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Abstract
In this paper, we investigate the stability of a class of nonlinear fractional neutral
systems. We extend the Lyapunov-Krasovskii approach to nonlinear fractional neutral
systems. Necessary and sufficient conditions for stability are obtained for the
nonlinear fractional neutral systems.
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1 Introduction
In the past few decades, fractional calculus and fractional differential equations have at-
tracted great attention. It has been proved that fractional-order calculus is more adequate
to describe real world problems than the integer calculus. Therefore, not only mathemati-
cians have currently a strong interest in the fractional calculus but also researchers in
applied fields such as mechanics, physics, chemistry, biology, economics, control theory,
and signal processing. For details and examples, see [–] and the references therein.
On the other hand, stability analysis is always one of themost important issues in the the-

ory of differential equations and their applications. The analysis on stability of fractional-
order differential equations is more complex than that of classical differential equations,
since fractional derivatives are nonlocal and have weakly singular kernels. The earliest
study on the stability of fractional systems started in []; the author has given awell-known
stability criterion for a linear fractional differential system with constant coefficient ma-
trix. Since then, the stability of fractional systems has attracted increasing interest. Many
researchers have done further studies on the stability of fractional systems. In [], by the
frequency domain method, the BIBO-stability of fractional differential systems with de-
lays was considered. Chen and Moore [] considered the analytical stability bound for
a class of fractional differential systems with time-delay. The authors derived a stability
condition by applying the Laplace transformation and the Lambert function. [] studied
the linear systemwithmulti-order Caputo derivative and derived a sufficient condition on
Lyapunov global asymptotical stability. In [] LMI stability conditions for linear fractional
differential systems were given. The boundedness properties of system responses are very
important from the engineering point of view. From this fact, finite-time stability for frac-
tional differential systems with time-delay was introduced [, ]. In [], the definitions
of q-fractional calculuswas presented and the stability of non-autonomous systemswithin
the frame of the q-Caputo fractional derivative was studied. Recently, survey papers [,
] have provided more details about the stability results and the methods available to an-
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alyze the stability of fractional differential systems; the reader may refer to them and the
references therein.
As is well known, Lyapunov’s second method provides a way to analyze the stability

of a system without explicitly solving the differential equations. It is necessary to extend
Lyapunov’s secondmethod to fractional systems. In [, ], the fractional Lyapunov’s sec-
ond method was proposed, and the authors extended the exponential stability of integer-
order differential system to the Mittag-Leffler stability of fractional differential system.
In [], by using Bihari’s and Bellman-Gronwall’s inequality, an extension of Lyapunov’s
second method for fractional-order systems was proposed. In [–], Baleanu et al. ex-
tended Lyapunov’s method to fractional functional differential systems and developed
the Lyapunov-Krasovskii stability theorem, Lyapunov-Razumikhin stability theorem and
Mittag-Leffler stability theorem for fractional functional differential systems. As far as we
know, there are few papers with respect to the stability of fractional neutral systems. In
this paper, we consider the stability of a class of nonlinear fractional neutral functional
differential equations with the Caputo derivative. Motivated by Li et al.. [, ], Baleanu
et al. [], and Cruz andHale [], we aim in this paper to extend the Lyapunov-Krasovskii
approach for the nonlinear fractional neutral systems.
The rest of the paper is organized as follows. In Section , we give some notations and

recall some concepts and preparation results. In Sections , by using Lyapunov function-
als, we extend the Lyapunov-Krasovskii approach for nonlinear fractional neutral systems,
results of stability for nonlinear fractional neutral systems are presented. Finally, some
concluding remarks end the paper.

2 Preliminaries
In this section, we introduce notations, definitions, and preliminary facts needed here.
Throughout this paper, let Rn be a real n-dimensional linear vector space with the norm
| · |, ‖A‖ denotes the induced normof amatrixA, let C = C([–r, ],Rn) be the space of con-
tinuous functions taking [–r, ] into R

n with ‖φ‖, φ ∈ C defined by ‖φ‖ = sups∈[–r,] |φ(s)|,
C(M) = {φ ∈ C : ‖φ‖ ≤M}, r > ,M >  are constants. If σ ∈R, A >  and x ∈ C([σ – r,σ +
A],Rn), then for any t ∈ [σ ,σ +A], we let xt ∈ C be defined by xt(θ ) = x(t + θ ), θ ∈ [–r, ].
Let us recall the following definitions. For more details, we refer the reader to [, , ].

Definition . The fractional-order integral of a function f : [t,∞) → R of order α ∈
R

+ = [,+∞) is defined by

Iαt f (t) =


�(α)

∫ t

t
(t – s)α–f (s)ds,

where �(·) is the gamma function.

Definition . For a function f given on the interval [t,∞), the α order Riemann-
Liouville fractional derivative of f is defined by

Dα
t f (t) =


�(n – α)

(
d
dt

)n ∫ t

t
(t – s)n–α–f (s)ds, n –  < α < n,n ∈N,

where N = {, , , . . .}.
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Definition. For a function f given on the interval [t,∞), the α orderCaputo fractional
derivative of f is defined by

cDα
t f (t) =


�(n – α)

∫ t

t
(t – s)n–α–f (n)(s)ds, n –  < α < n,

cDα
t f (t) = f (n)(t), α = n,n ∈N.

Some properties of the aforementioned operators are recalled below [, , ].

Property . The following results are especially interesting:
(i) For ν > –, we have Dα

t (t – t)ν = �(+ν)
�(+ν–α) (t – t)ν–α .

(ii) When n –  < α < n, n ∈N, we have

cDα
t f (t) =Dα

t

[
f (t) –

n–∑
i=

f (i)(t)(t – t)i

i!

]
.

(iii) For α ∈ (, ), T ≥ t and f ∈ C([t,T],Rn), we have cDα
t I

α
t f (t) = f (t),

Iαt
cDα

t f (t) = f (t) – f (t).

Remark . From Property ., if cDα
t f (t) ≥ , α ∈ (, ), then for t ≥ t, we have:

(i) f (t)≥ f (t).
(ii) In general, it is not true that f (t) is nondecreasing in t.

In [], Cruz and Hale studied a class of functional difference operators which are very
useful in stability theory and the asymptotic behavior of solutions of functional differential
equations of neutral type. In a monograph [], Hale presents the following definition and
results of the difference operators.

Definition . Suppose D : C → R
n is linear, continuous, and atomic at  and let CD =

{φ ∈ C :D(φ) = }. The operator D is said to be stable if the zero solution of the homoge-
neous ‘difference’ equation,

D(yt) = , t ≥ , y = ϕ ∈ CD ,

is uniformly asymptotically stable.

Lemma . The following statements are equivalent:
() D is stable.
() There are constants a >  and b >  such that for any h ∈ C([, +∞),Rn), any

solution y of the nonhomogeneous equation

D(yt) = h(t), t ≥ , y = ϕ,

satisfies

∥∥yt(,ϕ)∥∥ ≤ be–at‖ϕ‖ + b sup
u∈[,t]

∣∣h(u)∣∣, t ≥ .
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Remark . LetD(xt) = x(t)–Bx(t– r), let thematrix B be Schur stable, i.e., the spectrum
of the matrix lies in the open unit disc of the complex plane; then D is stable.

3 Stability criteria
In this section, we consider the stability of the following nonlinear fractional neutral dif-
ferential difference system:

cDα
t

[
D(xt)

]
= f (t,xt), t > t, (.)

with the initial condition

xt = ϕ, (.)

where  < α < ,D(xt) = x(t)–Bx(t– r), thematrix B is Schur stable, f :R×C → R
n is con-

tinuous, Lipschitz in xt . Here, we always assume that fractional neutral system (.) with
initial condition (.) has a unique continuous solution x(t) which depends continuously
upon t, ϕ.
If V :R× C →R is continuously differentiable, we define the Caputo fractional deriva-

tive cDγ
tV (t,φ) along the solutions of (.)-(.) as

cDγ
tV (t,xt) =


�( – γ )

∫ t

t
(t – s)–γV ′(s,xs)ds. (.)

Definition . We say that the zero solution x =  of (.) is stable if for any t ∈R and any
ε > , there exists a δ = δ(t, ε) such that any solution x(t) = x(t, t,ϕ) of (.) with initial
value ϕ at t, ‖ϕ‖ < δ satisfies |x(t)| < ε for t ≥ t.

Theorem . Let x =  be an equilibrium point of system (.). Then the zero solution of
system (.) is stable if and only if there exist a functional V :R×C(M) →R and a contin-
uous function u(x) with u(x) >  for |x| >  and u() =  such that the following conditions
are satisfied:
() V (t, ) = .
() V (t,φ) ≥ u(D(φ)).
() For any given t the functional V (t,φ) is continuous in φ at the point , i.e., for any

ε >  there exists δ >  such that the inequality ‖φ‖ < δ implies
|V (t,φ) –V (t, )| = V (t,φ) < ε.

() Along the solutions of the system (.) the functional V (t,φ) satisfies
V (t,xt(t,ϕ)) ≤ V (t,ϕ) for t ≥ t.

Proof Sufficiency: Since the matrix B is Schur stable, there exist L ≥  and  < ζ <  such
that the inequality ‖Bk‖ ≤ Lζ k holds for k ≥ .
For a given ε >  (ε <M), we first set ε = ε(–ζ )

L >  and then introduce the positive value

η(ε) = min|x|=ε
u(x). (.)

Since for a given t functional V (t,φ) is continuous in φ at the point , there exists
δ(ε, t) such that V (t,φ) < η(ε) for any φ ∈ C , with ‖φ‖ < δ(ε, t). Here, we claim that
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δ(ε, t) ≤ ε. Suppose this is not the case; then there exists an initial function ϕ ∈ C such
that ‖ϕ‖ < δ(ε, t) and |D(ϕ)| = ε. On the one hand, for this initial function we have
u(D(ϕ)) ≥ η(ε). On the other hand, u(D(ϕ)) ≤ V (t,ϕ) < η(ε). The contradiction proves
the desired inequality.
Now we take δ(ε, t) = δ(ε,t)

+Lζ
. For ϕ ∈ C with ‖ϕ‖ < δ(ε, t), we have

u
(
D

(
xt(t,ϕ)

)) ≤ V
(
t,xt(t,ϕ)

) ≤ V (t,ϕ) < η(ε), t ≥ t. (.)

Next, we wish to show

∣∣D(
xt(t,ϕ)

)∣∣ < ε, t ≥ t. (.)

Assume by contradiction that there exists a t ≥ t for which

∣∣D(
xt (t,ϕ)

)∣∣ ≥ ε. (.)

Since

∣∣D(
xt (t,ϕ)

)∣∣ = ∣∣D(ϕ)
∣∣ ≤ ( + Lζ )‖ϕ‖ < δ(ε, t) ≤ ε

and |D(xt(t,ϕ))| is a continuous function of t, there exists t̄ ∈ [t, t] such that

∣∣D(
xt̄(t,ϕ)

)∣∣ = ε.

On the one hand, it follows from relation (.) that

u
(
D

(
xt̄(t,ϕ)

)) ≥ η(ε).

On the other hand, relation (.) provides the opposite inequality

u
(
D

(
xt̄(t,ϕ)

))
< η(ε).

The contradiction proves that inequality (.) is wrong, and relation (.) is true. Then
there exists a function z(t) with |z(t)| < ε, t ≥ t such that

x(t, t,ϕ) = Bx(t – r, t,ϕ) + z(t), t ≥ t. (.)

For a given t ≥ t, there must exist a positive integer number k such that t ∈ [t + (k –
)r, t + kr]. Iterating equality (.) k –  times we obtain

x(t, t,ϕ) = Bkx(t – kr, t,ϕ) +
k–∑
i=

Biz(t – ir).

Since t – kr ∈ [t – r, t],

∣∣x(t – kr, t,ϕ)
∣∣ ≤ ‖ϕ‖ < δ(ε, t) ≤ ε,
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and we obtain the following inequality:

∣∣x(t, t,ϕ)∣∣ ≤ ∥∥Bk∥∥


∣∣x(t – kr, t,ϕ)
∣∣ + k–∑

i=

∥∥Bi∥∥


∣∣z(t – ir)
∣∣

< Lζ kδ(ε, t) +
k–∑
i=

Lζ iε <
L

 – ζ
ε = ε, t ≥ t.

Therefore, the zero solution of system (.) is stable.
Necessity: Now, the zero solution of system (.) is stable, and we must prove that there

exist a function u(s) and a functional V (t,φ) that satisfy the conditions of the theorem.
Since the zero solution of system (.) is stable, for ε =M there exists δ(M, t) such that

the inequality ‖ϕ‖ < δ(M, t) implies that |x(t, t,ϕ)| <M for t ≥ t. We define the function
u(x) = |x|, x ∈R

n and the functional V (t,φ) as follows:

V
(
t,xt(t,ϕ)

)
=

{
sups≥t |D(xs(t,ϕ))|, if |x(s, t,ϕ)| <M, for s ≥ t,
( + Lζ )M, if ∃T ≥ t such that |x(T , t,ϕ)| ≥M.

(.)

Since for ϕ =  the corresponding solution is trivial, x(t, t, ) = , t ≥ t, we have
V (t, ) = . In the case where |x(s, t,ϕ)| <M, for s ≥ t, we have

u
(
D

(
xt(t,ϕ)

))
=

∣∣D(
xt(t,ϕ)

)∣∣
≤ sup

s≥t

∣∣D(
xs(t,ϕ)

)∣∣ = V
(
t,xt(t,ϕ)

)
.

In the other case where there exists T ≥ t such that |x(T , t,ϕ)| ≥ M, the following in-
equality holds:

u
(
D

(
xt(t,ϕ)

))
=

∣∣D(
xt(t,ϕ)

)∣∣ ≤ ( + Lζ )M = V
(
t,xt(t,ϕ)

)
.

Further, for a given t, the stability of the zero solutionmeans that for any ε >  there exists
δ = δ( ε

+Lζ
, t) such that ‖ϕ‖ ≤ δ implies

∣∣x(t, t,ϕ)∣∣ < ε

 + Lζ
, t ≥ t.

Then

∣∣D(
xt(t,ϕ)

)∣∣ ≤ ∣∣x(t, t,ϕ)∣∣ + Lζ
∣∣x(t – r, t,ϕ)

∣∣ < ε, t ≥ t.

Therefore,

∣∣V (t,ϕ) –V (t, )
∣∣ = V (t, ) ≤ ε,

that is, for a fixed t the functional V (t,ϕ) is continuous in ϕ at the point .
Finally, we need to showV (t,xt(t,ϕ)) ≤ V (t,ϕ), t ≥ t. First, if |x(s, t,ϕ)| <M for s ≥ t,

V (t,ϕ) = sup
s≥t

∣∣D(
xs(t,ϕ)

)∣∣
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and

V
(
t,xt(t,ϕ)

)
= sup

s≥t

∣∣D(
xs(t,ϕ)

)∣∣.
Note that {s : s ≥ t} ⊆ {s : s≥ t} for t ≥ t; then we obtain

V
(
t,xt(t,ϕ)

) ≤ V (t,ϕ).

In the second case, there exists T ≥ t such that |x(T , t,ϕ)| ≥M, we have

V
(
t,xt(t,ϕ)

)
= V (t,ϕ) = ( + Lζ )M.

Therefore, we have

V
(
t,xt(t,ϕ)

) ≤ V (t,ϕ), t ≥ t.

The proof is complete. �

Remark . The functional (.) has only academic value. Obviously, we cannot use such
functionals in applications. The computation of practically useful Lyapunov functionals is
a very difficult task.

Theorem. Let x =  be an equilibriumpoint of system (.). Suppose u(s) is a continuous
function with u(x) >  for |x| >  and u() = . If there exists a continuous functional V :
R× C(M) →R such that the following conditions are satisfied:
() V (t, ) = ;
() V (t,φ) ≥ u(D(φ));
() along the solutions of the system (.) the functional V (t,φ) is continuously

differentiable and satisfies

cDβ
tV

(
t,xt(t,ϕ)

) ≤ , t ≥ t,

where β ∈ (, ],
then the zero solution of system (.) is stable.

Proof Note that the theorem’s condition imply that of Theorem ., therefore, the zero
solution of system (.) is stable. �

Theorem. Suppose that the assumptions in Theorem . are satisfied except for replac-
ing cDβ

t by D
β
t ; then one has the same result for stability.

Proof By using Property . we have

cDβ
tV (t,xt) =Dβ

tV (t,xt) –V (t,ϕ)
(t – t)–β

�( – β)
.

Since V (t,ϕ) ≥ , then cDβ
tV (t,xt)≤Dβ

tV (t,xt). Then we obtain the same result for sta-
bility. �
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4 Conclusions
In this paper, we have studied the stability of a class of nonlinear fractional neutral differ-
ential difference systems. We introduce the Lyapunov-Krasovskii approach for fractional
neutral systems, which enrich the knowledge of both system theory and fractional calcu-
lus. By using Lyapunov functionals and the Lyapunov-Krasovskii technique, stability cri-
teria are obtained for the nonlinear fractional neutral systems. Finally, we point out that
since the computation of practically useful Lyapunov functionals is a very difficult task,
the fractional Lyapunov method has its own limitations and should be generalized and
verified for more complicated linear and nonlinear problems.
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