z,h‖ ≤Mτ

[
hθ
(
ln h + | lnh|)‖z‖ + | lnh|

∫ τ



∥∥C∗s
(
y(s) – yh(s)

)∥∥ds].
5.2 Full-discretization
Divide the time interval [, τ ] into N subintervals and let the time step 	t = τ

N (N ≥ ).
Denote tk = k	t ( ≤ k ≤N ), then τ =N	t.
By using the implicit Euler scheme at time tk with the previous Galerkin approximation

(.), assume

u̇(t) �Dtu(tk) =
u(tk) – u(tk–i)

	t
.

Then the full-discretization problem is to find the solution ukh ∈ Xh such that

⎧⎪⎨
⎪⎩

〈Dtukh,ϕh〉 = 〈itkukh,ϕh〉 


∓ 〈C∗Ctkukh,ϕh〉
± 〈Bukh,ϕh〉 + 〈Fk

h ,ϕh〉 + 〈Dτukh,ϕh〉,
uh = u,h,

(.)
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for all ϕh ∈ Xh and  ≤ k ≤ N , where u,h ∈ Xh is the given approximation of u and Fk
h is

the corresponding approximation of F(tk) in X.
Assume that ykh is the corresponding approximation of y(tk) in Y , Zk

h and Z̃k
h are the ap-

proximations ofZtk and Z̃(tk), respectively, and Lh,	t,k = Skh,	t,kT
k
h,	t,k is the approximation

of Ltk = Sk
tk


Tk
tk


.

The convergence analysis is similar to that in the semi-discretization, thus we can prove
two main ingredients of the error estimation as in the semi-discretization.

Proposition . There exist M > , θ > , and ĥ > , such that for ∀h ∈ (, ĥ) and ∀t ∈
[, τ ], we have

∥∥Pu(tk) – ukh
∥∥ ≤ ‖Pu – u,h‖ +M

{
	t

k∑
i=

∥∥F(ti) – Fi
h
∥∥ + (hθ +	t

)[(
tk + tkτ 

+ tkτ + tk + tkτ + tk
)‖u‖ + (tk + tkτ + tkτ

 + tk + tkτ

+ tk
)‖F‖,∞ +

(
tk + tkτ + tk

)‖F‖,∞ + tk
∥∥Ḟ(tk)∥∥∞

]}
.

Proof Expand u(t) into the Taylor series at time tk– and denote the residual term of the
first order Taylor expansion byR(tk), then

R(tk) = u(tk) – u(tk–) –	tu̇(tk). (.)

Namely,

u̇(tk) =Dtu(tk) –


	t
R(tk). (.)

By the relation (.), for all ϕh ∈ Xh and  ≤ k ≤N , we can get

〈
Dt
(
u(tk) – ukh

)
,ϕh
〉
=
〈
u̇(tk) +


	t

R(tk) –Dtukh,ϕh

〉

=
〈
u̇(tk),ϕh

〉
+


	t
〈
R(tk),ϕh

〉
–
〈
Dtukh,ϕh

〉
. (.)

Substituting (.) and (.) into (.) at time tk , then

〈
Dt
(
u(tk) – ukh

)
,ϕh
〉
= i
〈
tk
(
u(tk) – ukh

)
,ϕh
〉



∓ 〈C∗Ctk
(
u(tk) – ukh

)
,ϕh
〉

± 〈B(u(tk) – ukh
)
,ϕh
〉

+
〈
F(tk) – Fk

h ,ϕh
〉

+
〈
DtN

(
u(tk) – ukh

)
,ϕh
〉

+


	t
〈
R(tk),ϕh

〉
. (.)
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Noting that 〈Pu – u,ϕh〉 

=  is established for ∀ϕh ∈ Xh, thus

〈
u(tk) – ukh,ϕh

〉


=
〈
u(tk) – Pu(tk),ϕh

〉


+
〈
Pu(tk) – ukh,ϕh

〉



=
〈
Pu(tk) – ukh,ϕh

〉


.

We can also easily get

〈
Dt
(
Pu(tk) – ukh

)
,ϕh
〉
=
〈
Dt
(
u(tk) – ukh

)
,ϕh
〉

+
〈
Dt
(
Pu(tk) – u(tk)

)
,ϕh
〉
. (.)

Let ϑk
h =


‖Pu(tk) – ukh‖, therefore for ∀k ∈ [,N], we can obtain

∥∥Pu(tk) – ukh
∥∥ =√ϑk

h ,

and for ∀ψ ,φ ∈ X, we can obtain



(‖ψ‖ + ‖φ‖ + ‖ψ – φ‖) = Re〈ψ – φ,ψ〉.

Let ψ = Pu(tk) –ukh, φ = Pu(tk–) –uk–h , by the definition ofDt , the above identity can be
rewritten as

Dtϑ
k
h = Re

〈
Dt
(
Pu(tk) – ukh

)
,Pu(tk) – ukh

〉
–


∥∥(Pu(tk) – ukh

)
–
(
Pu(tk–) – uk–h

)∥∥
≤ Re

〈
Dt
(
Pu(tk) – ukh

)
,Pu(tk) – ukh

〉
. (.)

Substituting (.) and (.) into (.) with ϕh = Pu(tk) – ukh, then

Dtϑ
k
h ≤ 〈Dt

(
Pu(tk) – u(tk)

)
,ϕh
〉∓ 〈C∗Ctk

(
u(tk) – ukh

)
,ϕh
〉

± 〈B(u(tk) – ukh
)
,ϕh
〉
+
〈
F(tk) – Fk

h ,ϕh
〉

+


	t
〈
R(tk),ϕh

〉
+
〈
DtN

(
u(tk) – ukh

)
,ϕh
〉

≤ 〈Dt
(
Pu(tk) – u(tk)

)
,ϕh
〉∓ 〈C∗Ctk

(
u(tk) – ukh

)
,ϕh
〉

± 〈B(u(tk) – ukh
)
,ϕh
〉
+
〈
F(tk) – Fk

h ,ϕh
〉

+


	t
〈
R(tk),ϕh

〉
–

{
,
〈CC ∗ tN (u(tk) – ukh),ϕh〉. (.)

By ‖Pu(tk) – ukh‖ ≤ ‖Pu(tk) – ukh‖ + ‖Pu(tk–) – uk–h ‖, we have

‖Pu(tk) – ukh‖√
ϑk
h +
√

ϑk–
h

=
‖Pu(tk) – ukh‖

√
 (‖Pu(tk) – ukh‖ + ‖Pu(tk–) – uk–h ‖) ≤ √

. (.)
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Similarly, by the definition of Dt , we can easily obtain

Dt

√
ϑk
h =

Dtϑ
k
h√

ϑk
h +
√

ϑk–
h

. (.)

Using the boundedness of B, C and from (.), (.), (.), and (.), we can see that
there existM > , ĥ > , and θ >  such that for all h ∈ (, ĥ) and  ≤ k ≤N , we have

Dt

√
ϑk
h ≤ M

[
hθ
(∥∥Dtu(tk)

∥∥ 

+ (tk + τ + )

∥∥u(tk)∥∥ 


)

+
∥∥F(tk) – Fk

h
∥∥ + 

	t
∥∥R(tk)∥∥

]
. (.)

By the definition ofR(t) in D(A


 ) and the mean value theorem, we can obtain


	t
∥∥R(tk)

∥∥ 


≤ sup
s∈[tk–,tk ]

∥∥u̇(s)∥∥ 

+
∥∥u̇(tk)∥∥ 


. (.)

From the fundamental property of the norm, Lemma ., (.), and the embedding
property, we can obtain

∥∥Dtu(tk)
∥∥ 


≤ ∥∥u̇(tk)∥∥ 


+


	t
∥∥R(tk)

∥∥ 


≤ M
[
(t + τ + )‖u‖ + t(t + τ + )‖F‖,∞ + ‖F‖,∞

]
. (.)

By the definition ofR(t) in X, for ξ ∈ [tk–, tk], we can obtain

R(tk) = (tk– – tk)u̇(tk) +
∫ tk

tk–
u̇(s)ds =

∫ tk

tk–
(tk– – s)ü(s)ds =



(	t)ü(ξ ).

Thus

∥∥R(tk)
∥∥≤ (	t) sup

s∈[tk–,tk ]
ü(s). (.)

And since B, C are bounded, we have

∥∥ü(t)∥∥ =
∥∥∥∥du̇dt (t)

∥∥∥∥
=
∥∥iAtu̇(t)∓C∗Ctu̇(t)± Bu̇(t) + Ḟ(t) +Dτ u̇(t) + iAu(t)∓C∗Cu(t)

∥∥
≤ (t + τ )

∥∥u̇(t)∥∥ +M(t + τ + )
∥∥u̇(t)∥∥ + ∥∥u(t)∥∥

+M
∥∥u(t)∥∥ + ∥∥Ḟ(t)∥∥. (.)

Hence, from (.) and (.), we can obtain

∥∥R(tk)
∥∥ ≤ M(	t)

[(
tk + τ  + tkτ + tk + τ + 

)‖u‖ + (tk + tkτ + tkτ 

+ tk + tkτ + tk
)‖F‖,∞ + (tk + τ + )‖F‖,∞ +

∥∥Ḟ(tk)∥∥∞
]
.
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And by simple iterations we get

k∑
i=

Dt

√
ϑ i
h =

√
ϑk
h –
√

ϑ
h

	t
=

‖Pu(tk) – ukh‖ – ‖Pu – u,h‖√
	t

. (.)

Substituting (.), (.), and (.) into (.) with tk = k	t, then

∥∥Pu(tk) – ukh
∥∥ ≤ ‖Pu – u,h‖ +M

{
	t

k∑
i=

∥∥F(ti) – Fi
h
∥∥

+
(
hθ +	t

)[(
tk + tkτ  + tkτ + tk + tkτ + tk

)‖u‖
+
(
tk + tkτ + tkτ

 + tk + tkτ + tk
)‖F‖,∞

+
(
tk + tkτ + tk

)‖F‖,∞ + tk
∥∥Ḟ(tk)∥∥∞

]}
.

Therefore we get the conclusion. �

Proposition . There exist M > , θ > , and ĥ > , such that for ∀h ∈ (, ĥ), n ∈ N, and
∀k ∈ [,N], we have

∥∥Lntku – Lnh,	t,ku
∥∥ ≤ M

{
hθ + n

(
hθ +	t

)[
tk + tkτ  + tkτ + tk + τ  + τ

+ (τ – tk) + (τ – tk)τ  + (τ – tk)τ + (τ – tk)
]}‖u‖.

Proof By the triangle inequality, we have

∥∥Lntku – Lnh,	t,ku
∥∥≤ ∥∥Lntku – PLntku

∥∥ + ∥∥PLntku – Lnh,	t,ku
∥∥.

For the first term, using (.), the embedding property and η = ‖Lt‖ < , the term can be
estimated as

∥∥Lntku – PLntku
∥∥≤Mhθ‖u‖. (.)

For the second term, using mathematical induction, we can prove that

∥∥PLntku – Lnh,	t,ku
∥∥ ≤ Mn

(
hθ +	t

)[
tk + tkτ  + tkτ + tk

+ τ  + τ + (τ – tk) + (τ – tk)τ 

+ (τ – tk)τ + (τ – tk)
]‖u‖. (.)

When n = , by definition of Ltk and Lh,	t,k , we have

∥∥PLtku – Lh,	t,ku
∥∥ =

∥∥PTk
tk


Sktk


u – Tk
h,	t,hS

k
h,	t,hu

∥∥
≤ ∥∥(PTk

tk


– Tk
h,	t,k

)
PSktk



u
∥∥

+
∥∥Tk

h,	t,k
(
PSktk



u – Skh,	t,ku
)∥∥. (.)
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When B = F(tk) = Fk
h =  and Pu = u,h,	t , let ukh = Tk

h,	t,ku and u
N–k
h = Skh,	t,ku, respec-

tively, it follows that

u̇kh =

{
(iA –C∗C)tkukh,
(iA +C∗C)tkukh – (iA +C∗C)τukh,

which is exactly (.).
Thus using Proposition ., we can derive the existence of M > , θ > , and ĥ > , such

that for ∀h ∈ (, ĥ) and ∀k ∈ [,N], we have

∥∥PTk
tk


u – Tk
h,	t,ku

∥∥≤M
(
hθ +	t

)(
tk + tkτ  + tkτ + tk + tkτ + tk

)‖u‖,
∥∥PSktK



u – Skh,	t,ku
∥∥≤M

(
hθ +	t

)[
(τ – tk) + (τ – tk)τ  + (τ – tk)τ

+ (τ – tk) + (τ – tk)τ + (τ – tk)
]‖u‖.

For the first term of (.), using the above conclusion and the uniform boundedness of
‖Sk‖, we get

∥∥(PTk
tk


– Tk
h,	t,k

)
PSktk



u
∥∥≤M

(
hθ +	t

)(
tk + tkτ  + tkτ + tk + tkτ + tk

)‖u‖.
For the second term of (.), similarly, using the above conclusion, (.), and the uni-

form boundedness of ‖Tk‖, we get
∥∥Tk

h,	t,k
(
PSktk



u – Skh,	t,ku
)∥∥ ≤ M

(
hθ +	t

)[
(τ – tk) + (τ – tk)τ  + (τ – tk)τ

+ (τ – tk) + (τ – tk)τ + (τ – tk)
]‖u‖.

Substituting into (.), consequently

‖PLtu – Lh,	t,ku‖ ≤ M
(
hθ +	t

)[
tk + tkτ  + tkτ + tk + τ  + τ + (τ – tk)

+ (τ – tk)τ  + (τ – tk)τ + (τ – tk)
]‖u‖,

which shows that (.) holds when n = .
Now suppose that (.) holds for n –  (n≥ ), then for n, we have

∥∥PLntku – Lnh,tu
∥∥ ≤ ∥∥PLtk (Ln–tk u

)
– Lh,	t,kP

(
Ln–tk u

)∥∥
+
∥∥Lh,	t,k

(
PLn–tk u – Ln–h,	t,ku

)∥∥
≤ Mn

(
hθ +	t

)[
tk + tkτ  + tkτ + tk + τ  + τ + (τ – tk)

+ (τ – tk)τ  + (τ – tk)τ + (τ – tk)
]‖u‖,

which is exactly (.). Thus from (.) and (.), we obtain the result. �

Next, let us estimate the error in full-discretization.
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Theorem . There exist M > , θ > , and ĥ > , such that for ∀h ∈ (, ĥ) and ∀t ∈ [, τ ],
we have

‖z – z,h,	t‖ ≤ M

[(
ηNh,	t+

 – η
+
(
hθ +	t

)(
τ  + τ  + τ  + τ  + τ + 

)
N

h,	t

)
‖z‖

+Nh,	t	t
N∑
i=

∥∥tiC∗(y(ti) – yih
)∥∥].

Proof By (.) and z,h,	t =
∑Nh,	t

n= Lnh,	t,N Z̃(), we get

z – z,h,	t =
∞∑
n=

Lnτ Z̃() –
Nh∑
n=

Lnh,	t,N Z̃h()

=
∞∑

n>Nh

Lnτ Z̃() +
Nh,	t,N∑
n=

(
Lnτ – Lnh,	t,N

)
Z̃() +

Nh,	t∑
n=

Lnh,	t,N
(
Z̃() – Z̃h()

)
.

Therefore, we have

‖z – z,h,	t‖ ≤ E + E + E, (.)

where we have set

⎧⎪⎨
⎪⎩
E =

∑∞
n>Nh

‖Lnτ Z̃()‖,
E =

∑Nh
n= ‖(Lnτ – Lnh,	t,N )Z̃()‖,

E = (
∑Nh

n= ‖Lnh,	t,N‖)‖Z̃() – Z̃h()‖.

The first term, by η = ‖Lτ‖ <  and Z̃() = (I – Lτ )z, can be estimated as

E ≤M
ηNh,	t+

 – η
‖z‖. (.)

Similarly, the second term, by Proposition ., can be estimated as

E ≤ M
Nh,	t∑
n=

[
hθ + n

(
hθ +	t

)(
τ  + τ  + τ

)]‖u‖
≤ M

[
(Nh,	t + )hθ +

(
hθ +	t

)(
τ  + τ  + τ

)(
N

h,	t +Nh,	t
)]‖z‖

≤ M
(
hθ +	t

)[(
τ  + τ  + τ

)
N

h,	t +
(
τ  + τ  + τ + 

)
Nh,	t + 

]‖z‖. (.)

For the third term, from Proposition . we know that ‖Lh,τ‖ is uniformly bounded, thus
we have

E ≤ MNh,	t
∥∥Z̃() – Z̃h()

∥∥
≤ MNh,	t

(∥∥Z̃() – PZ̃()
∥∥ + ∥∥PZ̃() – Z̃h()

∥∥). (.)
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For the first term of (.), with (.), (.), and the embedding property, we have

∥∥Z̃() – PZ̃()
∥∥≤Mhθ‖z‖. (.)

For the second term of (.), to estimate it we apply Proposition . twice for the time
reversed backward observer and the forward observer, respectively, which is similar to
(.). Therefore,

∥∥PZ̃() – Z̃h()
∥∥ ≤ M

{(
hθ +	t

)[(
τ  + τ  + τ )∥∥C∗y

∥∥
,∞ +

(
τ  + τ )∥∥C∗y

∥∥
,∞

+ τ
∥∥C∗y

∥∥∞ + τ ∥∥C∗ẏ
∥∥∞ +

(
τ  + τ  + τ

)∥∥Z(τ )
∥∥


]
+ 	t

N∑
i=

∥∥tiC∗(y(ti) – yih
)∥∥dt

}

≤ M

{(
hθ +	t

)(
τ  + τ  + τ  + τ  + τ

)‖z‖,∞
+	t

N∑
i=

∥∥tiC∗(y(ti) – yih
)∥∥}.

Thus, substituting the above inequality and (.) into (.), we can obtain

E ≤ MNh,	t

[(
hθ +	t

)(
τ  + τ  + τ  + τ  + τ + 

)‖z‖
+	t

N∑
i=

∥∥tiC∗(y(ti) – yih
)∥∥]. (.)

Substituting (.), (.), and (.) into (.), we can obtain

‖z – z,h,	t‖ ≤ M

{
Nh,	t	t

N∑
i=

∥∥tiC∗(y(ti) – yih
)∥∥ + ηNh,	t+

 – η
‖z‖

+
(
hθ +	t

)[
 +
(
τ  + τ  + τ

)
N

h,	t

+
(
τ  + τ  + τ  + τ  + τ + 

)
Nh
]‖z‖

}
,

which implies the conclusion holds. �

The choice of Nh,	t will lead to an explicit error estimate which is just dependent on h,
and the proper choice of Nh,	t is important. If we choose Nh,	t = ln(hθ+	t)

lnη
, according to

Theorem ., we can get

‖z – z,h,	t‖

≤Mτ

[∣∣ln(hθ +	t
)∣∣	t

N∑
i=

∥∥tiC∗(y(ti) – yih
)∥∥ + (hθ +	t

)
ln
(
hθ +	t

)‖z‖
]
.
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6 Examples
In the section we apply algorithm to reconstruct the initial state for the nonlinear equa-
tion, and the algorithms were developed under Matlab. Let  ⊂ R

d (d ≥ ) and O ⊂ .
Given the state space X = L() and the output space Y = X = L(O). The operators
A : D(A) = H() ∩ H

() → X, C ∈ L(X,Y ) and B are defined by Az(x, t) = a	z(x, t)
(a > ), Cz(x, t) =

{
z(x, t), x ∈O,
, x /∈O and Bz(x, t) = .

We consider the following initial and boundary value problem:

⎧⎪⎨
⎪⎩
ż(x, t) = at	z(x, t), (x, t) ∈  × [, τ ],
z(x, t) = , (x, t) ∈ ∂ × [, τ ],
z(x, ) = z, x ∈ .

The output function is

{
y(x, t) = z(x, t), (x, t) ∈O × [, τ ],
y(x, t) = , x /∈O, t ∈ [, τ ].

The corresponding observer system is

⎧⎪⎨
⎪⎩
Ż (n)(x, t) = at	Z (n)(x, t) – tCZ (n)(x, t) + ty(x, t),
Z (n)(x, ) = Z̃ (n–)(x, ),
Z̃ (–)(x, ) =Z,

(.)

{ ˙̃Z (n)(x, t) = at	Z̃ (n)(x, t) + tCZ̃ (n)(x, t) – ty(x, t),
Z̃ (n)(x, τ ) =Z (n)(x, τ ),

(.)

where Z ∈ X is an arbitrary initial guess of z which is taken to be zero.
In order to show the efficiency of the iterative algorithm, we consider the particular case

where  = [, ], O = [,], 	t = τ
T , T = , a = , h = ., and the initial data to

be recover is z = x( – x)/. We use a Crank-Nicolson scheme and quasi-reversible
method of regularization inverse inversion to simulate the observer systems (.) and (.)
from one iteration to multiple iterations in time combined with a finite difference space
discretization. Figure  shows the initial state, Figure  shows the final evolution of the
output function. After one forward and backward iteration, we can obtain Figure  and
Figure , obviously the result is not accurate enough, and after five iterations we obtain
Figure . Figure  shows that the recursive algorithm reconstructs the initial state as far as
possible. The algorithm take the simplest system and still needs to be improved.

7 Conclusion
The above iterative algorithm by using the forward and backward observers may esti-
mate the initial state of the inverse problems of the nonlinear system under certain con-
ditions. The numerical convergence accuracy analysis based on observers in the semi-
discretization and the full-discretization can also be obtained. The convergence analysis
of z,h and z,h,	t towards z,h has been showed for the nonlinear system if the truncation
parameters Nh and Nh,	t are optimal. The estimate error we have got provides the admis-
sible upper bound under which the convergence can be guaranteed. The innovation in the
paper is that this paper introduces the algorithmmore systematically and comprehensively
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Figure 1 The initial state.

Figure 2 The final state of the output function.

Figure 3 The final state of one forward iteration.

Figure 4 The final state of one backward
iteration.
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Figure 5 The state of five iterations.

and demonstrates it in detail. We need to work on more applications of the algorithm and
on the accuracy.
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