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Abstract
Let T ⊂R be a periodic time scale in shifts δ± with period P ∈ [t0,∞)T. We consider
the existence of positive periodic solutions in shifts δ± for the nonlinear functional
dynamic equation of the form

x�(t) = –a(t)xσ (t) + λb(t)f (t, x(h(t))), t ∈ T

using the cone theory techniques. We extend and unify periodic differential,
difference, h-difference and q-difference equations and more by a new periodicity
concept on time scales.
MSC: Primary 34N05; 39A12; secondary 35B10

Keywords: periodic time scale; periodic solution; shift operator; time scale

1 Introduction
Functional differential equations include many mathematical ecological and population
models, such as the Lasota-Wazewska model [–], Nicholson’s blowflies model [, , –
], the model for blood cell production [, , , ] etc. Particularly, since the periodic
variation of the environment plays an important role in many biological and ecological
systems, many researchers have been interested in studying the existence of periodic so-
lutions of the above models. Chow [], Freedman andWy [], Hadeler and Tomiuk [],
Kuang [],Wang [],Weng and Sun [] andmany others studied the existence of at least
one and at least two positive periodic solutions of nonlinear first-order differential equa-
tions using the fixed point theorem of cone expansion and the cone compression method,
the upper and lower solution method and iterative technique []. On the other hand, it
has been observed that very few papers exist in the literature on the existence of at least
three and the nonexistence of a nonnegative periodic solution for first-order differential
equations. For example, see [, , ].
In fact, both continuous and discrete systems are very important in implementation and

application. Therefore, the study of dynamic equations on time scales, which unifies dif-
ferential, difference, h-difference, q-differences equations and more, has received much
attention; see [–]. The theory of dynamic equations on times-scales was introduced
by Stefan Hilger in  []. There are only a few results concerning periodic solutions
of dynamic equations on time scales such as in [, ]. In these papers, all periodic time

©2014 Çetin; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2014/1/76
mailto:erbil.cetin@ege.edu.tr
http://creativecommons.org/licenses/by/2.0


Çetin Advances in Difference Equations 2014, 2014:76 Page 2 of 13
http://www.advancesindifferenceequations.com/content/2014/1/76

scales must be unbounded above and below, but there are many time scales that do not
satisfy this condition such as qZ = {qn : n ∈ Z} ∪ {} and √

N = {√n : n ∈ N}. Adıvar intro-
duced a new periodicity concept in [] with the aid of shift operators δ±. With the new
periodicity concept, the time scale need not be closed under the operation t±ω for a fixed
ω > . There are only few existence results related with the new periodicity; see [].
Let T be a periodic time scale in shifts δ± with period P ∈ [t,∞)T and t ∈ T. We are

concerned with the existence, multiplicity and nonexistence of periodic solutions in shifts
δ± for the nonlinear dynamic equation

x�(t) = –a(t)xσ (t) + λb(t)f
(
t,x

(
h(t)

))
, t ∈ T, ()

where a ∈ C(T, (,∞)) is �-periodic in shifts δ± with period T and a ∈ R, λ >  is a pos-
itive parameter, b ∈ C(T, [,∞)) is �-periodic in shifts with period T ,

∫ δT+ (t)
t

b(s)�s > ,
h ∈ C(T, [,∞)) is periodic in shifts with periodT and f ∈ C(T× (,∞), (,∞)) is periodic
in shifts δ± with period T with respect to the first variable and T ∈ [P,∞)T.
Hereafter, we use the notation [a,b]T to indicate the time scale interval [a,b] ∩ T. The

intervals [a,b)T, (a,b]T and (a,b)T are similarly defined.
In this study, we shall show that the number of positive periodic solutions in shifts δ±

of () can be determined by the asymptotic behaviors of the quotient of f (t,x)
x at zero and

infinity. We shall organize this paper as follows. In Section , we state some facts about
exponential function on time scales, the new periodicity concept for time scales and some
important theorems which will be needed to show the existence and nonexistence of pe-
riodic solutions in shifts δ±. Besides these, in Section , we give some lemmas about the
exponential function and the graininess function with shift operators. We also present
some lemmas to be used later. Finally, we state our main results and give their proofs in
Section  by using the Krasnosel’skĭı fixed point theorem.

2 Preliminaries
In this section, wemention some definitions, lemmas and theorems from calculus on time
scales which can be found in [, ]. Next, we state some definitions, lemmas and theo-
rems about the shift operators and the new periodicity concept for time scales which can
be found in [].

Definition . [] A function p : T → R is said to be regressive provided  + μ(t)p(t) 	=
 for all t ∈ T

κ , where μ(t) = σ (t) – t. The set of all regressive rd-continuous functions
ϕ : T → R is denoted by R, while the set R+ is given by R+ = {ϕ ∈ R :  + μ(t)ϕ(t) >
 for all t ∈ T}.

Let ϕ ∈R and μ(t) >  for all t ∈ T. The exponential function on T is defined by

eϕ(t, s) = exp

(∫ t

s
ζμ(r)

(
ϕ(r)

)
�r

)
, ()

where ζμ(s) is the cylinder transformation given by

ζμ(r)
(
ϕ(r)

)
:=

{


μ(r) Log( +μ(r)ϕ(r)) if μ(r) > ;
ϕ(r) if μ(r) = .

()
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Also, the exponential function y(t) = ep(t, s) is the solution to the initial value problem
y� = p(t)y, y(s) = . Other properties of the exponential function are given in the following
lemma ([], Theorem .).

Lemma . Let p,q ∈ R. Then
i. e(t, s)≡  and ep(t, t)≡ ;
ii. ep(σ (t), s) = ( +μ(t)p(t))ep(t, s);
iii. 

ep(t,s) = e�(t, s), where �p(t) = – p(t)
+μ(t)p(t) ;

iv. ep(t, s) = 
ep(s,t) = e�p(s, t);

v. ep(t, s)ep(s, r) = ep(t, r);
vi. ep(t, s)eq(t, s) = ep⊕q(t, s);
vii. ep(t,s)

eq(t,s) = ep�q(t, s);
viii. ( 

ep(·,s) )
� = – p(t)

eσp (·,s) .

The following definitions, lemmas, corollaries and examples are about the shift opera-
tors and the new periodicity concept for time scales which can be found in [].

Definition . [] Let T∗ be a nonempty subset of the time scale T including a fixed
number t ∈ T

∗ such that there exist operators δ± : [t,∞)T ×T
∗ → T

∗ satisfying the fol-
lowing properties:
(P.) The functions δ± are strictly increasing with respect to their second arguments,

i.e., if

(T, t), (T,u) ∈D± :=
{
(s, t) ∈ [t,∞)

T
×T

∗ : δ∓(s, t) ∈ T
∗},

then

T ≤ t < u implies δ±(T, t) < δ±(T,u);

(P.) If (T,u), (T,u) ∈D– with T < T, then δ–(T,u) > δ–(T,u), and if
(T,u), (T,u) ∈D+ with T < T, then δ+(T,u) < δ+(T,u);

(P.) If t ∈ [t,∞)T, then (t, t) ∈D+ and δ+(t, t) = t. Moreover, if t ∈ T
∗, then

(t, t) ∈D+ and δ+(t, t) = t holds;
(P.) If (s, t) ∈D±, then (s, δ±(s, t)) ∈D∓ and δ∓(s, δ±(s, t)) = t, respectively;
(P.) If (s, t) ∈D± and (u, δ±(s, t)) ∈D∓, then (s, δ∓(u, t)) ∈D± and

δ∓(u, δ±(s, t)) = δ±(s, δ∓(u, t)), respectively.

Then the operators δ– and δ+ associated with t ∈ T
∗ (called the initial point) are said

to be backward and forward shift operators on the set T∗, respectively. The variable s ∈
[t,∞)T in δ±(s, t) is called the shift size. The value δ+(s, t) and δ–(s, t) in T

∗ indicate s
units translation of the term t ∈ T

∗ to the right and left, respectively. The sets D± are the
domains of the shift operator δ±, respectively. Hereafter, T∗ is the largest subset of the
time scale T such that the shift operators δ± : [t,∞)T ×T

∗ → T
∗ exist.

Definition . [] (Periodicity in shifts) Let T be a time scale with the shift operators
δ± associated with the initial point t ∈ T

∗. The time scale T is said to be periodic in shift

http://www.advancesindifferenceequations.com/content/2014/1/76


Çetin Advances in Difference Equations 2014, 2014:76 Page 4 of 13
http://www.advancesindifferenceequations.com/content/2014/1/76

δ± if there exists p ∈ (t,∞)T∗ such that (p, t) ∈D± for all t ∈ T
∗. Furthermore, if

P := inf
{
p ∈ (t,∞)T∗ : (p, t) ∈D±,∀t ∈ T

∗} 	= t,

then P is called the period of the time scale T.

Example . [] The following time scales are periodic in the sense of shift operators
given in Definition ..

i. T = {±n : n ∈ Z}, δ±(P, t) =
{

(
√
t ± √

P), t > ;
±P, t = ;
–(

√
–t ± √

P), t < ;
P = , t = .

ii. T = qZ, δ±(P, t) = P±t, P = q, t = .
iii. T =

⋃
n∈Z[n, n+], δ±(P, t) = P±t, P = , t = .

iv. T = { qn
+qn : q >  is constant and n ∈ Z} ∪ {, },

δ±(P, t) =
q(

ln( t
–t )±ln( P

–P )
lnq )

 + q(
ln( t

–t )±ln( P
–P )

lnq )
, P =

q
 + q

.

Notice that the time scaleT in Example . is bounded above and below andT∗
 = { qn

+qn :
q >  is constant and n ∈ Z}.

Remark . [] Let T be a time scale that is periodic in shifts with the period P. Thus,
by (P.) of Definition ., themapping δP+ : T∗ → T

∗ defined by δP+(t) = δ+(P, t) is surjective.
On the other hand, by (P.) of Definition ., shift operators δ± are strictly increasing in
their second arguments. That is, the mapping δP+(t) = δ+(P, t) is injective. Hence, δP+ is an
invertible mapping with the inverse (δP+)– = δP– defined by δP–(t) := δ–(P, t).

We assume that T is a periodic time scale in shift δ± with period P. The operators δP± :
T

∗ → T
∗ are commutative with the forward jump operator σ : T → T given by σ (t) :=

inf{s ∈ T : s > t}. That is, (δP± ◦ σ )(t) = (σ ◦ δP±)(t) for all t ∈ T
∗.

Lemma . [] The mapping δP+ : T∗ → T
∗ preserves the structure of the points in T

∗.
That is,

σ (t) = t implies σ
(
δ+(P, t)

)
= δ+(P, t) and

σ (t) > t implies σ
(
δ+(P, t)

)
> δ+(P, t).

Corollary . [] δ+(P,σ (t)) = σ (δ+(P, t)) and δ–(P,σ (t)) = σ (δ–(P, t)) for all t ∈ T
∗.

Definition . [] (Periodic function in shift δ±) Let T be a time scale that is periodic in
shifts δ± with the period P. We say that a real-valued function f defined on T

∗ is periodic
in shifts δ± if there exists T ∈ [P,∞)T∗ such that

(T , t) ∈D± and f
(
δT±(t)

)
= f (t) for all t ∈ T

∗, ()

where δT± := δ±(T , t). The smallest number T ∈ [P,∞)T∗ such that () holds is called the
period of f .
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Definition . [] (�-periodic function in shifts δ±) Let T be a time scale that is peri-
odic in shifts δ± with the period P. We say that a real-valued function f defined on T

∗ is
�-periodic in shifts δ± if there exists T ∈ [P,∞)T∗ such that

(T , t) ∈D± for all t ∈ T
∗, ()

the shifts δT± are �-differentiable with rd-continuous derivatives ()

and

f
(
δT±(t)

)
δ�T
± = f (t) for all t ∈ T

∗, ()

where δT± := δ±(T , t). The smallest number T ∈ [P,∞)T∗ such that ()-() hold is called the
period of f .

Notice that Definition . and Definition . give the classic periodicity definition on
time scales whenever δT± := t±T are the shifts satisfying the assumptions of Definition .
and Definition ..
Now, we give a theorem which is the substitution rule on periodic time scales in shifts

δ± which can be found in [].

Theorem . Let T be a time scale that is periodic in shifts δ± with period P ∈ [t,∞)T∗ ,
and let f be a �-periodic function in shifts δ± with the period T ∈ [P,∞)T∗ . Suppose that
f ∈ Crd(T), then

∫ t

t
f (s)�s =

∫ δT±(t)

δT±(t)
f (s)�s. ()

We give some interesting properties of the exponential functions ep(t, t) and shift op-
erators on time scales which can be found in [].

Lemma . Let T be a time scale that is periodic in shifts δ± with the period P. Suppose
that the shifts δT± are �-differentiable on t ∈ T

∗ where T ∈ [P,∞)T∗ . Then the graininess
function μ : T→ [,∞) satisfies

μ
(
δT±(t)

)
= δ�T

± (t)μ(t).

Lemma . Let T be a time scale that is periodic in shifts δ± with the period P. Suppose
that the shifts δT± are�-differentiable on t ∈ T

∗ where T ∈ [P,∞)T∗ and p ∈R is�-periodic
in shifts δ± with the period T . Then

i. ep(δT±(t), δT±(t)) = ep(t, t) for t, t ∈ T
∗,

ii. ep(δT±(t),σ (δT±(s))) = ep(t,σ (s)) =
ep(t,s)

+μ(t)p(t) for t, s ∈ T
∗.

We define

PT =
{
x ∈ C(T,R) : x

(
δT+ (t)

)
= x(t)

}
,

http://www.advancesindifferenceequations.com/content/2014/1/76
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where C(T,R) is the space of all real-valued continuous functions endowed with the norm

‖x‖ = max
t∈[t,δT+ (t)]T

∣∣x(t)∣∣,
then PT is a Banach space.

Lemma . [] Let x ∈ PT . Then ‖xσ ‖ exists and ‖xσ ‖ = ‖x‖.

Lemma . x(t) ∈ PT is a solution of () if and only if

x(t) = λ

∫ δT+ (t)

t
G(t, s)b(s)f

(
s,x

(
h(s)

))
�s,

where G(t, s) = ea(s)(s,t)
ea(t)(δT+ (t),t)–

is the Green’s function.

Proof Let x(t) ∈ PT be a solution of (). We can rewrite equation () as

x�(t) + a(t)xσ (t) = λb(t)f
(
t,x

(
h(t)

))
.

Multiply both sides of the above equation by ea(t)(t, t) and then integrate from t to δT+ (t)
to obtain

∫ δT+ (t)

t

[
x(s)ea(s)(s, t)

]�
�s = λ

∫ δT+ (t)

t
ea(s)(s, t)b(s)f

(
s,x

(
h(s)

))
�s.

We arrive at

[
ea(t)

(
δT+ (t), t

)
– ea(t)(t, t)

]
x(t) = λ

∫ δT+ (t)

t
ea(s)(s, t)b(s)f

(
s,x

(
h(s)

))
�s.

Dividing both sides of the above equation by ea(t)(t, t) and using Lemma ., we have

x(t)
[
ea(t)

(
δT+ (t), t

)
– 

]
= λ

∫ δT+ (t)

t
ea(s)(s, t)b(s)f

(
s,x

(
h(s)

))
�s. ()

We get

x(t) = λ

∫ δT+ (t)

t

ea(s)(s, t)
ea(t)(δT+ (t), t) – 

b(s)f
(
s,x

(
h(s)

))
�s.

Thus, the proof is complete. �

It is easy to verify that the Green’s function G(t, s) satisfies the property

 <


ξ – 
≤G(t, s) ≤ ξ

ξ – 
for s ∈ [

t, δT+ (t)
]
T
, ()

where ξ = ea(t)(δT+ (t), t) and

G
(
δT+ (t), δ

T
+ (s)

)
=G(t, s) for t ∈ T

∗, s ∈ [
t, δT+ (t)

]
T
. ()

http://www.advancesindifferenceequations.com/content/2014/1/76
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Define K , a cone in PT , by

K =
{
x ∈ PT : x(t)≥ 

ξ
‖x‖,∀t ∈ [

t, δT+ (t)
]
T

}

and an operator Aλ : K → PT by

(Aλx)(t) = λ

∫ δT+ (t)

t
G(t, s)b(s)f

(
s,x

(
h(s)

))
�s.

Define

B :=
∫ δT+ (t)

t
b(s)�s, C := sup

t∈[t,δT+ (t)]T

a(t). ()

Lemma . Aλ(K )⊂ K and Aλ : K → K is compact and continuous.

Proof By using Theorem ., for x ∈ K , we have

(Aλx)
(
δT+ (t)

)
= λ

∫ δT+ (δT+ (t))

δT+ (t)
G

(
δT+ (t), s

)
b(s)f

(
s,x

(
h(s)

))
�s

= λ

∫ δT+ (t)

t
G

(
δT+ (t), δ

T
+ (s)

)
b
(
δT+ (s)

)
δT�
+ (s)f

(
δT+ (s),x

(
h
(
δT+ (s)

)))
�s

= λ

∫ δT+ (t)

t
G(t, s)b(s)f

(
s,x

(
h(s)

))
�s

= (Aλx)(t).

One can show that for x ∈ K , we have

Aλx(t) ≥ λ

∫ δT+ (t)

t


ξ – 

b(s)f
(
s,x

(
h(s)

))
�s

=

ξ
λ

∫ δT+ (t)

t

ξ

ξ – 
b(s)f

(
s,x

(
h(s)

))
�s

≥ 
ξ
‖Aλx‖.

Therefore, Aλ(K ) ⊂ K . We will prove that Aλ is continuous and compact. Firstly, we will
consider the continuity of Aλ. Let xn ∈ K and ‖xn – x‖ →  as n → ∞, then x ∈ K and
|xn(t) – x(t)| →  as n → ∞ for any t ∈ [t, δT+ (t)]T. Because of the continuity of f , for any
t ∈ [t, δT+ (t)]T and ε∗ > , we have

‖Aλxn –Aλx‖ = max
t∈[t,δT+ (t)]T

|Aλxn –Aλx|

≤ max
t∈[t,δT+ (t)]T

λ

∫ δT+ (t)

t
G(t, s)b(s)

∣∣f (s,xn(h(s))) – f
(
s,x

(
h(s)

))∣∣�s

≤ λε∗ ξ

ξ – 

∫ δT+ (t)

t
b(s)�s = ε,

where ε∗ = [λB ξ

ξ– ]
–ε. Thus Aλ is continuous on K .

http://www.advancesindifferenceequations.com/content/2014/1/76
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Next, we prove that Aλ is a compact operator. It is equal to proving that Aλ maps
bounded sets into relatively compact sets.
Let S ⊂ K be an arbitrary bounded set in K , then there exists a number R >  such that

‖x‖ < R for any x ∈ K . We prove that AλS is compact. In fact, for any {xn}n∈N ∈ K and
t ∈ [t, δT+ (t)]T, we have

‖Aλxn‖ ≤ max
t∈[t,δT+ (t)]T

λ

∫ δT+ (t)

t
G(t, s)b(s)

∣∣f (s,xn(h(s)))∣∣�s

≤ λ
ξ

ξ – 

∫ δT+ (t)

t
b(s)

∣∣f (s,xn(h(s)))∣∣�s :=D

and

∥∥A�
λ xn

∥∥ ≤ max
t∈[t,δT+ (t)]T

∣∣∣∣a(t)Aλxn(t) + λ

(
a(t) +

a(t)
 +μ(t)a(t)

)

×
∫ δT+ (t)

t
G(t, s)b(s)f

(
s,xn

(
h(s)

))
�s +

λb(t)f (t,xn(h(t)))
 +μ(t)a(t)

∣∣∣∣
≤ C‖Aλxn‖ + λ

ξ

ξ – 
C

∫ δT+ (t)

t
b(s)

∣∣f (s,xn(h(s)))∣∣�s

+ λ max
t∈[t,δT+ (t)]T

∣∣b(t)∣∣∣∣f (t,xn(h(t)))∣∣
= CD + λ max

t∈[t,δT+ (t)]T

∣∣b(t)∣∣∣∣f (t,xn(h(t)))∣∣ := L,

which imply that {Aλxn}n∈N and {A�
λ xn}n∈N are uniformly bounded on [t, δT+ (t)]T. There

exists a subsequence of {Aλxn}n∈N converging uniformly on [t, δT+ (t)]T, namely, AλS is
compact. The proof is complete. �

Lemma . The existence of positive periodic solutions in shifts δ± of () is equivalent to
the existence of fixed point problem of Aλ in K .

The proof of Lemma . is straightforward and hence omitted.

3 Main result
In this section, we consider the existence of one or two positive T-periodic solutions in
δ± of (). Let us define

f = lim
x→+

min
t∈[t,δT+ (t)]T

f (t,x)
x

, f = lim
x→+

max
t∈[t,δT+ (t)]T

f (t,x)
x

,

f∞ = lim
x→∞ min

t∈[t,δT+ (t)]T

f (t,x)
x

, f∞ = lim
x→∞ max

t∈[t,δT+ (t)]T

f (t,x)
x

.

To prove the results, we will use the following theorem which can be found in Kras-
nosel’skĭı’s book [].

Theorem . (Guo-Krasnoselskĭı fixed point theorem) Let X be a Banach space, K ⊂ X
be a cone, and suppose that � and � are open, bounded subsets of X with  ∈ � and

http://www.advancesindifferenceequations.com/content/2014/1/76
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� ⊂ �. Suppose further that A : K ∩ (� \ �) → K is a completely continuous operator
such that either

(i) ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂�, ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂�, or
(ii) ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂�, ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂�

holds. Then A has a fixed point in K ∩ (� \ �).

Theorem . If either f∞ = ∞, f =  or f = ∞, f∞ =  holds, then equation () has a
positive T-periodic solution x in shifts δ± for

ξ – 
ξB

≤ λ ≤ ξ – 
B

. ()

Proof At first, in view of f∞ = limx→∞ mint∈[t,δT+ (t)]T
f (t,x)
x = ∞ uniformly on [t, δT+ (t)]T,

there exists r >  such that f (t,x)≥ μx for t ∈ [t, δT+ (t)]T, x ≥ r, where μ ≥ ξ . We define
� = {x ∈ PT : ‖x‖ < ξr} and if x ∈ ∂� ∩K , then ‖x‖ = ξr and r ≤ x ≤ ξr for all t. We get

‖Aλx‖ ≥ λ

ξ – 

∫ δT+ (t)

t
b(s)f

(
s,x

(
h(s)

))
�s

≥ λ

ξ – 

∫ δT+ (t)

t
b(s)μx

(
h(s)

)
�s

≥ ξr
B

∫ δT+ (t)

t
b(s)�s

= ξr = ‖x‖

and so ‖Aλx‖ ≥ ‖x‖ for all x ∈ K ∩ ∂�.
Next we use the assumption f = limx→+ maxt∈[t,δT+ (t)]T

f (t,x)
x =  uniformly on [t,

δT+ (t)]T. We can choose R > ξr >  large enough such that

f (t,x)≤ ηx,  ≤ x≤ R, t ∈ [
t, δT+ (t)

]
T
,

where η ∈ (, 
ξ
]. Then if � is the ball in K centered at the origin with radius R and if

x ∈ K ∩ ∂�, then we have

‖Aλx‖ ≤ λξ

ξ – 

∫ δT+ (t)

t
b(s)f

(
s,x

(
h(s)

))
�s

≤ λξ

ξ – 

∫ δT+ (t)

t
b(s)ηx

(
h(s)

)
�s

≤ 
B

∫ δT+ (t)

t
b(s)R�s

= R = ‖x‖

and so ‖Aλx‖ ≥ ‖x‖ for all x ∈ K ∩ ∂�. Consequently, Theorem . yields the existence
of a positive T-periodic solution x ∈ K ∩ (� \ �) of () in shifts δ±, that is,

ξr < x(t)≤ R, t ∈ [
t, δT+ (t)

]
T
.
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Next, let f =∞, f∞ =  hold. In view of f = limx→+ mint∈[t,δT+ (t)]T
f (t,x)
x =∞, there exists

r >  such that

f (t,x)≥ μx for t ∈ [
t, δT+ (t)

]
T
,  < x ≤ r,

where μ ≥ ξ . We define � = {x ∈ PT : ‖x‖ < r} and if x ∈ ∂� ∩ K , then ‖x‖ = r and
r
ξ

≤ x≤ r for all t. We get

‖Aλx‖ ≥ λ

ξ – 

∫ δT+ (t)

t
b(s)f

(
s,x

(
h(s)

))
�s

≥ λ

ξ – 

∫ δT+ (t)

t
b(s)μx

(
h(s)

)
�s

≥ r
B

∫ δT+ (t)

t
b(s)�s

= r = ‖x‖

and so ‖Aλx‖ ≥ ‖x‖ for all x ∈ K ∩ ∂�.
Next, since f∞ = limx→∞ maxt∈[t,δT+ (t)]T

f (t,x)
x = , there exists r >  such that

f (t,x)≤ ηx for x ≥ r, t ∈ [
t, δT+ (t)

]
T
,

where η ∈ (, 
ξ
]. Let r ≥ max{r, ξr} and it follows that x(t) ≥ 

ξ
‖x‖ ≥ r for x ∈ ∂�

and t ∈ [t, δT+ (t)]T, where � = {x ∈ PT : ‖x‖ < r}. For x ∈ K ∩ ∂�, we have

‖Aλx‖ ≤ λξ

ξ – 

∫ δT+ (t)

t
b(s)f

(
s,x

(
h(s)

))
�s

≤ λξ

ξ – 

∫ δT+ (t)

t
b(s)ηx

(
h(s)

)
�s

≤ 
B

∫ δT+ (t)

t
b(s)r�s

= r = ‖x‖,

and again we have ‖Aλx‖ ≤ ‖x‖ for x ∈ K ∩ ∂�. It follows from part (ii) of Theorem .
that Aλ has a fixed point in K ∩ (� \ �) and this implies that our given equation () has
a positive T-periodic solution x in shifts δ±, that is,

r < x(t)≤ r, t ∈ [
t, δT+ (t)

]
T
. �

Theorem . Let f = f∞ = ∞ hold. Further, assume that there is a constant R >  such
that

f
(
t,x(t)

) ≤ R

ξ
for x ∈ [,R], t ∈ [

t, δT+ (t)
]
T
. ()

Then equation () has two positive T-periodic solutions in shifts δ± for

ξ – 
ξB

≤ λ ≤ ξ – 
B

. ()
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Proof At first, in view of f = limx→+ mint∈[t,δT+ (t)]T
f (t,x)
x =∞, there exists R > R∗ >  such

that

f (t,x)≥ εx for t ∈ [
t, δT+ (t)

]
T
,  < x≤ R∗,

where ε ≥ ξ . Set � = {x ∈ PT : ‖x‖ < R∗}. Then, for x ∈ K ∩ ∂�, we have

‖Aλx‖ ≥ λ

ξ – 

∫ δT+ (t)

t
b(s)f

(
s,x

(
h(s)

))
�s

≥ λ

ξ – 

∫ δT+ (t)

t
b(s)εx

(
h(s)

)
�s

≥ ξ

B

∫ δT+ (t)

t
b(s)

R∗

ξ
�s

= R∗ = ‖x‖,

which implies

‖Aλx‖ ≥ ‖x‖ for x ∈ K ∩ ∂�. ()

Next, since f∞ = limx→∞ mint∈[t,δT+ (t)]T
f (t,x)
x = ∞, then for any α ≥ ξ  there exists R∗ > R

such that f (t,x)≥ αx for x≥ R∗. Set � = {x ∈ PT : ‖x‖ < R∗}. For x ∈ K ∩ ∂�, since x ∈ K ,
x(t)≥ 

ξ
‖x‖ = 

ξ
R∗, we have

‖Aλx‖ ≥ λ

ξ – 

∫ δT+ (t)

t
b(s)f

(
s,x

(
h(s)

))
�s

≥ λ

ξ – 

∫ δT+ (t)

t
b(s)αx

(
h(s)

)
�s

≥ ξ

B

∫ δT+ (t)

t
b(s)

R∗
ξ

�s

= R∗ = ‖x‖,

which implies

‖Aλx‖ ≥ ‖x‖ for x ∈ K ∩ ∂�. ()

Finally, let � = {x ∈ PT : ‖x‖ < R}. For x ∈ K ∩ ∂�, then from (), we have

‖Aλx‖ ≤ λξ

ξ – 

∫ δT+ (t)

t
b(s)f

(
s,x

(
h(s)

))
�s

≤ ξ

B

∫ δT+ (t)

t
b(s)

R

ξ
�s

= R = ‖x‖,

which implies

‖Aλx‖ ≤ ‖x‖ for x ∈ K ∩ ∂�. ()
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Hence, since R∗ < R < R∗ and (), () and (), it follows from Theorem . that Aλ has
a fixed point x in K ∩ (� \ �) and a fixed point x in K ∩ (� \ �). Both are positive
T-periodic solutions in shifts δ± of equation () and  < ‖x‖ < R < ‖x‖. The proof is
therefore complete. �

Theorem . Let f = f∞ =  hold. There exists a constant R >  such that

f
(
t,x(t)

) ≥ ξR for x ∈
[

ξ
R,R

]
, t ∈ [

t, δT+ (t)
]
T
.

Then equation () has two positive T-periodic solutions in shifts δ± for

ξ – 
ξB

≤ λ ≤ ξ – 
B

.

Proof It can be proved similarly to the second part of Theorem . and Theorem .. �
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