Sun and Zhang Advances in Difference Equations 2014, 2014:53 ® Advances in Difference Equations
http://www.advancesindifferenceequations.com/content/2014/1/53 a SpringerOpen Journal

RESEARCH Open Access

Existence and nonexistence of positive
solutions for fractional-order two-point
boundary value problems

Yongping Sun” and Xiaoping Zhang

"Correspondence:

sunyongping@126.com Abstract

College of Electron and Information, . . . .

Zhejiang University of Media and The purpose of this paper is to establish some results on the existence and
Communications, Hangzhou, nonexistence of positive solutions for a type of nonlinear fractional-order two-point

Zhejiang 310018, China boundary value problems. The main tool is a fixed point theorem of the cone

expansion and compression of functional type due to Avery et al. Some examples are
presented to illustrate the availability of the main results.
MSC: 34A08;34B10; 34B15; 34B18

Keywords: positive solution; existence and nonexistence; fractional differential
equations; boundary value problems; fixed point theorem

1 Introduction
This paper investigates the fractional boundary value problem (FBVP for short):

‘D u(t) +f(t,u) =0, te(0,1), @)
u(0) =u/(0)=u"(0)=---=u"1(0)=0, u'(1)=0,
where °Dg, is Caputo’s fractional derivative. Throughout this paper, we assume that n > 4
is a fixed integer, « € (n —1,n], and f : [0,1] x [0, 00) — [0, 00) is continuous.

Fractional differential equations can be extensively applied to various disciplines such as
physics, mechanics, chemistry, engineering, and many other branches of science. Recently,
there have been some papers dealing with the existence and multiplicity of solutions (or
positive solutions) of nonlinear fractional differential equations with various boundary
conditions (see [1-33] and the references therein). For example, Agarwal et al. [1] and
Tian and Liu [2] investigated the singular fractional boundary value problem of the form:

D u(t) + Af(t,u(t) =0, te(0,1),
u(0) =/(0) =u”(0) = - -- = u"1(0) = 0, u'(1) =0,

where « € (n—1,n] and n > 4 is an integer, °Dj, is Caputo’s fractional derivative, f : (0,1) x
(0,00) — [0,00) is continuous, that is, f(¢,u) may be singular at ¢t = 0,1 and « = 0. By
constructing a special cone and using an approximation method and fixed point index
theory, the authors obtained some results on the existence or nonexistence of one or more
positive solutions.
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Fixed point theorems have been applied to various boundary value problems to show the
existence and multiplicity of positive solutions in the last two decades. Recently, Avery et
al. [34] generalized the fixed point theorem of a cone expansion and compression of norm
type by replacing the norms with two functionals satisfying certain conditions to produce
a fixed point theorem of the cone expansion and compression of functional type, and then
they applied the fixed point theorem to verify the existence of a positive solution to a
second order conjugate boundary value problem.

Motivated greatly by the above-mentioned work, by constructing a special cone and
using the fixed point theorem of cone expansion and compression of functional type due
to Avery et al., in this paper, we obtain some sufficient conditions for the existence of
positive solutions for FBVP (1.1). We also discuss the nonexistence of positive solutions.
Here, as usual, by a positive solution to FBVP (1.1), we mean a solution u(t) such that
u(t) > 0 on (0,1]. To the author’s best knowledge, no paper in the existing literature can
be found using this fixed point theorem to prove the existence of a positive solution to the
boundary value problem of nonlinear fractional-order differential equations.

We organize the rest of this paper as follows. In Section 2, we present some definitions
and background results. We also state a fixed point theorem of cone expansion and com-
pression of functional type due to Avery et al. The expression and properties of Green’s
function will be given in Section 3. The existence and nonexistence results are proved in

Section 4. We end the paper with four examples of applications in Section 5.

2 Preliminaries

To make this paper self-contained, in this section, we recall some definitions and prop-
erties of the fractional calculus. We also state a fixed point theorem of a cone expansion
and compression of functional type due to Avery et al. The presentation here and more
information on fractional calculus can be found in, for example, [35, 36].

Definition 2.1 Letg > 0, n = [q] + 1. If h € AC"[0, 1], then Caputo’s derivative of the frac-
tional order g is defined by

cnd _ 1 ! _ \n—q-17,(n)
D0+h(t)—7r(n_q)/o(t )1 (s) ds.

Here I" is the usual Gamma function given by I'(¢) = [~ e™¢97 dt, o > 0.

Definition 2.2 If # € C[0,1] and g > 0, then the Riemann-Liouville fractional integral of

order g is defined by
q 1 ' 1
Io, h(t) = —f (E=s)""h(s)ds, t>0.
0 I'(q) Jo

The following definitions can be found in [37].

Definition 2.3 Let E be areal Banach space. A nonempty closed convex set P C E is called
a cone of E if it satisfies the following two conditions:

(1) u€P, x>0 implies Au € P;

(2) u€P,—u e Pimplies u =0.
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Every cone P C E induces an ordering in E given by u <vifand only if v—u € P.

Definition 2.4 Let E be a real Banach space. An operator T : E — E is said to be com-

pletely continuous if it is continuous and maps bounded sets into precompact sets.

Definition 2.5 A map « is said to be a nonnegative continuous concave functional on a

cone P of a real Banach space E if o : P — [0, +00) is continuous and
a(ru+ (1 -2)v) = ra(u) + 1 -a(v), wveP,0<i=<L

Similarly we said the map B is a nonnegative continuous convex functional on a cone P of
a real Banach space E if 8 : P — [0, +00) is continuous and

B(ru+(1-2)v) <iw)+1-1B(V), w,veP,0<i=<L
We say the map y is sublinear functional if
y(Au) <ry(u), ueP,0<i<l.

Property Al Let P be a cone in a real Banach space E and Q2 be a bounded open subset of
E with 0 € Q. Then a continuous functional B : P — [0, 00) is said to satisfy Property Al if
one of the following conditions holds:

(a) B isconvex, B(0)=0, B(u) #0 if u #0, and inf,,cpnyq B(u) > 0;

(b) B is sublinear, B(0) =0, B(u) #0 if u # 0, and inf,cpryq B(u) > 0;

(c) B is concave and unbounded.

Property A2 Let P be a cone in a real Banach space E and Q be a bounded open subset of
E with 0 € Q. Then a continuous functional § : P — [0, 00) is said to satisfy Property A2 if
one of the following conditions holds:

(@) B isconvex, B(0) =0, B(u) #0 ifu #0;

(b) B issublinear, B(0) =0, B(u) #0 ifu #0;

() Blu+v)=pBwm)+pBW) forallu,veP, B(0)=0, B(u) #0 ifu #0.

The approach used in proving the existence results in this paper is the following fixed
point theorem of cone expansion and compression of functional type due to Avery et al.
[34].

Theorem 2.1 Let Q; and Q2 be two bounded open sets in a Banach space E such that
0 € Q) and Q C Q, and P is a cone in E. Suppose T : PN (2 \ Q1) = Pisa completely
continuous operator, o and y are nonnegative continuous functional on P, and one of the
two conditions:
(K1) « satisfies Property Al with a(Tu) > a(u), for all u € PN 082, and y satisfies
Property A2 with y(Tu) <y (u), for all u € PN 9Q2;
(K2) y satisfies Property A2 with y(Tu) <y (u), for all u € PN 92, and o satisfies
Property Al with a(Tu) > a(u), for all u € PN 9Ky,
is satisfied. Then T has at least one fixed point in PN (22 \ Q).
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3 Expression and properties of Green’s function

In this section we present the expression and properties of Green’s function associated
with FBVP (1.1). We shall consider the Banach space E = C[0, 1] equipped with norm |ju|| =
maxo<;<i1 |4(¢)|. In order to prove our main result, we need some preliminary results.

Lemma 3.1 ([1,2]) Letf € C([0,1] x [0, 00)), u € C[0,1], then the boundary value problem

‘DEwt)+f(tul)=0, 0<t<],

(3.1)
w(0) = w/(0) = w”(0) = - -- = w"D(0) = 0, w’(1) = 0,
has a unique solution
1
w(t) = / G(t,s)f(s, u(s)) ds,
0
where
Gl(t,s) = #tz( 1-s)%3 - —[max{t s,O}]a_l. (3.2)

(e -2) T(a)

Lemma 3.2 The Green’s function G(t,s) defined by (3.2) has the following properties:
() G(t;5)>0, 254 > 0,vt,5 € [0,1];
(b) #G(1,5) < G(t 5) < G(1,s), Vt,s € [0,1];

e
() maxo<<1 [, G(t,s)ds = fo (1,s)ds = gr(;+12)

)
(d) min,<;< fl G(t,s)ds = fn G(n,s)ds = %, where n € (0,1);
(e) fo s2G(1,8)ds = & 2+3a

I(a+3)"

Proof The properties (a) and (b) one may find in [1]. By direct calculations we obtain (e).
(c) For any £ € [0,1], let g(¢) = [, G(t,5)ds, then

_ o)a-3 - a-1
g(t) = 2)/ $)“°ds F()/(t ) ds

, telo,1]. (3.3)

2F((x 1) - r(a +1)
It follows from (3.3) that

1

O fay

(1-7?)=0, relo0,1],
which implies that g’(¢) is increasing on [0, 1], thus

/ _ 1 _L a-1 / _
E0=ro T =4@=0 telol]

which implies that g(¢) is increasing on [0, 1], thus

a?-a-2

1 1
max/ G(t,s)ds-/ G(1,s)ds=g(1) = m

0<t<1 0

Page 4 of 11


http://www.advancesindifferenceequations.com/content/2014/1/53

Sun and Zhang Advances in Difference Equations 2014, 2014:53 Page 5 of 11
http://www.advancesindifferenceequations.com/content/2014/1/53

(d) For t € [n,1], let h(t) = fnl G(t,s) ds, then

-3 a1
h(t) = 2)/ 21 -5) ds—m/(t—s) ds

CQ-n)?
2F(a—1) F(a+1)

(t-n) tenl] (3.4)
It follows from (3.4) that

1
Ht)= ————[Q-n)*2=(@-n)*?2 0, t ,1],
(t) FW—DU N —(t-n)*?] = € n1]
which implies #/(¢) is increasing on [n,1]. Thus #/(¢) > K () = n(1 = n)*~2/T(« - 1) > 0,

t € [n,1]. So, h(t) is increasing on [, 1], therefore,

! 1 2 1— a-2
min f Glt,s) ds = f G(n,s)ds=h(n)=%.
n n

n<t<l
Then the proof is completed. O

4 Main results
In this section, we discuss the existence of positive nondecreasing solution of FBVP (1.1).
Define the cone P by

P= {u € C[0,1] : u(t) > 0, u(t) is increasing on [0,1] and u(t) > £*|ul|, ¢ € [0, 1]}.

Then P is a normal cone of E. It is easy to see that if u € K, then |lu| = u(1). Define the
operator T by

1
(Tu)(t) =/O G(t,s)f(s,u(s)) ds, te]l0,1]. (4.1)

Then for any u € P, (Tu)(t) is nonnegative and increasing on [0,1] by Lemma 3.2(a).
Lemma 3.2(b) implies (Tu)(t) > £2||Tul|, ¢ € [0,1], thus T(P) € P. T is completely con-
tinuous by the Ascoli-Arzela theorem. Thus, to solve FBVP (1.1), we only need to find a
fixed point of the operator T in P. Finally, let us define two continuous functionals « and

y on the cone P by
a(u) ;= min u(t) =u(n) and y(u):= max u(t) = u(l) = ||u|.
telnl] te[0,1]

It is clear that a(u) < y(u) for all u € P.

Theorem 4.1 Suppose that there exist positive numbers r, R with r < n’R such that the
following conditions are satisfied:

(CD) f(tx) = T4 for all (¢,%) € [n,1] x [1,R],

(C2) f(t,%) < 2D forall (£,x) € [0,1] x [0, R].



http://www.advancesindifferenceequations.com/content/2014/1/53

Sun and Zhang Advances in Difference Equations 2014, 2014:53 Page 6 of 11
http://www.advancesindifferenceequations.com/content/2014/1/53

Then FBVP (1.1) has at least one positive and nondecreasing solution u* satisfying

r < min u*(f) and max u*(t) <R.
te[n1] te[0,1]

Proof Let
Q= {u:oz(u) < r} and Q)= {u:y(u) <R},

it is easy to see that 0 € €2;, ©2; and 2, are bounded open subsets of E. Let u € 1, then

we have

r>o(u) = min u(t) = n*llull = n’y ().
ten,1]

Thus R > r/n? > y(u), i.e., u € Q, 50 Q C Q.

Claim 1: If u € PN 02, then o(Tu) > a(u).

To see this let u € PN 0, then R = y(u) > u(s) > a(u) = r, s € [1,1]. Thus it follows
from (C1), Lemma 3.2(d), and (4.1) that

1
a(Tu) = (Tu)(n) = ./0 G(n,8)f (s, u(s)) ds

1
2rT (o - 1) / G(n,s)ds = r = a(u).

1
E/n G(n»S)f(S’”(S))dSZW "

Claim 2: If u € PN 02y, then y(Tu) < y (u).
To see this let u € P N 0K, then u(s) < y(u) = R, s € [0,1]. Thus condition (C2) and
Lemma 3.2(c) yield

1
y(Tu) = (Tu)(1) = / (1, s)f(s,u(s ) M G(1,s)ds=R=y(u).

o—2
Clearly « satisfies Property Al(c) and y satisfies Property A2(a). Therefore the hy-
pothesis (K1) of Theorem 2.1 is satisfied and hence T has at least one fixed point u* €
PN (R \ Q1), i.e., FBVP (1.1) has at least one positive and nondecreasing solution u* € P
such that

r< min u*(t) and max u*(¢) <R.
teln] te[0,1]

This completes the proof. d

Theorem 4.2 Suppose that there exist positive numbers r, R with r < R such that the fol-
lowing conditions are satisfied:

(C3) f(t,%) < 2, for (£,%) € [0,1] x [0, 7],

(C4) f(t,x) > i “Jz ,for (t,x) € [n,1] x [R,R/n?].

21_

Then FBVP (1.1) admzts a positive and nondecreasing solution u* € P such that

r < max u*(t) and mln u*(t) <R.
te[0,1] telnl]
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Proof Let
Q3 = {u cy(u) < r} and Q4= {u:a(u) <R},

we have 0 € 3 and Q3 C 4, with Q3 and €4 being bounded open subsets of E.

Claim 1: If u € PN 023, then y(Tu) < y (u).

To see this let u € P N 93, then u(s) < y(u) = r, s € [0,1]. Thus condition (C3) and
Lemma 3.2(c) yield

2rF (¢ +1)

ot—aZ

1
y(Tu) = (Tu)(1) = /0 G(l,s)f(s,u(s)) G(l,s) ds=r=y(u).

Claim 2: If u € PN 02y, then o(Tu) > o(u).
To see thislet u € PN9Qy, then R/n? = a(u)/n? > y (1) > u(s) > a(u) = R, s € [n,1]. Thus
it follows from (C4) and Lemma 3.2(d) that one has

1
a(Tu) = (Tu)(n) = /0 G(n,s)f(s, u(s)) ds

1 1
Z/n G(n,s)f(s,u(s))dsz% i G(n,s)ds =R = a(u).

Clearly « satisfies Property Al(c) and y satisfies Property A2(a). Therefore the hy-
pothesis (K2) of Theorem 2.1 is satisfied and hence T has at least one fixed point u* €
PN (Q4\ Q3), i.e., FBVP (1.1) has at least one positive and nondecreasing solution u* € P
such that

r<max u*(f) and min u*(t) <R.
te0,1] telni]

This completes the proof. O
Now we discuss nonexistence of positive solutions of FBVP (1.1).

Theorem 4.3 Suppose that f satisfies the condition

flt,x) 20(x+1)
<72

sup
tx)e[0,1]x(0,00) ¥ o4

L (4.2)

Then FBVP (1.1) does not admit positive solutions.

Proof Assume to the contrary that u = u(¢) is a positive solution of FBVP (1.1), then

1 1
u(l) = / G, s)f (s, uls)) ds < % / G(1, s)uls) ds

2F£a+1) » ”/ (L ) ds — (L),

This is a contradiction and completes the proof. d
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Theorem 4.4 Suppose that f satisfies the condition

. flt,x) T(x+3)
inf >—",
tx)e[01]x(0,00) X a? + 3a

(4.3)

Then FBVP (1.1) does not admit positive solutions.

Proof Assume to the contrary that u = u(¢) is a positive solution of FBVP (1.1), then

u(l) = /01 G(l,s)f(s, u(s)) ds > % /01 GQ,s)u(s)ds

1
STe+y / G(1,5)s> ds = u(l).
+3a 0

_062

This is a contradiction and completes the proof. d

5 Examples
Now we provide several examples to demonstrate the applications of the theoretical results

in the previous sections.

Example 5.1 Consider the fractional boundary value problem

Dyu(t) + Lu* () +u(®) + 2+t +1=0, te(0,1),
u(0) =u/(0) =" (0) =u”(1) = 0.

(5.1)

In this problem, o = Z, f(£,x) = £x? + x + £ + £ + 1. It is easy to see that f € C([0,1] x

3
[0,00),[0,00)). Letn =3, 7 R =3,thenr<n?R,

=1
T 24

35/ 2RT(a +1)
6  a2-a-2

ft,x) <f(LR)=9< , for(t,x) €[0,1] x [0,R],

and

_ 6193 vam = 2T(e - 1) for (¢,x) € [n,1] x [r,R].

R A VT R T

Hence, all of the conditions of Theorem 4.1 are satisfied. Hence, Theorem 4.1 guarantees
that FBVP (5.1) has at least one positive solution u*(¢) such that

1 .
— < min u#*(#) and max u*(¢) <3.
4 el tel0,1]

\®)

Example 5.2 Consider the fractional boundary value problem

DYPu(t) + 2+ )ut(t) + u(t) + tu(t) +t =0, te(0,1),
u(0) =u/'(0) =u”(0) =u””(0) = u’(1) = 0.

(5.2)

Page 8 of 11
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In this problem, a = 3, f(£,%) = (2 +£)x* +2? + tx+ . Obviously, f € C([0,1] x [0,00), [0, 50)).
Letn = %,R=4,r=1,thenr<R,

189/ 2T (a +1)
44  q?-a-2’

flt,x) <f(,r)=6<

for (¢,x) € [0,1] x [0,7],

and

2RT (a — 1)

f(&x) = f(1,R) = 658.5 > 24027 = T

for (t,x) € [n,1] x [R,R/nz].

Therefore, all the assumptions of Theorem 4.2 hold. Hence, Theorem 4.2 guarantees that
FBVP (5.2) has at least one positive solution u*(¢) such that

1< max () and min u*(¥) <4.
te[0,1] te($.1]

Example 5.3 Consider the fractional boundary value problem

2 .
cDgizu(t) + %(t +sint) =0, te(0,1), (5.3)
u(0) =u'(0) =u”(0) =" (0) = (1) = 0.

, ftx) = ?”C;T*ltx(t + sint). It is easy to see that f € C([0,1] x
, then

In this problem, o = %

[0,00),[0,00)). Let = 3
L 3x+t )

1A x): rr (t+sint) <6 <
X x+1

189 2 1
VI 20D ) € [0,1] x (0,00),
44 al—a-2

which implies (4.2) holds. Hence, by Theorem 4.3, FBVP (5.3) does not admit positive
solutions.

Example 5.4 Consider the fractional boundary value problem

2 .
CDZ/RM(t) + Let)s8ult) lfg;ﬁ“(t) (2+t+sint)=0, te(0,1), (5.4)
u(0) ='(0) =" (0) = (1) = 0.

In this problem, o = %,f(t,x) = 7’;2%(2 +t +sint). It is easy to see that f € C([0,1] x
[0,00),[0,00)). Let n = %, then

t, 7x+8 . 1,485 r 3
oA x): rr (2+¢t+sint)>14 > ﬁ: (o + ),
x x+1 208 a? + 3

for (¢,x) € [0,1] x (0, 00),

which implies (4.3) holds. Hence, by Theorem 4.4, FBVP (5.4) does not admit positive
solutions.
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