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1 Introduction

Consider the second-order self-adjoint discrete Hamiltonian system
A[p(n)Au(n - 1)] — L(n)u(n) + VW(n, u(n)) =0, (1.1)

where n € Z, u € RV, Au(n) = u(n + 1) — u(n) is the forward difference, p, L : Z — RN N
and W:Z x RV — R.

Discrete Hamiltonian systems can be applied in many areas, such as physics, chemistry,
and so on. For more discussions on discrete Hamiltonian systems, we refer the reader to
(1, 2].

As usual, we say that a solution u#(n) of system (1.1) is homoclinic (to 0) if u(n) — 0 as
n — +00. In addition, if u#(n) # 0 then u(n) is called a nontrivial homoclinic solution.

The existence and multiplicity of homoclinic solutions of system (1.1) or its special forms
have been investigated by many authors. Papers [3—8] deal with the periodic case where
p, L and W are periodic in n or independent of #. In contrast, if the periodicity is lost, be-
cause of lack of compactness of the Sobolev embedding, up to our knowledge, all existence

results require a coercivity condition on L:

lim [ inf (L(n)x,x)] =00. (1.2)

[nl—0oLyeRN |x|=1

For example, see [9-14]. In the above mentioned papers, except [14], L was always required
to be positive definite.

In this paper, we derive an existence result which does not need periodicity and coerciv-
ity conditions on L(n). To state our results precisely, we make the following assumptions.

(P) p(n) is N x N real symmetric positive definite matrix for all n € Z.
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(L) L(n)is N x N real symmetric nonnegative definite matrix for all # € Z, and there
exist a positive integer Ny € Z and $ > 0 such that

min (L(n)x,x) > B, |n|> Ny,
xeRN,|x|=1( ) p 0

where here and in the sequel, (-,-) denotes the standard inner product in R" and | - | is
the induced norm.
(W1) W(n,x) is continuously differentiable in x for every n € Z, W(n,0) =0,
W (n,x) > 0 for all (n,x) € Z x RV
(W2) limpy_o Vv‘q‘"’x) = 0 uniformly for all n € Z.

(W3) limyy oo ‘Wli'rz’x)‘ = 00 uniformly for all # € Z.

(W4) W(n,x):= %(V W (n,x),x) — W(n,x) >0, V(n,x) € Z x RV, and there exist
£ €(0,1), cg >0, and Ry > 0 such that

ﬂ(1_8)| |2
2

(VW (n,x),x) < x% V(mx)eZ xRV, |x| <R,

and
(VW(n,x),x) < c0|x|2V~7(n,x), Y(n,x) € Z x RV, |x] > Ro.

Now, we are ready to state the main result of this paper.

Theorem 1.1 Assume that p, L and W satisfy (P), (L), (W1), (W2), (W3), and (W4). If
there exist ny € 7 and x € RV such that

2
B> 2co sug[%((p(mo) +p(no +1) + L(ng) )%, %0) — W(no,sxo):|, (1.3)

then system (1.1) possesses a nontrivial homoclinic solution.

In Theorem 1.1, we replace (L) and (W4) by the following assumptions:

(L)  L(n)is N x N real symmetric nonnegative definite matrix for all # € Z, and it sat-
isfies (1.2).

(W4') W(n,x):= %(VW(n,x),x) - W(nx) > 0, ¥(n,x) € Z x RV, and there exist ¢y > 0
and Rj > 0 such that

(VW(n,x),x) < c0|x|2\7/(n,x), V(n,x) € Z x RV, |%] > Ro.

Then we have the following corollary immediately.

Corollary 1.2 Assume that p, L and W satisfy (P), (L), (W1), (W2), (W3) and (W4'). Then

system (1.1) possesses a nontrivial homoclinic solution.

Remark1.3 If W(n, x) satisfies the well-known global Ambrosetti-Rabinowitz superquad-
ratic condition:
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(AR) there exists u > 2 such that
0<uWnx) < (VW/(n,x),x), VY(n,x) € Z x RV \ {0},
then there exists a constant Cy > 0 such that
W(n,x) > Colx|*, Y(mx)eZ xRN |x| > 1;
moreover W (1,x) > 0 for all (1,x) € Z x (RV \ {0}), and
(VW(n,x),x) < %Mzﬁﬂn,x), V(n,x) € Z x RV, lx] > 1.

In addition, by virtue of (W2), there exists 8; > 0 such that

(VW (n,x),x) < %

%12, V(n,x)eZ x RV, lx] <1.

These show that (W3) and (W4) hold with Ry =1, ¢o = 2u/(t —2) and B > B;. Let p(n) =
Iy and L(n) = An%/(1 + n®)Iyy and choose 1y = 0 and %o = (1,0,...,0) € RV, In view of
Theorem 1.1, if

4
A>max{ ad sup[sz—W(O,sxo)],,Bl},
H=2 g0

then system (1.1) possesses a nontrivial homoclinic solution.
Example 1.4 Let p(n) = I/, L(n) = [1 + An?/(1 + n*)]Ixr and
W (n,x) = x> In(1+ [x]?). (1.4)

Then

20x|*
1+ %2

(VW(n,x),x) =2|x|? ln(l + |x|2) +

It is easy to see that VNV(n,x) > 0 for all (1,x) € Z x RV, and

(VW(n,x),%) <22 + x>, V(nx) e Z xRV, |x| <1,
(VW(n,x),x) < 6|x|2V~V(n,x), Y(n,x) € Z x RV, |x| > 1.
These show that (W3) and (W4) hold with Ry =1, ¢y = 6 and 8 > 2(2In2 + 1). We choose
no =0and xo = (1,0,...,0) € RV, Then
&2

sup[z((p(no) +p(no +1) + L(no) %o, %0) — W(”O’SxO)j|

s>0

3, )
= sup 7—5 1n(1+s) <6—In2.

$>0

In view of Theorem 1.1, if & > 12(6 — In 2), then system (1.1) possesses a nontrivial homo-

clinic solution.
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2 Preliminaries
Throughout this section, we always assume that p and L satisfy (P) and (L). Let

S= {{”(”)}nez cu(n) € RV, ne Z},

E= {u esS: Z[(p(n +1)Au(n), Au(n)) + (L(n)u(n),u(n))] < +oo},

ne’Z

and for u,v € E, let

(u,v) = Z[(p(n +1)Au(n), Av(n)) + (L(n)u(n),v(n))].

nez
Then E is a Hilbert space with the above inner product, and the corresponding norm is
172
||| = {Z[(p(n +1)Au(n), Au(n)) + (L(n)u(n), u(n))]} , uekE.
nez

As usual, for 1 <s < +00, set

lS(Z,]RN) = {u €s: Z|u(n)|5 < +oo}

nez

and

ZOO(Z,]RN) = {u eS:sup‘u(n)’ < +oo},

nez
and their norms are defined by

1/s
||u||s=(Z|u<n)|s) . Vuel(ZRY);

nez

., Yuel®(Z,RY),

ll24ll oo = sup|u(n)
nez

respectively.

Lemma 2.1 Suppose that (L) is satisfied. Then

1
lileo < — el + > |auGs)|, ueE (2.1)
Is|<Nop-1

and

||u||m5max{\/%,,/2aﬂ}||u||, ueE, 22)

where a = Miny, <, jx=1(P(1)%, X).
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Proof Since u € E, it follows that limy,—, « |#(n)| = 0. Hence, there exists n, € Z such that
llt]loo = |(n4)|. There are two possible cases.
Case (i). |n«| = Npy. According to (L), one has

Nl = |u(n)|” < 1 > (Ls)uls) uls) < %Ilull.

Is|>No
Case (ii). |7,| < No. Without loss of generality, we can assume that 7, > 0, then

Np-1

lulloo < |uNo)| + D | Aus)|

S=Nx

) 12 N, No-1 1/2
< [E 3 (L)), u(s))] + E (ZalAu<s>|2)

Is|=No S=Hy

Np-1

1/2
< ﬁ[% Z (L(S)u(s), u(s)) + % Z (p(s +1)Au(s), Au(s)):|

|s|>No S=Hy

§max{\/§,,/%}”u|l. (2.3)
B o

Cases (i) and (ii) imply that (2.1) and (2.2) hold. O

Now we define a functional ® on E by

D(u) = % > [t + D Au(n), Aun) + (Linuln), u(n))] = > W (n,u(n)). (2.4)

nez nez

For any u € E, there exists an n; € N such that |u(n)| <1 for |n| > n;. Hence, under as-
sumptions (P), (L), (W1), and (W2), the functional ® is of class C'(E,R). Moreover,

D(u) = %nunz - XZj W(n,u), VueE (2.5)
and
(@' (), v) = (u,v) = > (YW (n,u),v), Vu,veE. (2.6)
nez

Furthermore, the critical points of ® in E are solutions of system (1.1) with u(£o0) = 0,
see [5, 6].
Let e = {e(n)} ez € E with e(ng) = x and e(n) = 0 € RV for n # ng.

Lemma 2.2 Suppose that (L), (W1) and (W2) are satisfied. Then

2
sup{d(se):s >0} < sup[%((p(no) +p(no +1) + L(ng) ) xo, %0) — W(no,sxo)]. (2.7)

s=>0
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Proof From (2.4) and the definition of e, we get

D(se) = — Z (n +1)Ae(n), Ae(n)) (L(n e(n), e(n) Z W n, se(n

ne’ neZ
= SE[(P(”IO +1)Ae(ng), Aeln)) + (plno) Aelng — 1), Aelng — 1))
+ (L(no)e(no), e(ng)) ] = W (o, se(no))
= ;((P(l’lo) +p(ny +1) + L(no))xo,xo) - W(no, sxo). (2.8)
Now the conclusion of Lemma 2.1 follows by (2.8). |

Applying the mountain-pass lemma without the (PS) condition, by standard arguments,
we can prove the following lemma.

Lemma 2.3 Let W(n,x) > 0, V(n,x) € Z x RN Suppose that (P), (L), (W1), (W2) and
(W3) are satisfied. Then there exist a constant c € (0, sup,.., ®(se)] and a sequence {ur} C E

satisfying
O (u) — ¢, @ (i) | (1 + Nleaell) — O. (2.9)

Lemma 2.4 Suppose that (P), (L), (W1), (W2), (W3), and (W4) are satisfied. Then any
sequence {ui} C E satisfying

Q) > c>0, (P (), ux)—> 0 (2.10)
is bounded in E.

Proof To prove the boundedness of {u}, arguing by contradiction, suppose that ||| —
00. Let vk = ui/||uk||. Then ||vi|| = 1. By virtue of (2.5), (2.6), and (2.10), we have

D(uy) - %(@/(uk), we) =Y Wnu)=c+o(l). (2.11)

nez

If § := limsup;_, o, IVklloo = O, then it follows from (L), (W4) and (2.11) that

Z’VWn,uk uk|<—2|u|2<—2|u +—Z|uk(s)|2

lug|<Ro lug|<Ro Is|=No |s|<No
1 2 2 1 2
EHMkH + NoBlluc* vl 5 +0(1) [zl (2.12)
and
(VW (1, ur), ur )| ~ ~
Z W =<co Z |Vk|2W(”1: ui) < Co||‘/k||?,<J Z W (n, ux)
lig 1= Ro k Jug |=Ro liug |=Ro

<colc+Dlvl% — 0, k— oo. (2.13)

Page 6 of 9
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Combining (2.12) with (2.13) and using (2.5) and (2.10), we have

1+0(1) < llaa > = (D' (i), g} —Z (VW (1, ), )|

[l ||> llaak 12
nez

(VW (n, ug), ur)| (YW uw),u)| 1
D Tt T 3o (214)

lugl<Ro [ux|=Ro

This contradiction shows that § > 0.

Going if necessary to a subsequence, we may assume the existence of 7y € Z such that

1)
’Vk(nk)| = [[villoo > E

Let wi(n) = vi(n + ny), then
8
lwi(0)] > > VkeN. (2.15)

Now we define itx(n) = ur(n + ng). Then i (n)/||ukll = wi(n) and ||will2 = ||vill2- Passing
to a subsequence, we have wy — w in [*(Z, RMN), then wy(n) — w(n) for all n € Z. Clearly,
(2.15) implies that w(0) # 0.

It is obvious that w(n) # 0 implies limg_, |2k ()] = co. Hence, it follows from (2.5),
(2.10), and (W3) that

cto(l) . D(uy)
koo Jlugll® koo [lull*

1 W(}’l, I/lk) 2
= lim | =— > ————[w]
1 w ki, U
= lim |:_ _Z(nf—guk)| |2i|
ko] 2. i~ ||
| W(n + ky, g 2
< ——liminf ) ——————|wg|
2 k— 00 ;Z: | |2
= —OO,
which is a contradiction. Thus {u;} is bounded in E. O

3 Proof of theorem
Proof of Theorem 1.1 Applying Lemmas 2.3 and 2.4, we deduce that there exists a bounded
sequence {uy} C E satisfying (2.9). By Lemma 2.2 and (1.3), one has
B
<—. 3.1
<L (31)

Going if necessary to a subsequence, we can assume that u; — # in E and ®'(u;) — 0.
Next, we prove that u # 0.
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Arguing by contradiction, suppose that & = 0, i.e. ux — 0 in E, and so ux(n) — 0 for

every n € Z. Hence,

el = 3 Juenl + Y Jum)f < %nukn%o(n. (3:2)

[n|=No In|<No

According to (W4) and (3.2), one gets

> (vWonuw) < P S e < L E g o), (33)

lu|<Ro |ug |<Ro

By virtue of (2.5), (2.6), and (2.9), we have

D (o) = (@ (i), i) = Y - W) = ¢ + 0(1). (3.4)

nez

1
2
Using (W4), (2.1), (3.1), (3.2), and (3.4), we obtain

Z (VW(’/I’ Ltk), Mk) =<co Z |uk|2ﬁly(n: Mk)

lug|=Ro [ug|=Ro

<collullZ, Y Winu)

lug|=Ro

2
< cocllulls, +o(1)

2
scoc(%nukw > |Auk(s)|) +o(1)

|s|<Np-1
= % el + o)
< S lal? + o(0), (35)
which, together with (2.6), (2.9), and (3.3), yields
0(1) = (P (ug), ure) = llux||* - Z(VW(VI: UR), Uk)
nez

£
> E””k”Z +0(1), (3.6)

resulting in the fact that |Ju|| — 0. Consequently, it follows from (W1), (2.5), and (2.9)
that

0<c= lim ®(u;) = ®(0) = 0.
k—o00
This contradiction shows # # 0. By standard arguments, we easily prove that # is a non-

trivial solution of (1.1). O
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