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Abstract
We consider the minimum L1-norm estimator θ ∗

ε of the parameter θ of a linear
stochastic differential equation dXt = θXt dt + ε dBHt , X0 = x0, where {BHt , 0 ≤ t ≤ T} is a
fractional Brownian motion. The asymptotic law of its limit distribution is studied for
T → +∞, when ε → 0.
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1 Introduction
Stochastic differential equations driven by Brownian motions are used widely in variety
of sciences as stochastic modeling to describe some phenomena. There are many applica-
tions such as mathematical finance, economic processes as well as signal processing. The
Ornstein-Uhlenbeck process, which is also called the Vasicek model in finance, is being
extensively used in finance over the last few decades as the one-factor short-term inter-
est rate model. Statistical inference for the process of Ornstein-Uhlenbeck type driven
by Brownian motions has been an active research area, and a comprehensive survey of
various methods is given in Prakasa Rao [].
As fractional Brownianmotion plays an important role in themodeling of financial time

series, there has been a growing interest in the study of similar problems for stochas-
tic processes driven by fractional Brownian motion (fBm) in view of their applications to
long-range dependence of time series. A stationary sequence (Xn)n∈N exhibits long-range
dependence if the autocovariance functions ρ(n) := cov(Xk ,Xk+) satisfy

lim
n→∞

ρ(n)
cn–α

= 

for some constant c andα ∈ (, ). In this case, the dependence betweenXk andXk+n decays
slowly as n→ ∞ and

∞∑
n=

ρ(n) =∞

(see, e.g., [, Definition .., p.]). The long-range dependence was first observed by the
hydrologist Hurst [] on projects involving the design of reservoirs along the Nile river.
It was also observed that a similar phenomenon occurs in problems concerning traffic
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patterns of packet flows in high-speed data networks such as the Internet (see [, ]) and
in macroeconomics and finance (see []).
The problem of parameter estimation and filtering in a simple linear model driven by a

fractional Brownian motion was studied by Le Breton [] in the continuous case. Prakasa
Rao [, ] studied parametric estimation for more general classes of stochastic processes
satisfying the linear stochastic differential equations driven by fractional Brownian mo-
tion, observed over a fixed period of time T . And Prakasa Rao [] also studied the condi-
tions for such a phenomenon for estimating the drift parameter of a fractional Ornstein-
Uhlenbeck type process. For the case of discrete data, the problemof parameter estimation
was studied in [, ]. The paper [] obtained the LSE for fractional Ornstein-Uhlenbeck
processes and derived the asymptotic normality of this LSE by using Malliavin calculus.
The problem of estimating the parameters in the discrete case has also been given consid-
erable attention (see, e.g., [, ]).
In case of diffusion type processes driven by fractional Brownian motions, a popular

method is themaximum likelihood estimators (MLE). TheMLE of the drift parameter has
also been extensively studied (see, e.g., [, ]). Moreover, in recent years, the papers [–
] studied the asymptotic properties of MLE for the drift parameter in some fractional
diffusion systems. However, MLE has some shortcomings, its expression of a likelihood
function is not explicitly computable. Moreover, MLE is not robust, which means that the
properties ofMLEwill be changed by a slight perturbation. In order to overcome this diffi-
culty, the minimum distance approach is proposed. For a more comprehensive discussion
of the properties of minimum distance estimators, we refer to Millar [].
Following thework of Kutoyants and Pilibossian [], Prakasa Rao [] studied themini-

mum L-norm estimator θ∗
ε of the drift parameter of a fractionalOrnstein-Uhlenbeck type

process and proved that ε–(θ∗
ε – θ ) converges in probability under Pθ to a random vari-

able ζ . However, it is not clear what the distribution of ζ is, so it would be interesting
to study the distribution of ζ . In this paper we will study the asymptotic law of its limit
distribution for T → +∞.

2 Preliminaries
Let (�,F , {Ft}t≥,P) be a basic complete filtered probability space satisfying the usual
conditions, i.e., the filtration is continuous on the right andF contains all P-null sets.We
consider the parameter estimation problem for a special fractional process, i.e., fractional
Ornstein-Uhlenbeck process, which satisfies the following stochastic differential equation:

dXt = θXt dt + ε dBH
t ,  ≤ t ≤ T ,X = x, ()

where the drift parameter θ ∈ � = (θ, θ) ⊆ R is unknown, ε >  and BH = {BH
t (t),  ≤ t ≤

T} is a scalar fractional Brownian motion defined on the probability space (�,F , {Ft}t≥,
P). For a fractional Brownian motion BH with Hurst parameterH ∈ (  , ), we mean that it
is a continuous and centered Gaussian process with the covariance function

E
(
BH
s B

H
t
)
=


[
sH + tH – |s – t|H]

, t ≥ , s ≥ . ()

By [] (see Definitions .. and .., p.), we introduce the following.
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Definition  We say that an R
d-valued random process X = (Xt)t≥ is self-similar or sat-

isfies the property of self-similarity if for every a >  there exists b >  such that

Law(Xat , t ≥ ) = Law(bXt , t ≥ ), ()

where Law(·) denotes the law of random variable · .

Remark  Note that () means that the two processes Xat and Xbt have the same finite-
dimensional distribution functions, i.e., for every choice t, . . . , tn in R,

P(Xat ≤ x, . . . ,Xatn ≤ xn) = P(Xbt ≤ x, . . . ,Xbtn ≤ xn)

for every x, . . . ,xn in R.

Definition  If b = aH in the above definition, then we say that X = (Xt)t≥ is a self-similar
process with Hurst index H or that it satisfies the property of (statistical) self-similar pro-
cess with Hurst index H . The quantity D = /H is called the statistical fractal dimension
of X.

Remark  Note that the law of a Gaussian random variance is determined by its expecta-
tion value and variation. By (), it is easy to see that BH is a self-similar process with Hurst
index H . Let

BH∗
T := sup

≤t≤T
BH
t . ()

Then we conclude from the fact that BH is a self-similar process with Hurst index H that

Law
(
BH*
at

)
= Law

(
aHBH∗

t
)
, a > , t ≥ . ()

Let θ be the true parameter of θ ∈ � = (θ, θ) ⊆ R, and xt(θ ) := xeθ t ,  ≤ t ≤ T , the
solution of () with ε = . It is easy to see from () that

Xt – xt(θ) = εeθt
∫ t


e–θs dBH

s . ()

In this paper, we are concerned with the minimum L-norm estimate θ∗
ε defined by

θ∗
ε := arg inf

θ∈�

∫ T



∣∣Xt – xt(θ )
∣∣dt. ()

Set

Yt := eθt
∫ t


e–θs dBH

s , ()

which is aGaussian process and can be interpreted as the ‘derivative’ of the process {Xt , ≤
t ≤ T} with respect to ε.
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Introduce the random variable

ζT := arg inf
–∞<u<∞

∫ T



∣∣Yt – utxeθt
∣∣dt. ()

Let Pθ be the probability measure induced by the process {Xt} when θ is the true param-
eter and ε → . So, hereafter, we denote ζ = ζT , C is a constant.

Theorem  As ε → , the random variable ε–(θ∗
ε – θ) converges in probability to a ran-

dom variable whose probability distribution is the same as that of ζ under Pθ .

The above theorem due to Prakasa Rao [] describes the behavior of ε–(θ∗
ε – θ).

Though the distribution of ζ is not clear, we can consider its limiting behavior asT → +∞.

3 Asymptotic law
Theorem  Suppose that θ > , let δT = xT(θ)–HζT , then as T → ∞, we have
Law(δT ) ⇒ Law(BH ()).

Proof Using the properties of the stochastic integral, we can write

Yt = eθt
∫ t


e–θs dBH

s = eθtB̃H
(∫ t


e–θs ds

)
. ()

By applying Remark ,

Yt = eθtB̃H
(
 – e–θt

θ

)
=

eθt

(θ)H
B̃H(

 – e–θt
)
, ()

where B̃H (·) is a fractional Brownian motion.
Let

γ =  – e–θt , ≤ γ ≤ T∗ =  – e–θT ,

ω =
ux

(θ)H
ln

(


 – T∗

)
, u ∈R.

After changing the variables t and u in the definition of ζT , we have

ζT = arg inf
–∞<u<∞

∫ T∗



∣∣∣∣BH (γ ) –
ux

(θ)H
ln


 – γ

∣∣∣∣ 
( – γ )/

dγ

=
(θ)H

x ln 
–T∗

arg inf
–∞<ω<∞

∫ T∗



∣∣∣∣BH (γ ) –ω
ln 

–γ

ln 
–T∗

∣∣∣∣ 
( – γ )/

dγ =
(θ)H

x ln 
–T∗

δT .

We can see that the distribution of the random variable ζT depends on three parameters
θ, x and γ , but after changing there is only one parameter T∗ that the distribution of the
random variable δT depends on.
Then, we just need to show that for every η > ,

lim
T→∞Pθ

{∣∣δT – BH ()
∣∣ > η

}
= . ()
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For this purpose, we define the set

Vη =
{
ω ∈ R : ω – BH () > η

}
.

Let

J(ω) =
∫ T∗



∣∣∣∣BH (γ ) –ω
ln 

–γ

ln 
–T∗

∣∣∣∣ 
( – γ )/

dγ .

Then

δT := arg inf
–∞<ω<∞ J(ω). ()

We have

J
(
BH ()

)
=

∫ T∗



∣∣∣∣BH (γ ) – BH ()
ln 

–γ

ln 
–T∗

∣∣∣∣ 
( – γ )/

dγ

≤
∫ T∗



|BH (γ ) – BH ()|
( – γ )/

dγ +
|BH ()|
ln 

–T∗

∫ T∗



ln –γ

–T∗
( – γ )/

dγ

=: I + I.

As T∗ → , we get

√
 – T∗ ln


 – T∗E

{|I|} ≤ C
√
 – T∗ ln


 – T∗

∫ T∗



( –ω)H

( –ω)/
dω

≤ C(H – /)–
√
 – T∗ ln


 – T∗

[
 –

(
 – T∗)(H–/)] → 

and

√
 – T∗ ln


 – T∗E{I} =

√
 – T∗ ln


 – T∗

|BH ()|
ln 

–T∗

√
 – T∗

∫ 
–T∗



lnx
x/

dx

=
∣∣BH ()

∣∣ ∫ 
–T∗



lnx
x/

dx < +∞. ()

So as T → +∞ corresponds to T∗ → ,

lim
T∗→

J
(
BH ()

)√
 – T∗ ln


 – T∗ < ∞ in Pθ-probability. ()

At the same time, we get, for ω ∈ Vη ,

J(ω) =
∫ T∗



∣∣∣∣BH (γ ) – BH ()
ln 

–γ

ln 
–T∗

+
(
BH() –ω

) ln 
–γ

ln 
–T∗

∣∣∣∣ 
( – γ )/

dγ

≥ ∣∣BH () –ω
∣∣ ∫ T∗



ln 
–γ

ln 
–T∗


( – γ )/

dγ
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–
∫ T∗



∣∣∣∣BH (γ ) – BH()
ln 

–γ

ln 
–T∗

∣∣∣∣ 
( – γ )/

dγ

≥ η

∫ T∗




( – γ )/

dγ – η

∫ T∗



(
 –

ln 
–γ

ln 
–T∗

)


( – γ )/
dγ – J

(
BH ()

)

= η
(

√
 – T∗ – 

)
–

η

ln 
–T∗

∫ T∗


ln

 – γ

 – T∗


( – γ )/
dγ – J

(
BH ()

)
.

Then

inf
ω∈Vη

J(ω)
√
 – T∗ ln


 – T∗

≥ η
(
 –

√
 – T∗) ln 

 – T∗ – η

∫ 
(–T∗)



lnx
x/

dx –
√
 – T∗ ln


 – T∗ J

(
BH ()

)

≥ η ln


 – T∗ .

So as T → ∞ corresponds to T∗ → ,

inf
ω∈Vη

J(ω)
√
 – T∗ ln


 – T∗ → +∞ in Pθ-probability. ()

From () and (), we obtain that as T → +∞ corresponds to T∗ → ,

infω∈Vη J(ω)
J(BH ())

→ +∞ in Pθ-probability. ()

By (), we get

δT = inf
ω∈Vη

J(ω) ≤ J
(
BH ()

)
. ()

Therefore, from relation (), for any η > , we have the result ().
In other words,

Law(δT ) ⇒ Law
(
BH ()

)
.

This completes the proof. �

4 Conclusion
It is interesting to note that, for T → ∞, although the distribution of ζ is not clear, we can
obtain the asymptotic law of its limit distribution. Furthermore, they can also be obtained
in the case of L-norm and Lp-norm.
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