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Abstract

In this paper, we discuss the existence and multiplicity of positive solutions to
m-point boundary value problems of nonlinear fractional differential equations with
p-Laplacian operator

D (@, (D%, u(®) + @, (WF(tu®) =0, 0<t<1,
u0 =0,  DYuM)=YT72&EDL um),  D%ul0)=0,

where Df,, Doﬂ+ and D, are the standard Riemann-Liouville fractional derivatives with
T<a<20<By<10<a-B-1,1e0,+0),0<&,n<1,i=12,....m=2,
S2En* P <1 0<a-y - 1,f e C([0,1] x [0,400), [0,+00)), and @,(s) = [s|Ps,
p> 1,%1 =g, ;3 + 2—7 = 1. Our results are based on the monotone iterative technique
and the theory of the fixed point index in a cone. Furthermore, two examples are also

given toillustrate the results.

Keywords: fractional differential equation; m-point boundary value problems;
p-Laplacian operator

1 Introduction
Fractional differential equations arise in various areas of science and engineering. Due
to their applications, fractional differential equations have gained considerable attention
(see, e.g., [1-26] and the references therein).

Recently, there have been some papers dealing with the existence of solutions for non-
linear fractional differential equations with p-Laplacian operator. In [1], Wang et al. in-
vestigated the following boundary value problem for fractional differential equations with

p-Laplacian operator:

DL (0, (DR, u(®) + f(t,u()) =0, 0<t<1,
u(0) =0, u(l) = au(&), D§,u(0) =0, D§,u(1) = bD§, u(n),

where D, , Dg+ are the standard Riemann-Liouville fractional derivatives, 1 < «, 8 < 2,
0<a,b<1,0<&,n<1,f(tu)e C[(0,1) x (0,+00), [0, +00)].
©2014 Lv; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
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In [2], Chai studied the existence of positive solutions of the following fractional differ-
ential equations with p-Laplacian operator:
Df, (pp(Dg, (1) +f(L,u() =0, 0<t<l,
u(0) =0, u(l) + oD}, u(l) =0, D¢, u(0) =0,
where Df, Dg+ and D}, are the standard Riemann-Liouville fractional derivatives with
1< <2,0<8<1,0<y <1,0<a-y-1,the constant ¢ is a positive number, f (£, u) €
CU xRy, R,).

In [3], Chen and Liu studied the following fractional differential equations with p-
Laplacian operator:

Df (9,(D%,x(8))) = f(t,x(2)), £ €[0,1],
x(0) = —x(1), D§, x(0) = -DF, x(1),

whereO <o, <1,1<a+p<2,D],, Dg+ are Caputo fractional derivatives, and f : [0,1] x
R — R is continuous.

In [4], Lu et al. studied the following fractional differential equations with p-Laplacian
operator:

DY, (@, (D%, u(®) = f(t,u(t)), te[0,1],
u(0)=4/(0)=u'(1) =0, D§,u(0) =D, u(1) =0,

where2<a <3,1< 8 <2,D§,, Dg , are the standard Riemann-Liouville fractional deriva-
tives, and f (¢, u) € C([0,1] x [0, +00), [0, +00)).

On the other hand, in [5], Bai studied an eigenvalue interval of the following fractional
boundary problem:

Dy, u(t) + Ah(2)f(u(t)) =0, O0<t<],
u(0) =u/(1) =u"(0) = 0,

where 2 <o < 3, °Dj, is the standard Caputo fractional derivative, A > 0.
In [6], Zhang et al. studied the following singular eigenvalue problem for a higher order
fractional differential equation:

—D%x(t) = Af (x(2), DM x(t), D*2x(¢), ..., D*n-1x(¢)), 0<t<],
x(0)=0,  DHx(0)=0,  D'x(l)=Y ' aD'x(E), 1<i<n-1,

wheren>3,n-1<a<mn-l-l<a-pu<n-1forli=1,2,...,n—2,and u — u,_1 >0,

a—py1 <2, —u>1.Df, is the standard Riemann-Liouville fractional derivative.
Moreover, in recent years, we have done some work on fractional differential equations

[7-9]. In [7], we considered the following m-point boundary value problem for fractional

differential equations:

D§ u(t)+f(t,u(t)=0, 0<t<l],
u(©0)=0, Db u(l)=Y"EDS, uln),
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where Dj, is the standard Riemann-Liouville fractional derivative, n = [«] + 1, f : [0,1] x
[0,00) = [0,00) is continuous, 1 < <2,0<8<1,0<a-8-1,0<é&,m<1,i=
1,2,...,m-2,and Y72 g P <1

Combining our work, in this paper, we discuss the existence of positive solutions for the
following fractional differential equations with p-Laplacian operator:

Dy, (¢p(Dg,u®)) + p,(Wf (t,u(t) =0, 0<t<], w)
w0)=0,  Dyu)=Y &DG utn),  D§.u(0)=0, '
where Df, Dg+ and D}, are the standard Riemann-Liouville fractional derivatives with
l<a<2,0<B8y=<1,0<a-B8-1,r1€(0,+x), 0<&,n,<1,i=12,....,m—2,
S e P <1,0<a -y —1,f € C([0,1] x [0,+00), [0, +00)), and @p(s) = IsIP2s, p> 1,
O =gyt =1

Our work presented in this paper has the following features. Firstly, to the best of the
author’s knowledge, there are few results on the existence of solutions for nonlinear frac-
tional p-Laplacian differential equations with m-point boundary value problems. Sec-
ondly, we transform (1.1) into an equivalent integral equation and discuss the eigenvalue
interval for the existence of multiplicity of positive solutions. The paper is organized as
follows. In Section 2, we present some background materials and preliminaries. Section 3
deals with some existence results. In Section 4, two examples are given to illustrate the
results.

2 Background materials and preliminaries
Definition 2.1 ([10, 11]) The fractional integral of order o with the lower limit ¢, for a
function f is defined as

I°f(¢) = ﬁ /tt(t—s)"‘_lf(s) ds, t>ty,a>0,

where I' is the gamma function.

Definition 2.2 ([10,11]) The Riemann-Liouville derivative of order a with the lower limit
to for a function f is

D‘t’Of(t) = ﬁ <%>” /tt(t—s)"_“_lf(s) ds, t>tg,a>0,n=[ca]+1.

- 0

Lemma 2.1 ([12]) Assume that u € C(0,1) N L}(0,1) with a fractional derivative of order
a > 0 that belongs to C(0,1) N LY(0,1). Then

I§, Dy, u(t) = u(t) + Cit® P+ Cut* 2 4o+ Cyt*™N forsome C; eR,i=1,2,...,N,
where N is the smallest integer greater than or equal to «.
Lemma 2.2 ([7]) Let y € C[0,1]. Then the fractional differential equation

Diu(t)+y(t)=0, O<t<ll<a<2,
w(0)=0,  Df,u(t)= Y0 &0, uln)
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has a unique solution which is given by

1
= G(¢, ds,
u(t) /0 (t,9)y(s) ds
where

G(t,s) = Gi(t,8) + Gy (¢, 5),

in which
,ga—l(l,s)a—ﬂ—l,(t,s)a—l O <s<t< 1
_ I'(a) ’ =7 ="="
Gl(t’ S) = t(x—l(l_ )a—ﬁ—l
L 0<t<s<l1
T St=s=4

Gz(t, S) = AT ()
Al"l(a) (ZniSssl Emi P (1 - 5)* ),

where

m-2
A=1-) g
i=1

L [ sy, (Em P11 = )P — 971, — )P 1)),

te[0,1],
te[0,1],

Lemma 2.3 ([7]) IfZZIZ Einq_ﬂ_l < 1, then the function G(t,s) in Lemma 2.2 satisfies the

i
following conditions:

(i) G(t,s)>0,fors,te(0,1),
(i) G(s) < Gi(s,s), fors, t € [0,1],
where

G.(s,8) = ﬁ(l —s) Py Al"l(oz)

Lemma 2.4 G(t,s) in [7] has the following property:
Gl s) > t“1G@, s).
Proof For 0 <s <t <1, we conclude that
ta—l(l _ S)a—ﬂ—l _ (t _ S)a—l
s a1
o (1)
t
> tot—l [(1 _ S)a—ﬂ—l _ (1 _S)a—l].
Thus
Gi(t,s) > ta_lGl(l, s).
It is obvious that

G2 (lf, S) > ta71 G2 (1, S).

m-2
DB (S
i=1

Page 4 of 16
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G(t,s) > t*71G(,s). O

Lemma 2.5 Let f € C([0,1] x [0, +00), [0, +00)), then BVP (1.1) has a unique solution
1
ult) = A / G(t, )0, (I5.f (s, u(s))) ds.
0

Proof Let w=D{, u, v = ¢,(w). From (1.1), we have

Dgw(t) +p,(Mf(tu@®) =0, 0<t<],
v(0) = 0.

By Lemma 2.1, we have

w(t) = ¢t —I& (gop(k)f(t, u(t))), O0<t<l.
It follows from v(0) = O that

wt) = -1, (0,0 (£, u(D)), 0<t<l.
Thus, from (1.1) we know that

Dy, u®) = 9, (I} (@,(Wf (tu(r), 0<t<l,
w(0)=0,  Dj,u(l) = Y7 &Dy, ulny).

By Lemma 2.2, (1.1) has a unique solution
1
ult) = -2 / G(t,8)@, (<1, f (s, u(s))) ds.
0

It follows from f € C([0,1] x [0, +00), [0, +00)) that

1 1

—/ G(t, s)<p1;1(— (’if(s,u(s))) ds = / G(t,s)gz)[;l (I&f(s, u(s))) ds.

0 0
Thus
1
u(t) = A/ G(L‘,s)<p1;1 (lg+f(s, u(s))) ds. O
0

Lemma 2.6 ([27]) Let E be a real Banach space, P C E be a cone, Q, ={u € P: ||lu|| <r}.
Let the operator T : PN Q, — P be completely continuous and satisfy Tx # x, Vx € 9%,

Then

@) If ITxll <|llxll, Vx€0RQ, then iT,Q,P)=1,

i) If ITx|=|xl, Vxe0d%,, then iT,Q,P)=0.
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3 Main results
We consider the Banach space E = C([0,1], R) endowed with the norm defined by ||u|| =
SUpg,<1 u(t)|. Let P = {u € E|u(t) > 0}, then P is a cone in E. Define an operator T': P — P

as
1
(Tu)(t) = A /0 G(t,9)@," (15, f (s, u(s))) ds. (3.1)

Then T has a solution if and only if the operator T has a fixed point.

Lemma 3.1 Iff € C([0,1] x [0, +00), [0, +00)), then the operator T : P — P is completely

continuous.

Proof From the continuity and non-negativeness of G(¢,s) and f(t, u(t)), we know that
T :P — Pis continuous.

Let Q C P be bounded. Then, for all £ € [0,1] and u € 2, there exists a positive constant
M such that |f(¢, u(t))| < M. Thus,

1
‘(Tu)(t)| = ‘A/O G(t,s)(pgl(lgj(s,u(s))) ds

1 s B q-1 Ma-1
§k/0 G*(s,s)(/0 (s—1)° 1a’t> dSW

Mq—l 1
=h—— | G.(s,5)s9 VP ds
(B + 1)t /o

Mq—l 1
Ekw/o‘ G*(S,S)dS

MI1L
TS EE

where

1
L:/ G.(s,s)ds.
0

This means that T(2) is uniformly bounded.

On the other hand, from the continuity of G(¢,s) on [0,1] x [0,1], we see that it is uni-
formly continuous on [0,1] x [0,1]. Thus, for fixed s € [0,1] and for any ¢ > 0, there exists
a constant § > 0 such that #;,£, € [0,1] and |, — 5| < 6,

(C(B + 1))
— .

|G(t1,5) - G(ta,5)| < =

Hence, forall u € Q,

|(Tu)(82) - (Tu) (1))

1
<A /0 |G(t2,5) - G(tl,s)|<p1;1(1§+f(s, u(s))) ds
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1 s q-1 q-1
< }L/.o |G(t2,5) - G(tl,s)|</0 (s—1)f1 dr) ds(l"jgfiw

Mq—l 1
s [ 1669 - Gl 9l as
0
M1

1
<G 10 =609

:{;‘,

which implies that 7'(Q2) is equicontinuous. By the Arzela-Ascoli theorem, we obtain that

T : P — P is completely continuous. The proof is complete. ]

Theorem 3.2 If f € C([0,1] x [0,+00), [0, +00)), f(t, u) is nondecreasing in u and A €
(0, +00), then BVP (1.1) has a minimal positive solution v in B, and a maximal positive

solution w in B,. Moreover, v,,(t) — V(t), w,,(£) — w(t) as m — oo uniformly on [0,1],

where
1
V() = )»[0 G(t,s)go‘;1 (Igj(s, Vi-1())) ds (3.2)
and
1
Win(£) = A /0 G(t,9)0," (15,1 (5, Win-1(5))) ds. (3.3)
Proof Let

B, = {u eP:|ull < r},

where

}LMlq—l 1
r= W'/O G*(S,S)ds.

Step 1: Problem (1.1) has at least one solution.
For u € B,, there exists a positive constant M; such that |f(¢, u(t))| < My,

1
(Tu)(t)| = ‘x /0 G(t,8)0, (15 f (5, u(s))) ds

A 1 s ) -
< i [ 669( [(- 0 muenar) o

-1 1 s -1
5%/0 (—h(s,s)(f0 (s—r)ﬂldr>q ds

L Blg-D)
- g Jy GO

)LMlq—l 1
= W/o G, (s,s) ds.
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Thus
T:B, — B,.
By Lemma 3.1, we can see that T': B, — B, is completely continuous. Hence, by means of
the Schauder fixed point theorem, the operator T has at least one fixed point, and BVP
(1.1) has at least one solution in B,.
Step 2: BVP (1.1) has a positive solution in B,, which is a minimal positive solution.
From (3.1) and (3.2), one can see that
Vi (t) = (Tvy,-1)(8), te[0,1],m=1,2,3,.... (3.4)
This, together with f (¢, #) being nondecreasing in , yields that
0=v()=n@E) < =vu()=---, tel01]
Since T is compact, we obtain that {v,,} is a sequentially compact set. Consequently, there
exists v € B, such that v,, — v (m — o0).
Let u(t) be any positive solution of BVP (1.1) in B,. It is obvious that 0 = vo(¢) < u(t) =
(Tu)(2).
Thus,
V() <ut) (m=0,1,2,3,...). (3.5)
Taking limits as m — oo in (3.5), we get ¥(t) < u(¢) for ¢ € [0,1].
Step 3: BVP (1.1) has a positive solution in B,, which is a maximal positive solution.
Let wo(¢) =r, t € [0,1] and wy(¢) = Two(¢). From T : B, — B,, we have w; € B,. Thus
0 <wi(t) <r=wp(t).
This, together with f (¢, #) being nondecreasing in , yields that
S W(t) < - =wit) wo(t),  te[0,1].
Using a proof similar to that of Step 2, we can show that

Wi(t) = w(t) (m— o0)

and

1
W(t):/ G(t,s)f(s,W(s)) ds.
0

Let u(t) be any positive solution of BVP (1.1) in B,.
Obviously,

u(t) < wo(2).
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Thus

u(t) < wp(2). (3.6)

Taking limits as m — oo in (3.6), we obtain u(f) < w(t) for ¢ € [0,1].
The proof is complete. 0

Define

L P { G

= inf ———"—,
u—0+ tef0,1] @, (I || ul])

f°= lim su

u=0+c10,1] §0p(11||u||)’

Pt sup L0 L W

, foo= lim in .
u=+00 reio,1) Pp(l3llucll)  umvoorelon] @ (| ull)

Let
1 1
B= / G.(s,8)s?“Vds and B = / G(,s)s?@ ds.
0 0

Theorem 3.3 Assume that f € C([0,1] x [0, +00), [0, +00)), and the following conditions
hold:

(H1) fo=foo = +00.
(Hy) There exists a constant py > 0 such that f (¢, u) < ¢,(5||ul)) for t € [0,1], u € [0, p1].

Then BVP (1.1) has at least two positive solutions uy and u, such that
0 < fluall < o1 < Nzl

for

i e <(F(ﬁ +1)) (DB + 1))’“) R <(F(ﬁ +1))7 (DB + 1))’“)
l,B; ’ IsB 1By ’ IsB ’

where
lzBl > Z5B and 1431 > lsB
Proof Since

fo=lim —f(t,u) =

in =
u—0+te[0,1] @y, (Lol ]])

there is pg € (0, p1) such that

f(t:M)prp(IZHMH) fort e [0,1],146 [07/)0]'

Let

R = {u e P [lull < o).
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Then, for any u € 992, it follows from Lemma 2.4 that
1
(Tu)(t) = A / G(t, )0, (15, f (s, u(s))) ds
0
1
= f G, 5)p, (15, (9 (llul))) ds
0

1 s -1
:)JZ/O talG(LQ(%ﬂ)/o (s—r)ﬁldt)q ds||u|

Ay

1
= ! pla-)
) (F(ﬁ+1))q-1/0 G (1, )s" 0 sl

Thus

M>B
| Tull > 2
+1

e L
(CB+1)at
This, together with (3.7), yields that
| Tull = [|ull, Yu€d,,.
By Lemma 2.6, we have
i(T, 2, P) =0.
In view of

’

- tim f(t,u)

mf ——"=
u—-+00 tef0,1] @, (Lal|ue]])

there is p§, p§ > p1, such that

St u) = @y(lallull) fort€[0,1],u € [p§, +00).
Let

Qs = {uel: |lull < pg}.

Then, for any u € Q2 oL it follows from Lemma 2.4 that
1
(Tu)(t) = A / G(t, )0, (15 f (5, u(s)) ) ds
0
1
- / G, )5 (1L, (0 (lallal))) ds
0

1 1 s q-1
_ a-1 __\B-1
= Al4/0 t G(LS)<—F(,3) /0 (s—1) d'() ds||ul|

Aly

1
=——— [ ! Blg-D)
RO /0 G 5)s” 0 dsllul.

(3.8)

Page 10 of 16
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Thus

MaB

I T > W

This, together with (3.7), yields that
I Tull = llull, VuedQy;.
By Lemma 2.6, we have

i(T, s, P) = 0.

(3.9)

Finally, let Q, ={u € P: ||u|| < p1}. For any u € 992, it follows from Lemma 2.3 and (H3)

that
1
(Tu)(t) = A /0 G(t,9)p, (15, f (s, u(s))) ds

1
<x /0 G.(5,9)0;" (L, (0 (1)) ds

1 s -1
:115/0 GAS,S)(%ﬁ)/O (s—f)ﬂ_ldr>q ds||u|

Als

' Blg-1)
= — q—
T T(B )t /0 Ga(s,8)s" TV dis] .

Thus
1Tl = 252
ul| < ————1lull.
= T+ D)
This, together with (3.7), yields that
| Tull < llull, Yuecd,.
Using Lemma 2.6, we get
i(T,Q,,,P) =1.

From (3.8)-(3.10) and po < p1 < p, we have

(T, Q2p:\Qp, P) = =1, i(T,2,\Qp,,P) = L.

(3.10)

Therefore, T has a fixed point u; € ©,,\$2,, and a fixed point u, € Qs \Q,, . Clearly, u;, u,

are both positive solutions of BVP (1.1) and 0 < ||u;]| < p1 < ||u2]]. The proof of Theorem 3.3

is completed.

In a similar way, we can obtain the following result.

O

Page 11 of 16
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Corollary 3.4 Assume that f € C([0,1] x [0, +00), [0, +00)), and the following conditions
hold:

(Hy) f0=f%=0.

(Hy) There exists a constant pa > 0 such that f(t,u) > @,(ls||ull) for t € [0,1], u € [0, p2].

Then BVP (1.1) has at least two positive solutions u, and u, such that
0 < [lmll < p2 < ||luzl

for

i e ((F(ﬂ +1))7 (DB +1)T 1) R ((F(ﬂ +1)7 (I8 +1))q—1>
Z6Bl ’ lgB Z6Bl ’ llB ’

where
l6B1 > lgB and l6Bl > llB

4 Examples

Example 4.1 Consider the following boundary value problem:

D&@gbamn»+muxa+nn‘w')_a 0<t<l,

Hlu 3 (4.1)
M(O) =0, D3+ 1) Zz 151D5+ ): D5+M(0) =0,
where
_3 _1 1 » oy
a=5,  B=5  v=y  om=4 p=q=2
1 1
Thus
f€C([0,1] x [0,+00),[0,+00)) and [f(t,u)| - ‘(t.,.l)nm’ <

By computation, we deduce that

3
Z“Ez o 1—‘§i+§2=1,

A=1- Zan““

and
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On the other hand,

! 1 1 1 2 1
— _ a—p-1 a—p-1 _ e—p-1
/(; G.(s,s)ds = F(a)/o 1-s) ds+AF(a) ;Zl &m; /O (1-ys) ds

(1 1 & et [ o
) (m*mg% )/0 (-5 ds

B 1 1 3
W
2 172
2 6
= — 4+ —
JToJT
B 8
= N
Take
anet ot
rzillf G.(s,s)ds
rB+1)t Jy
_ A2mr 8
NG JT
2
= 32A.

Hence, by Theorem 3.2, BVP (4.1) has a minimal positive solution v in B, and a maximal

positive solution w in B,.

Example 4.2 Consider the following boundary value problem:

1 3 1 1
Dg.(p3 (D, u(®)) + 93 (A + )5 1u(®)]3 + 5llull3 + |ul?) =0, 0<t<l,

1 1 3 (4.2)
W0)=0,  DLu()=Y2 EDLuln),  Di.u(0)=0,

where
3, 1 3 s »
a—27 = )/—2, p—z, q=095, m =4,
1
$1=771=Z, E=m=—, a-y-1=0, a-B-1=0
and

oo (Mol s Lt o gl
f(t,u)—(1+t)<2|u(t)| 5 el + el )

It follows from Example 4.1 that

2 3 2 1
Yoan T =g = Iy A=1-) &7 = 4
=1 i=1
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By computation, we deduce that

1
B= / G (5,5)sP4 ™ ds

0

1
1 g)eh-1ghla-D aﬁI/ 1— g)*-F-1gba-1)
r(a)/( d”AF()Z L

1 1 1 1 1 1
- 5 %(3-1) 1x3-1)
= s2 ds + E éi/ s2 ds
F(Ol)/o Al (@) 4 o

and
1
By = f G(l,s)sﬁ("’l) ds
0

1 1
= / Gi1(1,8)s"4V ds + / G, (1,5)s@V ds
0 0

L 19 8- 1 I )
S, et “)d“m%)/o (701 - 9)° = &1 — 0] ds

2

1
—a 0(1 — )0¢Bl@-D
Ar(%)é Ein)(1-5)°s" ds
1 3
AF—(s) / [52773(1 -5)° —&(n2 - S)O]sﬁ(q‘l) ds
5) Jo

1
- 01— Oﬁ(q—l)d
AF(%)/l'Szﬂz( 50574 gg

1 1 1 1 1
:?%)/0 [s—s(1-s) ]dS+AI’( )/ &1sd AF(%)/; &sds

:%/Ol[s—s(l—s) ds+—/ Sds+—/lsds

1

4 1
+——s2

lﬁZ

2 /(1 4 2 1,
“ a2 15) met
697
24071

1
2
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Taking

p1=8,  l5=2178,

we have

ftu) < (1+1)(2+64) =132 =g, (l5]lull) = <p%(2,178 x 8) fortel0,1],u<[0,p].

Thus, condition (H,) is satisfied. It is obvious that condition (H;) holds.

On the other hand, let [, = 4,000, /5 = 3,600, we have [,B; > I5B, [4B; > I5sB and

’ ’

((F(ﬂ +1)) (T(B + 1))"‘1> ((F(ﬂ +1)) (T(B+ 1))q‘1>
AE N

B, 5B 14By IsB
(B +)T B+
N LB IsB
) ( (45)? (F)? )
- 697 4
3,600 x 2207 2,178 x 7=

3 3
T2 T2
- <41,820’ 34,848)'

Hence, by Theorem 3.3, BVP (4.2) has at least two solutions u; and u; such that 0 < || ]| <

8 < |luy|| for

3 3

T2 T2
rel——s——).
<41,820 34,848)
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