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Abstract
In this paper, we discuss the oscillations of the fractional order differential equation
Dα
a x(t) + q(t)f (x(t)) = 0, t ∈ [a, +∞), a > 0, where q is a positive real-valued function and

f is a continuous functional; Dα
a denotes the Riemann-Liouville differential operator of

order α, 0 < α ≤ 1. We use the Riccati transformation technique to obtain some
sufficient conditions which guarantee that every solution of the equation is
oscillatory or the limit inferior converges to zero. Two examples are given to show the
applications of our main results.
MSC: 34A08; 34K11

Keywords: oscillation; fractional differential equation; Riemann-Liouville differential
operator

1 Introduction
The theory of fractional calculus goes back to Leibniz’s note in his list to L’Hospital [],
dated  September , in which themeaning of the derivative of order / is discussed.
After that in pure mathematics field the foundation of the fractional differential equa-
tions had been established. However, in recent years, many researchers found that the
fractional differential equations are more accurate in describing some practical models,
e.g. polymers. Today it has been used widely in physics, electrochemistry, control theory,
and electromagnetic fields [–]. Furthermore, the fractional calculus can also provide
an excellent instrument for the description of memory and hereditary properties of vari-
ous materials and processes due to the existence of a ‘memory’ term in the model [–].
Since these studies there has been much research actively concerned with the fractional
differential equations and many useful achievements have been obtained [–].
From the s, a lot of books and theses about the oscillatory behavior for first, second,

and higher order differential equations are presented, see [–]. The study of the oscil-
latory problem with a view on fractional differential equation is just being initiated. As a
new cross-cutting area, recently some attention has been paid to oscillations of fractional
differential equations [–].
In , Chen et al. [] studied the oscillatory behavior of the following fractional dif-

ferential equation:

[
r(t)

(
Dα

–y
)η(t)

]′ – q(t)f
(∫ ∞

t
(v – t)–αy(v)dv

)
=  for t > ,
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where Dα
–y denotes the Liouville right-sided fractional derivative of order α with the form

(
Dα

–y
)
(t) := –


�( – α)

d
dt

∫ ∞

t
(v – t)–αy(v)dv for t ∈R+ := (,∞).

By the Riccati transformation technique the authors obtained some sufficient conditions,
which guarantee that every solution of the equation is oscillatory.
Using the samemethod, in , Chen [] studied oscillatory behavior of the fractional

differential equation of the form

(
D+α

– y
)
(t) – p(t)

(
Dα

–y
)
(t) + q(t)f

(∫ ∞

t
(v – t)–αy(v)dv

)
=  for t > ,

where Dα
–y is the Liouville right-sided fractional derivative of order α ∈ (, ) of y.

Zhang [] considered the oscillation of the nonlinear fractional differential equation
with damping term,

[
a(t)

(
Dα

–x(t)
)γ ]′ + p(t)

(
Dα

–x(t)
)γ – q(t)f

(∫ ∞

t
(ξ – t)–αx(ξ )dξ

)
= , t ∈ [t,∞),

where Dα
–x(t) denotes the Liouville right-sided fractional derivative of order α of x. Us-

ing a generalized Riccati function and the inequality technique, he established some new
oscillation criteria.
Han et al. [] considered the oscillation for a class of fractional differential equations,

[
r(t)g

((
Dα

–y
)
(t)

)]′ – p(t)f
(∫ ∞

t
(s – t)–αy(s)ds

)
=  for t > ,

where  < α <  is a real number, Dα
–y is the Liouville right-sided fractional derivative of

order α of y. By a generalized Riccati transformation technique, oscillation criteria for the
nonlinear fractional differential equation are obtained.
Qi and Huang [] studied the oscillation behavior of the equation of the form

(
a(t)

[
r(t)Dα

–x(t)
]′)′ + p(t)

[
r(t)Dα

–x(t)
]′ – q(t)

∫ ∞

t
(ξ – t)–αx(ξ )dξ = , t ∈ [t,∞),

where Dα
–x(t) also denotes the Liouville right-sided fractional derivative and some suffi-

cient conditions for the oscillation of the equation have been given.
The above works on the oscillation are all concerned with fractional equations with

Liouville right-sided fractional derivative by the Riccati transformation technique.
We notice that very little attention is paid to oscillations of fractional differential equa-

tions with a Riemann-Liouville derivative. For work studying the oscillatory behavior of
fractional differential equations with the Riemann-Liouville derivative we refer to [, ],
and [].
In , Grace et al. [] studied the oscillation theory for fractional differential equa-

tions by considering equations of the form

Dq
ax + f(t,x) = v(t) + f(t,x), lim

ta+
J–qa x(t) = b,
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under the conditions

xfi(t,x) >  for i = , ,x �=  and t ≥ a

and

∣∣f(t,x)∣∣ > p(t)|x|β and
∣∣f(t,x)∣∣ > p(t)|x|γ for x �=  and t ≥ a,

where Dq
a denotes the Riemann-Liouville differential operator of order q with  < q ≤ ,

and the operator Jpa is the Rieman-Liouville fractional integral operator. The authors ob-
tained some new oscillation criteria by reducing the fractional differential equation to the
equivalent Volterra fractional integral equation and by applying the inequality technique.
Marian [] presented the oscillatory behavior of forced nonlinear fractional difference

equations of the form

�αx(t) + f
(
t,x(t + α)

)
= v(t) + f

(
t,x(t + α)

)
, t ∈N,  < α ≤ ,�α–x(t)|t= = x,

where �α is a Riemann-Liouville like discrete fractional difference operator of order α,
and some oscillation criteria are established by the same method in [].
In , Chen et al. [] improved and extended some work in [] by considering the

forced oscillation of the fractional differential equation

Dq
ax + f(t,x) = v(t) + f(t,x), lim

ta+
J–qa x(t) = b,

with the conditions

Dq–k
a x(a) = bk (k = , , . . . ,m – )

and

lim
ta+

Im–q
a x(t) = bm,

where Dq
a denotes the Riemann-Liouville or Caputo differential operator of order q with

m –  < q ≤ m, m ≥ , and the operator Im–q
a is the Rieman-Liouville fractional integral

operator. The authors obtained some new oscillation criteria by the same method as [].
Motivated by above work, in this paper we will extend some oscillation results from

integer differential equations to the fractional differential equation

Dα
ax(t) + q(t)f

(
x(t)

)
= , t ∈ [a, +∞),a > , (.)

where Dα
a denotes the standard Riemann-Liouville differential operator of order α with

 < α ≤ , q is a positive real-valued function, f is a continuous functional defined on
[,+∞)→ [, +∞) satisfying

f (x)
I–αx

≥ K > , (.)

and I–α denotes the Riemann-Liouville integral operator.
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We will use the method of the Riccati transformation technique to study the oscilla-
tory behavior of the fractional differential equation (.). To the best of our knowledge,
there is not any result on the oscillation of the fractional differential equation involving
the Riemann-Liouville derivative by the method of the Riccati transformation technique.
A solution of (.) is said to be oscillatory if it has arbitrarily large zeros on [a, +∞) and

otherwise it is non-oscillatory. An equation is said to be oscillatory if all its solutions are
oscillatory.
The paper is organized as follows. In the next section, we present some basic definitions

of the fractional differential and integral operators, and provide some necessary lemmas.
In Section , we mainly use the Riccati transformation technique to get some sufficient
conditions which guarantee that every solution of (.) is oscillatory or the limit inferior
converges to zero.Our results are essential new. Finally we provide some examples to show
applications of our criteria.

2 Some preliminary lemmas
The operator Dα

a with  < α <  defined by

Dα
ax(t) =


�( – α)

d
dt

∫ t

a
(t – s)–αx(s)ds (.)

is called the Riemann-Liouville derivative operator. The operator Iαa defined by

Iαa x(t) =


�(α)

∫ t

a
(t – s)α–x(s)ds (.)

is called the Riemann-Liouville integral operator. Using the integral operator Iαa we can
define Dα

a as

Dα
ax(t) :=

d
dt

I–α
a x(t). (.)

In general, if n≥  is an integer and n –  < α ≤ n, then

Dα
ax(t) :=

dn

dtn
In–α
a x(t). (.)

The integral operator has the following properties, which will be used in the next lemma:

(i) Iαa I
β
a f (t) = Iα+β

a f (t), Dα
a I

α
a f (t) = f (t), α > ,β > , f ∈ L(, ); (.)

(ii) �(z + ) = z�(z). (.)

The Riemann-Liouville integral operator also has a general relationship between I–α
a and

I–α
a like

(
I–α
a x(t)

)′ =
(


�( – α)

∫ t

a
(t – s)–αx(s)ds

)′

=
 – α

�( – α)

∫ t

a
(t – s)–αx(s)ds +


�( – α)

(t – t)–αx(t)
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=


�( – α)

∫ t

a
(t – s)–αx(s)ds

=
(
I–α
a x

)
(t).

Lemma . [] Let α > . Assume for x: Dα
+x ∈ L(, ). Then the following equality holds:

Iα+D
α
+x(t) = x(t) + ctα– + ctα– + · · · + cntα–n

for some ci ∈ R, i = , , . . . ,n, where n is the smallest integer greater than or equal to α.

For more details on the Riemann-Liouville type fractional operators, see for example
[–].
Before stating our main results, we begin with the following lemmas which are crucial

in the proofs of the main results.

Lemma . Suppose that x is an eventually positive solution of (.) and

lim inf
t→∞ x(t) = l �= . (.)

Then there is a sufficiently large t ∈ [a, +∞) such that

I–α
a x(t) >  for t ∈ [t, +∞).

Proof Let x be an eventually positive solution of (.), which means that there exists a
t ∈ [a, +∞) such that x(t) >  for t ∈ [t, +∞).
From the condition (.) we can find a t > t and a constant l′ with  < l′ < l such that

x(t) > l′ for t ∈ [t, +∞). So we can divide I–α
a x into three parts

I–α
a x =


�( – α)

∫ t

a


(t – s)α

x(s)ds

=


�( – α)

∫ t

a


(t – s)α

x(s)ds +


�( – α)

∫ t

t


(t – s)α

x(s)ds

+


�( – α)

∫ t

t


(t – s)α

x(s)ds.

From Lemma . we know that if Dα
ax(t) exists, and this means (t – s)–αx(s) ∈ L[a, t] for

any t ∈ [a, +∞), especially (t – s)–αx(s) ∈ L[a, t].
Also we get |(t – s)–αx(s)| ∈ L[a, t]. Therefore we can take M = 

�(–α)
∫ t
a | 

(t–s)α x(s)|ds.
Then we have

I–α
a x≥ –M +


�( – α)

∫ t

t


(t – s)α

x(s)ds +


�( – α)

∫ t

t


(t – s)α

l′ ds

≥ –M +
l′(t – t)–α

�( – α)
.

Obviously there exists a sufficient large t ∈ [t, +∞) such that l′(t–t)–α

�(–α) >M. So I–α
a x(t) > 

for t ∈ [t, +∞). The proof is complete. �
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Wang et al. Advances in Difference Equations 2014, 2014:50 Page 6 of 11
http://www.advancesindifferenceequations.com/content/2014/1/50

Lemma . [] If X and Y are nonnegative, then

Xλ – λXY λ– + (λ – )Y λ ≥ , when λ >  (.)

and

Xλ – λXY λ– – ( – λ)Y λ ≤ , when  < λ < , (.)

where equality holds if and only if X = Y .

3 Main results
Theorem. If there exists a positive function σ ∈ C(, +∞) anda sufficiently large t ≥ a
such that

lim sup
t→∞

∫ t

t

[
Kσ (s)q(s) –

(σ ′
+(s))

σ (s)

]
ds =∞, (.)

where σ ′
+(s) :=max{σ ′(s), }, then every solution x of (.) is oscillatory or lim inft→∞ x(t) =

.

Proof Assume to the contrary that there exists a non-oscillatory solution x of (.). With-
out loss of generality, we only consider the case when x(t) is eventually positive, since the
case when x(t) is eventually negative is similar. Thus there exists t ∈ (a, +∞) such that
x(t) >  for t ∈ [t, +∞). Next we define the ‘Riccati’ type function w by

w(t) = σ (t)
I–α
a x(t)
I–α
a x(t)

. (.)

If lim inft→∞ x(t) �= , from Lemma ., there exists a t ∈ [a, +∞) such that I–α
a x(t) > 

for t > t. Furthermore, using the same measure in Lemma ., we can easily obtain the
result that there exists a t ∈ [a, +∞) such that I–α

a x(t) >  for t > t. So we get w(t) >  for
t ∈ [t, +∞).
Now differentiating w(t) on [t,∞) we have

w′(t) = σ ′(t)
I–α
a x(t)
I–α
a x(t)

+ σ (t)
(
I–α
a x(t)
I–α
a x(t)

)′

=
σ ′(t)
σ (t)

w(t) + σ (t)
I–α
a x(t)(I–α

a x(t))′

(I–α
a x(t))

– σ (t)
I–α
a x(t)(I–α

a x(t))′

(I–α
a x(t))

=
σ ′(t)
σ (t)

w(t) + σ (t)
Dα

ax(t)
I–α
a x(t)

– σ (t)
(I–α
a x(t))

(I–α
a x(t))

=
σ ′(t)
σ (t)

w(t) – σ (t)
q(t)f (x(t))
I–α
a x(t)

–
w(t)
σ (t)

.

Then using condition (.) we get the inequality

w′(t)≤ σ ′
+(t)

σ (t)
w(t) –Kσ (t)q(t) –

w(t)
σ (t)

. (.)

http://www.advancesindifferenceequations.com/content/2014/1/50
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Now taking

λ = , X =


σ

 (t)

w(t), Y =
σ ′
+(t)

σ 
 (t)

,

and using Lemma . and (.) we conclude that

w′(t)≤ –Kσ (t)q(t) +
(σ ′

+(t))

σ (t)
.

Integrating both sides from t to t, and letting t → +∞, we have

∫ t

t

[
Kσ (s)q(s) –

(σ ′
+(s))

σ (s)

]
ds≤ w(t) –w(t) < w(t).

So

lim sup
t→∞

∫ t

t

[
Kσ (s)q(s) –

(σ ′
+(s))

σ (s)

]
ds≤ w(t) < +∞,

which is a contradiction to the condition (.) and the proof is complete. �

Corollary . Assume that (.) hold, and there exists a sufficient large t such that

lim sup
t→∞

∫ t

t

[
Ksq(s) –


s

]
ds =∞. (.)

Then every solution x of (.) is either oscillatory or lim inft→∞ x(t) = .

Proof This follows from Theorem . by taking σ (t) = t. �

Corollary . Assume that (.) hold, and there exists a sufficiently large t such that

lim sup
t→∞

∫ t

t
q(s)ds =∞. (.)

Then every solution x of (.) is either oscillatory or lim inft→∞ x(t) = .

Proof Taking σ (t) = , then the condition (.) in Theorem . is reduced to (.). Hence
the result is obtained from Theorem .. �

Theorem . Assume that (.) holds. Also, assume that there exist functions H ∈
C(D,R+), σ ∈ C(, +∞) such that

H(t, t) =  and H(t, s) >  for t > s ≥ a,

where D = {(t, s) ∈ R
 : t ≥ s ≥ a} and H has a nonpositive continuous partial derivative

H ′
s(t, s) :=

∂H(t,s)
∂s on D with respect to the second variable. Also assume there exists a non-

negative continuous function h defined on D and a differentiable positive function σ (t)
satisfying for all t ∈ [a, +∞)

σ ′
+(s)

σ (s)
H(t, s) +H ′

s(t, s) =


σ (s)
h(t, s)H


 (t, s), (.)

http://www.advancesindifferenceequations.com/content/2014/1/50
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where σ ′
+(s) :=max{σ ′(s), }. If these assumptions hold and

lim sup
t→∞


H(t, t)

∫ t

t

[
Kσ (s)q(s)H(t, s) –

h(t, s)
σ (s)

]
ds =∞, (.)

then every solution x of (.) is oscillatory or lim inft→∞ x(t) = .

Proof Suppose x is a non-oscillatory solution of (.). We only consider the case that x(t)
is eventually positive, since the case that x(t) is eventually negative is similar. Assume that
x(t) >  for all t ≥ t with large enough t.
If lim inft→∞ x(t) �= , we proceed as in the proof of Theorem . to see that (.) holds.

Multiplying each side of (.) by H(t, s) and integrating from t to t, we obtain

∫ t

t
Kσ (s)q(s)H(t, s)ds ≤ –

∫ t

t
H(t, s)w′(s)ds +

∫ t

t
H(t, s)

σ ′
+(s)

σ (s)
w(s)ds

–
∫ t

t
H(t, s)


σ (s)

w(s)ds. (.)

Then using the integration by parts formula and from (.), (.) we have

∫ t

t
Kσ (s)q(s)H(t, s)ds

≤H(t, t)w(t) +
∫ t

t
H ′

s(t, s)w(s)ds

+
∫ t

t
H(t, s)

σ ′
+(s)

σ (s)
w(s)ds –

∫ t

t
H(t, s)


σ (s)

w(s)ds

≤H(t, t)w(t) +
∫ t

t

{[
H ′

s(t, s) +H(t, s)
σ ′
+(s)

σ (s)

]
w(s) –H(t, s)


σ (s)

w(s)
}
ds

=H(t, t)w(t) +
∫ t

t

{[


σ (s)
h(t, s)H


 (t, s)

]
w(s) –H(t, s)


σ (s)

w(s)
}
ds. (.)

Taking

λ = , X =
(
H(t, s)


σ (s)

) 

w(s), Y =

h(t, s)H 
 (t, s)

H 
 (t, s)

=
h(t, s)


,

and using Lemma . we get

∫ t

t
Kσ (s)q(s)H(t, s)ds≤H(t, t)w(t) +

∫ t

t

h(t, s)
σ (s)

ds.

Therefore


H(t, t)

∫ t

t

{
Kσ (s)q(s)H(t, s) –

h(t, s)
σ (s)

}
ds≤ w(t) < +∞,

which contradicts (.). The proof is complete. �
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Theorem . Assume that (.) holds. Furthermore assume there is a positive function
σ (t) such that σ ′(t) is continuous on (, +∞) and a sufficiently large t satisfies

lim sup
t→∞


tm

∫ t

t
(t – s)m

[
Kσ (s)q(s) –

(σ ′
+(s))

σ (s)

]
ds =∞, (.)

where m > . Then every solution of (.) is either oscillatory or lim inft→∞ x(t) = .

Proof Suppose x is a non-oscillatory solution of (.). We only consider the case that x(t)
is eventually positive, since the case that x(t) is eventually negative is similar. Assume that
x(t) >  for all t ≥ t where t is chosen large. If lim inft→∞ x(t) �= , proceeding as in The-
orem ., we get

w′(t)≤ –Kσ (t)q(t) +
(σ ′

+(t))

σ (t)
.

Therefore,

∫ t

t
(t – s)m

[
Kσ (s)q(s) –

(σ ′
+(s))

σ (s)

]
ds ≤ –

∫ t

t
(t – s)mw′(s)ds. (.)

Using the integration by parts formula leads to

∫ t

t
(t – s)mw′(s)ds = (t – s)mw(s)|s=ts=t +

∫ t

t
m(t – s)m–w(s)ds

= –(t – t)mw(t) +
∫ t

t
m(t – s)m–w(s)ds

≥ –(t – t)mw(t). (.)

Then from (.) we have

∫ t

t
(t – s)m

[
Kσ (s)q(s) –

(σ ′
+(s))

σ (s)

]
ds ≤ (t – t)mw(t),

and so


tm

∫ t

t
(t – s)m

[
Kσ (s)q(s) –

(σ ′
+(s))

σ (s)

]
ds≤

(
t – t
t

)m

w(t).

Hence,

lim sup
t→∞


tm

∫ t

t
(t – s)m

[
Kσ (s)q(s) –

(σ ′
+(s))

σ (s)

]
ds≤ w(t),

which is a contradiction of (.). So the proof is complete. �

4 Examples
In this section, we will show applications of our main results.

http://www.advancesindifferenceequations.com/content/2014/1/50
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Example . Consider the fractional differential equation

Dα
ax(t) +

√
t

∫ t

a


�( – α)

(t – s)–αx(s)ds = , t > a > , (.)

where α ∈ (, ), Dα
a is the Riemann-Liouville differential operator. In (.), q(t) = √

t ,
f (x(t)) =

∫ t
a


�(–α) (t – s)–αx(s)ds. Set K = . Then f (x)

I–αx ≥ K > . Taking σ (s) = s, we ob-
tain

lim sup
t→∞

∫ t

t

[
Kσ (s)q(s) –

(σ ′
+(s))

σ (s)

]
ds

= lim sup
t→∞

∫ t

t

[√
s –


s

]
ds

=∞,

which implies that all conditions in Theorem . hold. So by Theorem . every solution
of (.) is oscillatory or lim inft→∞ x(t) = .

Example . Consider the fractional differential equation

Dα
ax(t) + et

∫ t

a


�( – α)

(t – s)–αx(s)ds = , t > a, (.)

where α ∈ (, ), Dα
a is the Riemann-Liouville differential operator. In (.), q(t) = et ,

f (x(t)) =
∫ t
a


�(–α) (t – s)–αx(s)ds. Set K = . Then f (x)

I–αx ≥ K > . Taking σ (s) = , andm = 
we obtain

lim sup
t→∞


tm

∫ t

t
(t – s)m

[
Kσ (s)q(s) –

(σ ′
+(s))

σ (s)

]
ds

= lim sup
t→∞


t

∫ t

t
(t – s)es ds

= lim sup
t→∞


t

[
(t – s)es|tt +

∫ t

t
(t – s)es ds

]

= lim sup
t→∞


t

[
–(t – t)et + (t – s)es|tt + es|tt

]

= lim sup
t→∞


t

[
–(t – t)et – (t – t)et + et – et

]

=∞,

which yields the result that all conditions onTheorem. hold. Therefore, by Theorem .
every solution of (.) is oscillatory or lim inft→∞ x(t) = .
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