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1 Introduction
Calculus on time scales was introduced by Hilger [] as a theory which includes both dif-
ferential and difference calculus as a special cases. In the past few years, it has found a
considerable amount of interest and attracted the attention of many researchers. Time
scale calculus would allow the exploration of a variety of situations in economic, biologi-
cal, heat transfer, stockmarket, and epidemicmodels; see themonographs of Aulbach and
Hilger [], Bohner and Peterson [, ], and Lakshmikantham et al. [] and the references
therein.
The study of multi-point linear boundary value problems was initiated by II’in andMoi-

seev [, ]. Since then, the more general nonlinear multi-point boundary value problems
have been widely studied by many authors. The multi-point boundary value problems
arise frequently in applied mathematics and physics, see for instance [–] and the ref-
erences therein. At the same time, interest in obtaining the solutions on time scales has
been on-going for several years.
On the other hand, the existence of symmetric positive solutions of second-order

boundary value problems have been studied by some authors, see [, ]. Most of the
study of the symmetric positive solution is limited to the Dirichlet boundary value prob-
lem, the Sturm-Liouville boundary value problemand theNeumannboundary value prob-
lem.However, there is not somuchwork on symmetric positive solutions for second-order
m-point boundary value problems; see [–].
Yao [] studied the following boundary value problem (BVP):

{
x′′(t) +ω(t)f (x(t)) = , t ∈ (, ),
αx() – βx′() = , αx() + βx′() = .
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This author obtained the existence of n symmetric positive solutions and established a
corresponding iterative scheme by using a monotone iterative technique.
Kosmatov [, ] studied the following BVP:

{
–u′′(t) = α(t)f (t,u(t), |u′(t)|), t ∈ (, ),
u() =

∑n
i= μiu(ξi), u(t) = u(t – ), t ∈ [, ].

By using the Leggett-Wiliams fixed point theorem and the coincidence degree theorem of
Mawhin, he studied the existence of three positive solutions for a multi-point boundary
value problem.
Motivated by the results mentioned above, in this paper, we consider the following

multi-point BVP:

⎧⎪⎨
⎪⎩
–(p(t)y�(t))∇ = f (t, y(t), y�(t)), t ∈ (a,b),
–αy(a) + βy[�](a) =

∑m–
i= αiy[�](ξi),

αy(b) + βy[�](b) =
∑m–

i= αiy[�](ηi),
(.)

where T ⊂ R be a symmetric bounded time scale, with a = minT, b = maxT, [a,b] ⊂ T

such that [a,b] = {t ∈ T : a ≤ t ≤ b} and y[�](t) = p(t)y�(t) is called the quasi-�-derivative
of y(t).
In the rest of this paper, we make the following assumptions:
(C) p ∈ C∇ ([a,b], (,∞)), f ∈ C([a,b]× (,∞)× (–∞,∞), (,∞)),

f (t,u, v) = f (b + a – t,u, v), f (t,u, v) = f (t,u, –v), p(t) = p(b + a – t);
(C) α,β ∈ (,∞), αi ∈ [,∞), with β >

∑m–
i= αi, ξi,ηi ∈ (a,b) such that ξi = b + a – ηi,

for i ∈ {, , , . . . ,m – }.
By using Bai and Ge’s fixed point theorem [], we get the existence of at least three sym-
metric positive solutions for the BVP (.). In fact, our results are new when T = R (the
differential case) andT = Z. Hence, our new results naturally complement recent advances
in the literature.
This paper is organized as follows. In Section , we provide some preliminary lemmas

which are key tools for our main results. We give and prove our main results in Section .
Finally, in Section , we give an example to demonstrate our results.

2 Preliminaries
In this section, we present auxiliary lemmas which will be used later.
Define by θ (t) and ϕ(t) the solutions of the corresponding homogeneous equation

(
p(t)y�(t)

)∇ = , t ∈ (a,b), (.)

under the initial conditions{
θ (a) = β , p(a)θ�(a) = α,
ϕ(b) = β , p(b)ϕ�(b) = –α.

(.)

Using the initial conditions (.), we can deduce from (.) for θ (t) and ϕ(t), the following
equations:

θ (t) = β + α

∫ t

a

�τ

p(τ )
, (.)

http://www.advancesindifferenceequations.com/content/2014/1/81
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ϕ(t) = β + α

∫ b

t

�τ

p(τ )
. (.)

Denote D := αβ + α ∫ b
a

�τ

p(τ ) .

Lemma . Suppose that the condition D 	=  holds. Then, for f ∈ C([a,b] × (,∞) ×
(–∞,∞), (,∞)), the BVP (.) has a unique solution

y(t) =
∫ b

a
G(t, s)f

(
s, y(s), y�(s)

)∇s +

α

m–∑
i=

αi

∫ b

a
Gt

[�](ηi, s)f
(
s, y(s), y�(s)

)∇s,

where G(t, s) is the Green function for (.) and is given by

G(t, s) =

D

{
θ (t)ϕ(s), a ≤ t ≤ s≤ b,
θ (s)ϕ(t), a ≤ s≤ t ≤ b,

(.)

where θ (t), ϕ(t) are given in (.) and (.), respectively, and Gt
[�](t, s) := p(t)Gt

�(t, s).

Proof Let

y(t) =
∫ b

a
G(t, s)f

(
s, y(s), y�(s)

)∇s

+

α

m–∑
i=

αi

∫ b

a
Gt

[�](ηi, s)f
(
s, y(s), y�(s)

)∇s

be a solution of (.), then we have

y(t) =

D

∫ t

a
θ (s)ϕ(t)f

(
s, y(s), y�(s)

)∇s

+

D

∫ b

t
θ (t)ϕ(s)f

(
s, y(s), y�(s)

)∇s

+

α

m–∑
i=

αi

∫ b

a
Gt

[�](ηi, s)f
(
s, y(s), y�(s)

)∇s,

p(t)y�(t) =

D
p(t)ϕ�(t)

∫ t

a
θ (s)f

(
s, y(s), y�(s)

)∇s

+

D
p(t)θ�(t)

∫ b

t
ϕ(s)f

(
s, y(s), y�(s)

)∇s

=
∫ b

a
Gt

[�](t, s)f
(
s, y(s), y�(s)

)∇s,

and

(
p(t)y�(t)

)∇ =

D

(
p(t)ϕ�(t)

)∇
∫ t

a
θ (s)f

(
s, y(s), y�(s)

)∇s

+

D
p
(
ρ(t)

)
ϕ�(

ρ(t)
)
θ (t)f

(
t, y(t), y�(t)

)
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+

D

(
p(t)θ�(t)

)∇
∫ b

t
ϕ(s)f

(
s, y(s), y�(s)

)∇s

–

D
p
(
ρ(t)

)
θ�(

ρ(t)
)
ϕ(t)f

(
t, y(t), y�(t)

)
= –

p(ρ(t))
D

[
–ϕ�(

ρ(t)
)
θ (t) + θ�(

ρ(t)
)
ϕ(t)

]
f
(
t, y(t), y�(t)

)
= –f

(
t, y(t), y�(t)

)
.

Since

y(a) =

D

∫ b

a
θ (a)ϕ(s)f

(
s, y(s), y�(s)

)∇s

+

α

m–∑
i=

αi

∫ b

a
Gt

[�](ηi, s)f
(
s, y(s), y�(s)

)∇s,

p(a)y�(a) = p(a)θ�(a)
∫ b

a


D

ϕ(s)f
(
s, y(s), y�(s)

)∇s,

we have

–αy(a) + βp(a)y(a) = –
m–∑
i=

αi

∫ b

a
Gt

[�](ηi, s)f
(
s, y(s), y�(s)

)∇s.

For t, s ∈ [a,b], G[�]
t (t, s) =G[�]

t (b + a – t,b + a – s), we get

–
m–∑
i=

αi

∫ b

a
Gt

[�](ηi, s)f
(
s, y(s), y�(s)

)∇s =
m–∑
i=

αiy[�](ξi).

Similarly, we can see that the other boundary condition is satisfied. �

Lemma . For t, s ∈ [a,b], we have G(b + a – t,b + a – s) =G(t, s).

Proof In fact, if t ≤ s, then  – t ≥  – s. In view of (.) and the assumption (C), we get

G(b + a – t,b + a – s) =

D

(
β + α

∫ b+a–s

a


p(τ )

�τ

)(
β + α

∫ b

b+a–t


p(τ )

�τ

)

=

D

(
β + α

∫ b

s


p(τ )

�τ

)(
β + α

∫ t

a


p(τ )

�τ

)

= G(t, s), a ≤ t ≤ s≤ b.

Similarly, we can prove that G(b + a – t,b + a – s) =G(t, s), a ≤ s ≤ t ≤ b.
So, we have G(b + a – t,b + a – s) = G(t, s) for all (t, s) ∈ [a,b] × [a,b], i.e., G(t, s) is a

symmetric function on [a,b]× [a,b]. �

Lemma . Let (C) and (C) hold. Then the unique solution y of the BVP (.) satisfies

y(t) ≥  for t ∈ [a,b].

http://www.advancesindifferenceequations.com/content/2014/1/81
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Proof By using conditions (C), (C) and definition of y(t), we get

y(t) =

D

∫ t

a
θ (s)

[
ϕ(t) –

m–∑
i=

αi

]
f
(
s, y(s), y�(s)

)∇s

+

D

∫ b

t
ϕ(s)

[
θ (t) +

m–∑
i=

αi

]
f
(
s, y(s), y�(s)

)∇s

≥ .

The proof is complete. �

Lemma . Suppose that (C), (C) hold, then mint∈[a,b] y(t) ≥ �maxt∈[a,b] y(t) where � =
β

β+α
∫ b
a

�τ
p(τ )

< .

Proof We have from (.) ≤G(t, s) ≤G(s, s) for t, s ∈ [a,b].
For a≤ t ≤ s ≤ b,

G(t, s)
G(s, s)

=
θ (t)
θ (s)

≥ θ (a)
θ (b)

=
β

θ (b)
.

For a≤ s ≤ t ≤ b,

G(t, s)
G(s, s)

=
ϕ(t)
ϕ(s)

≥ ϕ(t)
ϕ(b)

=
β

ϕ(a)
.

From the definitions of ϕ and θ , we obtain mint∈[a,b]G(t, s) ≥ �G(s, s). Hence,

y(t) =
∫ b

a
G(t, s)f

(
s, y(s), y�(s)

)∇s

+

α

m–∑
i=

αi

∫ b

a
Gt

[�](ηi, s)f
(
s, y(s), y�(s)

)∇s

≥
∫ b

a
�G(s, s)f

(
s, y(s), y�(s)

)∇s

+ �

α

m–∑
i=

αi

∫ b

a
Gt

[�](ηi, s)f
(
s, y(s), y�(s)

)∇s

≥ � max
t∈[a,b]

y(t).

The proof is complete. �

Lemma . For t, s ∈ [a,b], G[�]
t (t, s)≤ α

β
G(s, s).

Proof One can easily see that the inequality holds. �

Let B = C[a,b] be a Banach space with the norm

‖y‖ =max
{
max
t∈[a,b]

∣∣y(t)∣∣, max
t∈[a,b]

∣∣y[�](t)
∣∣}.
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Define the cone P ⊂ B by

P =
{
y ∈ B : y(t) ≥ , y is symmetric on [a,b], min

t∈[a,b]
y(t) ≥ � max

t∈[a,b]
y(t)

}
.

We define an operator T : P → B,

(Ty)(t) =
∫ b

a
G(t, s)f

(
s, y(s), y�(s)

)∇s

+

α

m–∑
i=

αi

∫ b

a
Gt

[�](ηi, s)f
(
s, y(s), y�(s)

)∇s. (.)

Lemma . Let (C), (C) hold. Then T : P → P is completely continuous.

Proof For all y ∈ P, by (C), (C) and (.), (Ty)(t) ≥ , for all t ∈ [a,b]. Furthermore, by
(.) and mint∈[a,b]G(t, s) ≥ �G(s, s).

Ty(t) ≥
∫ b

a
�G(s, s)f

(
s, y(s), y�

)∇s

+

α

m–∑
i=

αi

∫ b

a
Gt

[�](ηi, s)f
(
s, y(s), y�(s)

)∇s

≥ �

(∫ b

a
G(s, s)f

(
s, y(s), y�

)∇s

+

α

m–∑
i=

αi

∫ b

a
Gt

[�](ηi, s)f
(
s, y(s), y�(s)

)∇s

)

≥ � max
t∈[a,b]

(Ty)(t),

i.e., mint∈[a,b](Ty)(t)≥ �maxt∈[a,b](Ty)(t).
Noticing that p(t), y(t), f (s, y(s), y�(s)) are symmetric on [a,b], and by Lemma ., we

have

Ty(b + a – t) =
∫ b

a
G(b + a – t, s)f

(
s, y(s), y�(s)

)∇s

+

α

m–∑
i=

αi

∫ b

a
Gt

[�](ηi, s)f
(
s, y(s), y�(s)

)∇s

=
∫ a

b

(
G(b + a – t,b + a – s)f

(
b + a – s, y(b + a – s), y�(b + a – s)

))

× ∇(b + a – s) +

α

m–∑
i=

αi

∫ b

a
Gt

[�](ηi, s)f
(
s, y(s), y�(s)

)∇s

= Ty(t),

i.e., Ty(b + a – t) = Ty(t) for t ∈ [a,b]. Therefore, Ty(t) is symmetric on [a,b].
So, Ty ∈ P and then Ty⊂ P. Next, by standard methods and the Arzela-Ascoli theorem,

one can easily prove that the operator T is completely continuous. �

http://www.advancesindifferenceequations.com/content/2014/1/81


Sinanoglu et al. Advances in Difference Equations 2014, 2014:81 Page 7 of 12
http://www.advancesindifferenceequations.com/content/2014/1/81

3 Main results
We are now ready to apply the fixed point theorem due to Bai and Ge [] to the operator
T in order to get sufficient conditions for the existence of multiple positive solutions to
the problem (.).
Suppose that μ,γ : P → [,∞) are two nonnegative continuous convex functionals sat-

isfying

‖y‖ ≤Mmax
{
μ(y),γ (y)

}
, for all y ∈ P, (.)

whereM is a positive constant, and

� =
{
y ∈ P : μ(y) < r,γ (y) < L

} 	= ∅, for any r > ,L > . (.)

With (.) and (.), � is a bounded nonempty open subset in P.
Let r > c > , L >  be given. Let μ,γ : P → [,∞) be two nonnegative continuous con-

vex functionals satisfying (.) and (.), and ρ be a nonnegative continuous concave func-
tional on the cone P. Define bounded convex sets

P(μ, r;γ ,L) =
{
y ∈ P : μ(y) < r,γ (y) < L

}
,

P(μ, r;γ ,L) =
{
y ∈ P : μ(y) ≤ r,γ (y) ≤ L

}
,

P(μ, r;γ ,L;ρ, c) =
{
y ∈ P : μ(y) < r,γ (y) < L,ρ(y) > c

}
,

P(μ, r;γ ,L;ρ, c) =
{
y ∈ P : μ(y) ≤ r,γ (y) ≤ L,ρ(y)≥ c

}
.

To prove our results, we need the following fixed point theorem due to Bai and Ge in
[].

Theorem . [] Let B be a Banach space, P ⊂ B be a cone and r ≥ d > e > r > , L ≥
L >  be given.Assume thatμ, γ are nonnegative continuous convex functionals on P, such
that (.) and (.) are satisfied, ρ is a nonnegative continuous concave functional on P,
such that ρ(y) ≤ μ(y) for all y ∈ P(μ, r;γ ,L) and let T : P(μ, r;γ ,L) → P(μ, r;γ ,L) be
a completely continuous operator. Suppose
(A) {y ∈ P(μ,d;γ ,L;ρ, e) : ρ(y) > e} 	= ∅, ρ(Ty) > e for y ∈ P(μ,d;γ ,L;ρ, e),
(A) μ(Ty) < r, γ (Ty) < L, for all y ∈ P(μ, r;γ ,L),
(A) ρ(Ty) > e, for all y ∈ P(μ, r;γ ,L;ρ, e) with μ(Ty) > e.

Then T has at least three fixed points y, y, y in P(μ, r;γ ,L) with

y ∈ P(μ, r;γ ,L), y ∈ {
P(μ, r;γ ,L;ρ, e) : ρ(y) > e

}
,

y ∈ P(μ, r;γ ,L) \
(
P(μ, r;γ ,L;ρ, e)∪ P(μ, r;γ ,L)

)
.

Define nonnegative continuous functionals μ, γ , and ρ by

μ(y) = max
t∈[a,b]

∣∣y(t)∣∣, γ (y) = max
t∈[a,b]

∣∣y[�](t)
∣∣, ρ(y) = min

t∈[a,b]
∣∣y(t)∣∣, for y ∈ P.

Then on the cone P, ρ is a concave functional, and μ and γ are convex functionals satis-
fying (.) and (.).

http://www.advancesindifferenceequations.com/content/2014/1/81
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For the sake of convenience, we introduce the following notations:

A =
∫ b

a
G(s, s)∇s +


α

m–∑
i=

αi

∫ b

a
G[�]

t (ηi, s)∇s,

B =
α

β

∫ b

a
G(s, s)∇s.

Theorem . Assume that (C), (C) hold and that there exist constants r ≥ e
�
> e > r >

, L ≥ L >  such that e
�A ≤min{ rA , LB } and the following conditions hold:

(S) f (t,u, v) <min{ rA , LB }, for (t,u, v) ∈ [a,b]× [, r]× [–L,L],
(S) f (t,u, v) > e

�A , for (t,u, v) ∈ [a,b]× [e, e
�
]× [–L,L],

(S) f (t,u, v)≤min{ rA , LB }, for (t,u, v) ∈ [a,b]× [, r]× [–L,L].
Then the BVP (.) has at least three symmetric positive solutions y, y, y satisfying

max
t∈[a,b]

y(t)≤ r, max
t∈[a,b]

∣∣y�
 (t)

∣∣ ≤ L;

e < max
t∈[a,b]

y(t)≤ r, max
t∈[a,b]

∣∣y�
 (t)

∣∣ ≤ L;

max
t∈[a,b]

y(t)≤ e
�
, max

t∈[a,b]
∣∣y�

 (t)
∣∣ ≤ L.

Proof The problem (.) has a solution y = y(t) if and only if y satisfies the operator equa-
tion y = Ty. Thus we set out to verify that the operator T satisfies all conditions of Theo-
rem .. The proof is divided into four steps.
Step . First we show that

T : P(μ, r;γ ,L) → P(μ, r;γ ,L).

In fact, if y ∈ P(μ, r;γ ,L), then there is μ(y) ≤ r, γ (y) ≤ L. From assumption (S),

μ(Ty) = max
t∈[a,b]

∣∣∣∣
∫ b

a
G(t, s)f

(
s, y(s), y�(s)

)∇s

+

α

m–∑
i=

αi

∫ b

a
G[�]

t (ηi, s)f
(
s, y(s), y�(s)

)∇s
∣∣∣∣

≤
∫ b

a
G(s, s)f

(
s, y(s), y�(s)

)∇s +

α

m–∑
i=

αi

∫ b

a
G[�]

t (ηi, s)f
(
s, y(s), y�(s)

)∇s

≤ r
A

[∫ b

a
G(s, s)∇s +


α

m–∑
i=

αi

∫ b

a
G[�]

t (ηi, s)∇s

]

= r.

Similarly,

γ (Ty) = max
t∈[a,b]

∣∣∣∣
∫ b

a
G[�]

t (t, s)f
(
s, y(s), y�(s)

)∇s
∣∣∣∣

≤ α

β

∫ b

a
G(s, s)f

(
s, y(s), y�(s)

)∇s

http://www.advancesindifferenceequations.com/content/2014/1/81
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≤ L
B

α

β

∫ b

a
G(s, s)∇s

= L.

So T : P(μ, r;γ ,L) → P(μ, r;γ ,L) holds.
Step . We show that condition (A) in Theorem . holds.
We choose y(t) = e

 ( +

�
). It is easy to see that y(t) ∈ P(μ, e

�
;γ ,L;ρ, e) and ρ(y) > e and

so {y ∈ P(μ, e
�
;γ ,L;ρ, e) : ρ(y) > e} 	= ∅. Hence if y ∈ P(μ, e

�
;γ ,L;ρ, e), then e ≤ y(t) ≤ e

�

for t ∈ [a,b]. From assumption (S), we have f (t, y(t), y�(t)) > e
�A for t ∈ [a,b],

ρ(Ty) = min
t∈[a,b]

∣∣∣∣
∫ b

a
G(t, s)f

(
s, y(s), y�(s)

)∇s +

α

m–∑
i=

αi

∫ b

a
G[�]

t (ηi, s)f
(
s, y(s), y�(s)

)∇s
∣∣∣∣

≥ �

∫ b

a
G(s, s)f

(
s, y(s), y�(s)

)∇s +

α

m–∑
i=

αi

∫ b

a
G[�]

t (ηi, s)f
(
s, y(s), y�(s)

)∇s

≥ �
e

�A

[∫ b

a
G(s, s)∇s +


α

m–∑
i=

αi

∫ b

a
G[�]

t (ηi, s)∇s

]

= e.

Consequently, condition (A) of Theorem . is satisfied.
Step . We now show that condition (A) in Theorem . is satisfied. In the same way as

in Step , if y ∈ P(μ, r;γ ,L), then assumption (S) yields f (t, y(t), y�(t)) < min( rA ,
L
B ) for

(t,u, v) ∈ [a,b]× [, r]× [–L,L]. Therefore, condition (A) of Theorem . is satisfied.
Step . Finally, we show that condition (A) in Theorem . is also satisfied. Suppose

that y ∈ P(μ, r;γ ,L;ρ, e
�
) with μ(Ty) > e

�
. Then

ρ(Ty) = min
t∈[a,b]

(Ty)(t) ≥ � max
t∈[a,b]

(Ty)(t) >
�e
�

= e.

Consequently, by Theorem ., the problem (.) has at least three positive solutions y,
y, y in P(μ, r;γ ,L) with

y ∈ P(μ, r;γ ,L), y ∈ {
P(μ, r;γ ,L;ρ, e) : ρ(y) > e

}
,

y ∈ P(μ, r;γ ,L) \
(
P(μ, r;γ ,L;ρ, e)∪ P(μ, r;γ ,L)

)
.

The proof is complete. �

4 Example
To illustrate how our main result can be used in practice we present an example.

Example . Let T = [, ], a = , b = , α = 
 , α = 

 , α = 
 , β = 

 , η =

 , η =


 , ξ =


 ,

ξ = 
p(t) = ,m = , in the boundary value problem (.). Now we consider the following

problem:

⎧⎪⎨
⎪⎩
–y′′(t) = f (t, y(t), y′(t)), t ∈ (, ),
– 

y() +

y

′() = 
y

′(  ) +

y

′(  ),

y() +


y

′() = 
y

′(  ) +

y

′(  ),
(.)

http://www.advancesindifferenceequations.com/content/2014/1/81
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where

f
(
t, y(t), y�(t)

)
=

⎧⎪⎨
⎪⎩
.y(t), y ∈ [, ],
.y(t) – ., y ∈ (, ),
, y ∈ [, ).

Set r = , e = , r = , L = , L = , T = [, ], then �s = ∇s = ds. We get � = 
 ; then

e
�
=  and D = 

 and by a simple calculation

G(s, s) =

D

θ (s)ϕ(s) =

D

(
β + α

∫ s

a

dτ

p(τ )

)(
β + α

∫ b

s

dτ

p(τ )

)

=



(


+


s
)(



+


( – s)

)
,

G[�]
t (ηi, s) = p(t)G�

t (ηi, s) =G�
t (ηi, s) =G′

t(ηi, s),

G′
t(ηi, s) =


D

{
θ ′(t)ϕ(s), a ≤ ηi ≤ s ≤ b,
θ (s)ϕ′(t), a ≤ s≤ ηi ≤ b

=

D

{
αϕ(s), a ≤ ηi ≤ s≤ b,
–αθ (s), a ≤ s≤ ηi ≤ b.

Thus,

B =
α

β

∫ b

a
G(s, s)∇s =




∫ 






(


+


s
)(



+


( – s)

)
ds =




,

A =
∫ b

a
G(s, s)∇s +


α

m–∑
i=

αi

∫ b

a
G[�]

t (ηi, s)∇s

=
∫ b

a
G(s, s)ds +


α

m–∑
i=

αi

∫ b

a
G′

t(ηi, s)ds

=
∫ b

a
G(s, s)ds +


α

α

∫ 


G′

t(η, s)ds +

α

α

∫ 


G′

t(η, s)ds

=
∫ 






(


+


s
)(



+


( – s)

)
ds

+ 



∫ 


G′

t

(


, s

)
ds + 




∫ 


G′

t

(


, s

)
ds

=
∫ 






(


+


s
)(



+


( – s)

)
ds

+



[∫ 




–


(


+
s


)
ds +

∫ 







(


+
 – s


)
ds

]

+



[∫ 




–


(


+
s


)
ds +

∫ 







(


+
 – s


)
ds

]

=



.

Hence we have

f
(
t, y(t), y′(t)

)
<



, for y ∈ [, ],
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f
(
t, y(t), y′(t)

)
>
,


, for y ∈ [, ],

f
(
t, y(t), y′(t)

)
<
,


, for y ∈ [, ].

Then the conditions of Theorem . are satisfied. Then by Theorem ., the BVP (.) has
at least three symmetric positive solutions y, y, y, with

max
t∈[a,b]

y(t)≤ , max
t∈[a,b]

∣∣y′
(t)

∣∣ ≤ ;

 < max
t∈[a,b]

y(t) ≤ , max
t∈[a,b]

∣∣y′
(t)

∣∣ ≤ ;

max
t∈[a,b]

y(t)≤ , max
t∈[a,b]

∣∣y′
(t)

∣∣ ≤ .
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