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Abstract
In this paper, we consider the existence of positive solutions for a singular fractional
differential system involving a nonlocal boundary condition which is given by a linear
functional on C[0, 1] with a signed measure. By looking for the upper and lower
solutions of the system, the sufficient condition of the existence of positive solutions
is established; some further cases are discussed. This is proved in the case of strong
singularity and with a signed measure.
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1 Introduction
In this paper, we consider the existence of positive solutions for a singular nonlinear frac-
tional differential system with nonlocal boundary conditions,

{
–Dα

+x(t) = f (t,x(t), y(t)), –Dβ
+y(t) = g(t,x(t), y(t)),  < t < ,

x() = , x() =
∫ 
 x(s)dA(s), y() = , y() =

∫ 
 y(s)dB(s),

(.)

where  < α,β ≤ , Dα
+ and Dβ

+ are the standard Riemann-Liouville derivatives,∫ 
 x(s)dA(s) and

∫ 
 y(s)dB(s) denote the Riemann-Stieltjes integral, where A, B are func-

tions of bounded variation. f , g : (, )× (, +∞)× (, +∞)→ [, +∞) are continuous and
may be singular at x = y =  and t = , .
In system (.), the boundary condition is given by a nonlocal condition involving a

Stieltjes integral type linear functional on C[, ] with a signed measure, but it does not
need to be a positive functional. In particular, if dA(s) = dB(s) = ds or h(s)ds, then the BVP
(.) reduces to an integral boundary value problem, and thus it also includes the multi-
point boundary value problem as a special case. So the problem with Stieltjes integral
boundary condition contains various boundary value problems (see []).
Since the nonlocal boundary value problems can describe a class of very interesting and

important phenomena arising from heat conduction, chemical engineering, underground
water flow, thermo-elasticity, and plasma physics, this type of problem has attractedmuch
attention of many researchers (see [–] and the references therein). Especially, based

©2014 Wu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2014/1/323
mailto:zxg123242@163.com
http://creativecommons.org/licenses/by/2.0


Wu et al. Advances in Difference Equations 2014, 2014:323 Page 2 of 15
http://www.advancesindifferenceequations.com/content/2014/1/323

on the fixed point theory of a strict set of contraction operators in a cone, Feng et al. []
investigated the existence and nonexistence of positive solutions of the following second
order BVPs with integral boundary conditions in Banach space:

⎧⎪⎨⎪⎩
u′′(t) + f (t,u) = θ , t ∈ (, ),
u() =

∫ 
 g(t)u(t)dt, u() = θ , or

u() = θ , u() =
∫ 
 g(t)u(t)dt.

(.)

Subsequently, Liu et al. [] studied a singular integral boundary value problem,

{
u′′(t) + a(t)u′(t) + b(t)u(t) + c(t)f (u) = , t ∈ (, ),
u() =

∫ 
 g(s)u(s)ds, u() =

∫ 
 h(s)u(s)ds,

(.)

where a ∈ C[, ], b ∈ C([, ], (–∞, )), c ∈ C((, ), [, +∞)), f ∈ C((, +∞), [, +∞)), and
g,h ∈ L[, ] are nonnegative. c(t) �≡  is allowed to be singular at t = , , and f may be
singular at u = . By using the fixed point index theorem, the existence of positive solutions
for the BVP (.) is established.
By means of a monotone iterative technique, Zhang and Han [] established the exis-

tence and uniqueness of the positive solutions for a class of higher conjugate-type frac-
tional differential equation with one nonlocal term,

{
Dα

+x(t) + f (t,x(t)) = ,  < t < ,n –  < α ≤ n,
x(k)() = ,  ≤ k ≤ n – , x() =

∫ 
 x(s)dA(s),

(.)

where α ≥ ,Dα
+ is the standard Riemann-Liouville derivative, A is a function of bounded

variation,
∫ 
 u(s)dA(s) denotes the Riemann-Stieltjes integral of u with respect to A, dA

can be a signedmeasure. Recently, some work on systems of nonlinear fractional differen-
tial equations was developed [–]. In [], Ahmad and Ntouyas studied the existence and
uniqueness of solutions for a system of Hadamard type fractional differential equations
with integral boundary conditions⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cDαu(t) = f (t,u(t), v(t)),  < t < e,  < α ≤ ,
cDβu(t) = g(t,u(t), v(t)),  < t < e,  < β ≤ ,
u() = , u(e) = Iγu(σ) = 

�(γ )
∫ σ
 (log σ

s )
γ– u(s)

s ds,
v() = , v(e) = Iγ v(σ) = 

�(γ )
∫ σ
 (log σ

s )
γ– v(s)

s ds,

(.)

where γ > ,  < σ < e,  < σ < e, D(·) is the Hadamard fractional derivative of fractional
order, Iγ is the Hadamard fractional integral of order γ and f , g : [, e] × R × R → R are
continuous functions. The existence of solutions for the system (.) is derived fromLeray-
Schauder’s alternative, whereas the uniqueness of the solution is established by the Banach
contraction principle.More recently, Ahmad et al. [] studied the existence of solutions for
a system of coupled hybrid fractional differential equations with Dirichlet boundary con-
ditions. By using the standard tools of the fixed point theory, the existence and uniqueness
results were established.
Motivated by the above work, we consider the existence of positive solutions for the

singular fractional differential systemwith nonlocal Stieltjes integral boundary conditions
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when f , g can be singular at t = ,  and x = y = . It is well known from linear elastic
fracturemechanics that the stress near the crack tip exhibits a power singularity of r–. [],
where r is the distancemeasured from the crack tip, and this classical singularity also exists
in nonlocal nonlinear problems. But due to the singularity of f , g at x = y = , we cannot
handle the system (.) like in [, ]. Thus, this work we shall devote to finding the upper
and lower solution of the system (.), and by means of the Schauder fixed point theorem
to establish the criterion of the existence of positive solutions for the system (.). To the
best of our knowledge, there has been no work done for the singular fractional differential
system with the Riemann-Stieltjes integral boundary conditions, and this work aims to
contribute in this field. Our work also extends the results of [–, ] to fractional systems
with which f , g can be singular at t = ,  and x = y = .

2 Preliminaries and lemmas
The basic space used in this paper is E = C([, ];R)×C([, ];R), whereR is a real number
set. Obviously, the space E is a Banach space if it is endowed with the norm as follows:

∥∥(x, y)∥∥ := ‖x‖ + ‖y‖, ‖x‖ = max
t∈[,]

∣∣x(t)∣∣, ‖y‖ = max
t∈[,]

∣∣y(t)∣∣
for any (x, y) ∈ E. By a positive solution of problem (.), wemean a pair of functions (u, v) ∈
E satisfying (.) with u(t) ≥ , v(t)≥  for all t ∈ [, ] and (u, v) �= (, ).
Now we begin our work based on theory of fractional calculus; for details of the defi-

nitions and semigroup properties of Riemann-Liouville fractional calculus, one refers to
[–]. In what follows, we give the definitions of the lower and upper solution of the
system (.).

Definition . Apair of functions (φ(t),ψ(t)) ∈ E is called a lower solution of the system
(.), if it satisfies

{
–Dα

+φ(t)≤ f (t,φ(t),ψ(t)), –Dβ
+ψ(t)≤ g(t,φ(t),ψ(t)),  < t < ,

φ()≥ , φ()≥
∫ 
 φ(s)dA(s), ψ() ≥ , ψ()≥

∫ 
 ψ(s)dB(s).

Definition . A pair of functions (φ(t),ψ(t)) ∈ E is called an upper solution of the
system (.), if it satisfies

{
–Dα

+φ(t) ≥ f (t,φ(t),ψ(t)), –Dβ
+ψ(t) ≥ g(t,φ(t),ψ(t)),  < t < ,

φ() ≤ , φ()≤
∫ 
 φ(s)dA(s), ψ()≤ , ψ() ≤

∫ 
 ψ(s)dB(s).

Remark . Normally, it is difficult to find the lower solution and upper solution of the
system (.). In Theorem . of this paper, we will give a general strategy to find the lower
solution and upper solution of the system (.) through a series of integral calculations
form the initial value (tα–, tβ–).

Next let

Gα(t, s) =


�(α)

{
[t( – s)]α–,  ≤ t ≤ s≤ ,
[t( – s)]α– – (t – s)α–, ≤ s≤ t ≤ ,

(.)

http://www.advancesindifferenceequations.com/content/2014/1/323
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Gβ (t, s) =


�(β)

{
[t( – s)]β–, ≤ t ≤ s ≤ ,
[t( – s)]β– – (t – s)β–, ≤ s ≤ t ≤ ,

(.)

and define

GA(s) =
∫ 


Gα(t, s)dA(t), GB(s) =

∫ 


Gβ (t, s)dB(t). (.)

According to the strategy of [], we can get easily theGreen functions of the corresponding
linear boundary value problem for the system (.).

Lemma . Given h ∈ L(, ) and  < α,β ≤ , then the following boundary value prob-
lems:{

–Dα
+x(t) = h(t),  < t < ,

x() = , x() =
∫ 
 x(s)dA(s),

{
–Dβ

+y(t) = h(t),  < t < ,
y() = , y() =

∫ 
 y(s)dB(s),

(.)

have the unique solution

x(t) =
∫ 


Hα(t, s)h(s)ds, y(t) =

∫ 


Hβ (t, s)h(s)ds, (.)

where Hα(t, s), Hβ (t, s) are the Green functions of the BVP (.), respectively, and

Hα(t, s) =
tα–

 –AGA(s) +Gα(t, s), Hβ (t, s) =
tβ–

 –BGB(s) +Gβ (t, s), (.)

where

A =
∫ 


tα– dA(t), B =

∫ 


tβ– dB(t).

Lemma . Let  ≤ A,B <  and GA(s),GB(s) ≥  for s ∈ [, ], then the Green functions
defined by (.) satisfy
() Hα(t, s),Hβ(t, s) > , for all t, s ∈ (, ).
() There exist two constants λ, μ such that

tα–

 –AGA(s)≤Hα(t, s) ≤ λtα–,

tβ–

 –BGB(s) ≤Hβ (t, s)≤ μtβ–, s, t ∈ [, ].
(.)

Proof () is obvious. We only prove the first inequality of (.), the proof of second one is
similar to those of the first one.
Since Gα(t, s)≥  for any s, t ∈ [, ], we have

tα–

 –AGA(s)≤Hα(t, s), s, t ∈ [, ].

On the other hand, from (.), obviously,

Gα(t, s)≤ 
�(α)

tα–.
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Take

λ =


�(α)
+
max≤s≤ GA(s)

 –A ,

then we have

Hα(t, s) ≤ λtα–.

The proof is completed. �

Lemmas . and . lead to the following maximum principle.

Lemma . If (x, y) ∈ E satisfies

x() = , x() =
∫ 


x(s)dA(s), y() = , y() =

∫ 


y(s)dB(s),

and Dα
+x(t)≤ , Dα

+y(t) ≤  for any t ∈ (, ). Then

x(t)≥ , y(t) ≥ , t ∈ [, ].

Lemma . (Schauder fixed point theorem) Let T be a continuous and compact mapping
of a Banach space E into itself, such that the set

{x ∈ E : x = σTx, for some  ≤ σ ≤ }

is bounded. Then T has a fixed point.

3 Main results
Wemake the following assumptions throughout this paper:
(H) A and B are functions of bounded variation satisfying GA(s),GB(s)≥  for s ∈ [, ]

and  ≤A,B < ;
(H) f , g ∈ C((, )× (, +∞)× (,∞), [, +∞)) are decreasing in second and third

variables and such that

f
(
s, sα–, sβ–

)
, g

(
s, sα–, sβ–

) ∈ L(, );

(H) for all r ∈ (, ), there exist constants  < ε,σ <  such that, for any
(t,x, y) ∈ (, )× (, +∞)× (, +∞),

f (t, rx, ry)≤ r–ε f (t,x, y), g(t, rx, ry) ≤ r–σ g(t,x, y).

Remark . The conditions (H)-(H) imply that f , g have a powder singularity at
x = y = , and some typical functions are

∑m
i=(x–λi + y–μi ),  < λi < ,  < μi <  with

ε =min≤i≤m{λi,μi} and λi(α – ) < , μi(β – ) < , i = , , . . . ,m.

http://www.advancesindifferenceequations.com/content/2014/1/323
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Theorem. Suppose (H)-(H) hold.Then the system (.) has at least a positive solution
(x∗, y∗), which satisfies

(
L–tα–,L–tβ–

) ≤ (
x∗, y∗) ≤ (

Ltα–,Ltβ–
)
,

where

L = max

{[
λ

∫ 


f
(
s, sα–( – s)

)
ds

] 
–ε

,
[
μ

∫ 


f
(
s, sα–( – s)

)
ds

] 
–σ

,

[
 –A∫ 

 GA(s)f (s, sα–, sβ–)ds

] 
–ε

,
[

 –B∫ 
 GB(s)g(s, sα–, sβ–)ds

] 
–σ

, 
}
.

In particular, if L = , then (tα–, tβ–) is positive solution of the system (.).

Proof Define a cone

P =
{
(x, y) ∈ E : L–tα– ≤ x(t)≤ Ltα–,L–tβ– ≤ y(t) ≤ Ltβ–, t ∈ [, ]

}
, (.)

then P is nonempty since (tα–, tβ–) ∈ P. Now let us denote an operator T by

T(x, y)(t) =
(
T(x, y)(t),T(x, y)(t)

)
, for any (x, y) ∈ P, (.)

where

T(x, y)(t) =
∫ 


Hα(t, s)f

(
s,x(s), y(s)

)
ds, T(x, y)(t) =

∫ 


Hβ (t, s)g

(
s,x(s), y(s)

)
ds.

We claim that T is well defined and T(P) ⊂ P.
In fact, for any (x, y) ∈ P, we have

L–tα– ≤ x(t) ≤ Ltα–, L–tβ– ≤ y(t) ≤ Ltβ–, t ∈ [, ].

So from Lemma . and (H)-(H), one gets

T(x, y)(t) =
∫ 


Hα(t, s)f

(
s,x(s), y(s)

)
ds

≤
∫ 


λtα–f

(
s,L–sα–,L–sβ–

)
ds

≤ λLεtα–
∫ 


f
(
s, sα–, sβ–

)
ds≤ Ltα– (.)

and

T(x, y)(t) =
∫ 


Hβ (t, s)g

(
s,x(s), y(s)

)
ds

≤
∫ 


μtβ–g

(
s,L–sα–,L–sβ–

)
ds

≤ μLσ tβ–
∫ 


g
(
s, sα–, sβ–

)
ds≤ Ltβ–. (.)

http://www.advancesindifferenceequations.com/content/2014/1/323
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On the other hand, by Lemma . and (H)-(H), we also have

T(x, y)(t)≥ tα–

 –A

∫ 


GA(s)f

(
s,Lsα–,Lsβ–

)
ds

≥ L–εtα–

 –A

∫ 


GA(s)f

(
s, sα–, sβ–

)
ds

≥ L–εtα– ≥ L–tα–, (.)

and

T(x, y)(t)≥ tβ–

 –B

∫ 


GB(s)g

(
s,Lsα–,Lsβ–

)
ds

≥ L–σ tβ–

 –B

∫ 


GB(s)g

(
s, sα–, sβ–

)
ds

≥ L–σ tβ– ≥ L–tβ–. (.)

Thus it follows from (.)-(.) that T is well defined and T(P) ⊂ P. Moreover, by
Lemma ., we have

⎧⎪⎪⎪⎨⎪⎪⎪⎩
–Dα

+T(x, y)(t) = f (t,T(x, y)(t),T(x, y)(t)),
–Dβ

+T(x, y)(t) = g(t,T(x, y)(t),T(x, y)(t)),
T(x, y)(t)() = , T(x, y)() =

∫ 
 T(x, y)(s)dA(s),

T(x, y)() = , T(x, y)() =
∫ 
 T(x, y)(s)dB(s).

(.)

Now take

ϕ(t) =min
{
tα–,T

(
tα–, tβ–

)}
, ϕ(t) =max

{
tα–,T

(
tα–, tβ–

)}
, (.)

ψ(t) =min
{
tβ–,T

(
tα–, tβ–

)}
, ψ(t) =max

{
tβ–,T

(
tα–, tβ–

)}
, (.)

since (tα–, tβ–) ∈ P, (T(tα–, tβ–),T(tα–, tβ–)) ∈ P, we have

(ϕ,ψ) ∈ P, (ϕ,ψ) ∈ P, and ϕ ≤ tα– ≤ ϕ, ψ ≤ tβ– ≤ ψ . (.)

Let

(ϕ,ψ) =
(
T(ϕ,ψ),T(ϕ,ψ)

)
, (ϕ,ψ) =

(
T(ϕ,ψ),T(ϕ,ψ)

)
, (.)

then by (.)-(.) and (H), we have

(ϕ,ψ) =
(
T(ϕ,ψ),T(ϕ,ψ)

) ≤ (
T

(
tα–, tβ–

)
,T

(
tα–, tβ–

))
≤ (

T(ϕ,ψ),T(ϕ,ψ)
)
= (ϕ,ψ), (.)

(ϕ,ψ) ≤
(
T

(
tα–, tβ–

)
,T

(
tα–, tβ–

)) ≤ (ϕ, ψ),

(ϕ,ψ) ≥
(
T

(
tα–, tβ–

)
,T

(
tα–, tβ–

)) ≥ (ϕ,ψ).
(.)

http://www.advancesindifferenceequations.com/content/2014/1/323
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Consequently, it follows from (.) and (.)-(.) that

Dα
+ϕ(t) + f

(
t,ϕ(t),ψ(t)

)
=Dα

+T(ϕ,ψ)(t) + f
(
t,ϕ(t),ψ(t)

)
= –f

(
t,ϕ(t),ψ(t)

)
+ f

(
t,ϕ(t),ψ(t)

)
≤ –f

(
t,ϕ(t),ψ(t)

)
+ f

(
t,ϕ(t),ψ(t)

)
= ,

ϕ() = , ϕ() =
∫ 


ϕ(s)dA(s),

(.)

Dβ
+ψ(t) + g

(
t,ϕ(t),ψ(t)

)
=Dβ

+T(ϕ,ψ)(t) + g
(
t,ϕ(t),ψ(t)

)
= –g

(
t,ϕ(t),ψ(t)

)
+ g

(
t,ϕ(t),ψ(t)

)
≤ –g

(
t,ϕ(t),ψ(t)

)
+ g

(
t,ϕ(t),ψ(t)

)
= ,

ψ() = , ψ() =
∫ 


ψ(s)dB(s),

(.)

and

Dα
+ϕ(t) + f

(
t,ϕ(t),ψ(t)

)
=Dα

+T(ϕ,ψ)(t) + f
(
t,ϕ(t),ψ(t)

)
= –f

(
t,ϕ(t),ψ(t)

)
+ f

(
t,ϕ(t),ψ(t)

)
≥ –f

(
t,ϕ(t),ψ(t)

)
+ f

(
t,ϕ(t),ψ(t)

)
= ,

ϕ() = , ϕ() =
∫ 


ϕ(s)dA(s),

(.)

Dβ
+ψ(t) + g

(
t,ϕ(t),ψ(t)

)
=Dβ

+T(ϕ,ψ)(t) + g
(
t,ϕ(t),ψ(t)

)
= –g

(
t,ϕ(t),ψ(t)

)
+ g

(
t,ϕ(t),ψ(t)

)
≥ –g

(
t,ϕ(t),ψ(t)

)
+ g

(
t,ϕ(t),ψ(t)

)
= ,

ψ() = , ψ() =
∫ 


ψ(s)dB(s),

(.)

Dβ
+ψ(t) + g

(
t,ϕ(t),ψ(t)

)
=Dβ

+T(ϕ,ψ)(t) + g
(
t,ϕ(t),ψ(t)

)
= –g

(
t,ϕ(t),ψ(t)

)
+ g

(
t,ϕ(t),ψ(t)

)
≤ –g

(
t,ϕ(t),ψ(t)

)
+ g

(
t,ϕ(t),ψ(t)

)
= ,

ψ() = , ψ() =
∫ 


ψ(s)dB(s).

(.)

It follows from (.) and (.)-(.) that (ϕ,ψ), (ϕ,ψ) are lower andupper solutions
of the system (.), and (ϕ,ψ), (ϕ,ψ) ∈ P.

http://www.advancesindifferenceequations.com/content/2014/1/323
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Define the functions F̃ , G̃, and the operator T̃ in E by

F̃(t,x, y) =

⎧⎪⎨⎪⎩
f (t,ϕ(t),ψ(t)), (x, y) < (ϕ,ψ),
f (t,x, y), (ϕ,ψ) ≤ (x, y)≤ (ϕ,ψ),
f (t,ϕ(t),ψ(t)), (x, y) > (ϕ,ψ),

(.)

G̃(t,x, y) =

⎧⎪⎨⎪⎩
g(t,ϕ(t),ψ(t)), (x, y) < (ϕ,ψ),
g(t,x, y), (ϕ,ψ) ≤ (x, y)≤ (ϕ,ψ),
g(t,ϕ(t),ψ(t)), (x, y) > (ϕ,ψ),

(.)

and T̃ = (T̃(x, y)(t), T̃(x, y)(t)) where

T̃(x, y)(t) =
∫ 


Hα(t, s)̃F

(
s,x(s), y(s)

)
ds, T̃(x, y)(t) =

∫ 


Hβ (t, s)G̃

(
s,x(s), y(s)

)
ds.

It follows from the assumption that F̃ : (, ) × [, +∞) × [, +∞) → [, +∞) and G̃ :
(, ) × [, +∞) × [, +∞) → [, +∞) are continuous. Consider the following boundary
value problem:

{
–Dα

+x(t) = F̃(t,x(t), y(t)), –Dβ
+y(t) = G̃(t,x(t), y(t)),  < t < ,

x() = , x() =
∫ 
 x(s)dA(s), y() = , y() =

∫ 
 y(s)dB(s).

(.)

Obviously, a fixed point of the operator T̃ is a solution of the BVP (.).
For all (x, y) ∈ E, by (.)-(.), we have

T̃(x, y)(t)≤
∫ 


λF̃

(
s,x(s), y(s)

)
ds≤ λ

∫ 


f
(
s,ϕ(s),ψ(s)

)
ds

≤ λ

∫ 


f
(
s,L–sα–,L–sβ–

)
ds

≤ λLε

∫ 


f
(
s, sα–, sβ–

)
ds < +∞,

T̃(x, y)(t)≤
∫ 


μG̃

(
s,x(s), y(s)

)
ds ≤ μ

∫ 


g
(
s,L–sα–,L–sβ–

)
ds

≤ μLσ

∫ 


g
(
s, sα–, sβ–

)
ds < +∞.

So ‖T̃‖ = ‖T̃‖ + ‖T̃‖ < +∞, which implies that T̃ is uniformly bounded. In addition, it
follows from the continuity of F̃ , G̃ and the uniform continuity of Hα , Hβ , and (H) that
T̃ : E × E → E is continuous.
Let  ⊂ E × E be bounded, by standard discuss and the Arzela-Ascoli theorem, we

easily know T̃() is equicontinuous. Thus T̃ : E → E is completely continuous, and
by using Schauder fixed point theorem, T̃ has at least a fixed point (x∗, y∗) such that
(x∗, y∗) = T̃(x∗, y∗).
Now we prove

(
ϕ(t),ψ(t)

) ≤ (
x∗, y∗) ≤ (

ϕ(t),ψ(t)
)
, t ∈ [, ]. (.)
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We firstly prove (x∗, y∗) ≤ (ϕ(t),ψ(t)). Otherwise, suppose (x∗, y∗) > (ϕ(t),ψ(t)). Ac-
cording to the definition of F̃ , G̃, we have

–Dα
+x

∗(t) = F̃
(
t,x∗(t), y∗(t)

)
= f

(
t,ϕ(t),ψ(t)

)
,

–Dβ
+y

∗(t) = G̃
(
t,x∗(t), y∗(t)

)
= g

(
t,ϕ(t),ψ(t)

)
.

(.)

On the other hand, as (ϕ(t),ψ(t)) is an upper solution of (.), we have

–Dα
+ϕ(t) ≥ f

(
t,ϕ(t),ψ(t)

)
, –Dβ

+ψ(t)≥ g
(
t,ϕ(t),ψ(t)

)
. (.)

Let z(t) = ϕ(t) – x∗(t), w(t) = ψ(t) – y∗(t), (.)-(.) imply that

Dα
+z(t) =Dα

+ϕ(t) –Dα
+x

∗(t)≤ , Dβ
+w(t) =Dβ

+ψ(t) –Dα
+y

∗(t) ≤ .

On the other hand, since (ϕ(t),ψ(t)) is an upper solution of the BVP (.) and (x∗, y∗) is a
fixed point of T̃ , we know

z() = , z() =
∫ 


z(s)dA(s), w() = , w() =

∫ 


w(s)dB(s).

It follows from Lemma . that

z(t) ≥ , w(t) ≥ ,

i.e., (x∗(t), y∗(t)) ≤ (ϕ(t),ψ(t)) on [, ], which contradicts (x∗, y∗) > (ϕ(t),ψ(t)). Thus
we have (x∗(t), y∗(t)) ≤ (ϕ(t),ψ(t)) on [, ]. In the same way, (x∗(t), y∗(t)) ≥ (ϕ(t),ψ(t))
on [, ]. Consequently, (.) is satisfied; then (x∗(t), y∗(t)) is a positive solution of the
problem (.).
It follows from (ϕ(t),ψ(t)), (ϕ(t),ψ(t)) ∈ P and (.) that

(
L–tα–,L–tβ–

) ≤ (
x∗, y∗) ≤ (

Ltα–,Ltβ–
)
.

The proof is completed. �

4 Further results
In this section, we discuss some special case for system (.) and obtain some further re-
sults. We firstly discuss that f , g have no singularity at x, y = , but can be singular at
t = , .

Theorem . Suppose (H) holds, and f , g satisfies

(H∗) f , g ∈ C((, )× [,∞)× [,∞), [, +∞)) are decreasing in second and third variables
and such that

 <
∫ 


f (s, , )ds < ∞,  <

∫ 


g(s, , )ds < ∞.

http://www.advancesindifferenceequations.com/content/2014/1/323
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Then the system (.) has at least a positive solution (x∗, y∗), which satisfies

(, )≤ (
x∗, y∗) ≤ (̃

Ltα–, L̃tβ–
)
,

where

L̃ =max

{
λ

∫ 


f (s, , )ds,μ

∫ 


g(s, , )ds

}
.

Proof Similar to the proof of Theorem ., we take the cone

P =
{
(x, y) ∈ E : x(t)≥ , y(t) ≥ , t ∈ [, ]

}
.

Clearly, T(P) ⊆ P is well defined.
Now take

ϕ(t) = , ϕ(t) = T(, ), (.)

ψ(t) = , ψ(t) = T(, ); (.)

we have

(ϕ,ψ) ∈ P, (ϕ,ψ) ∈ P, and ϕ =  ≤ ϕ, ψ =  ≤ ψ . (.)

Let

(ϕ,ψ) =
(
T(ϕ,ψ),T(ϕ,ψ)

)
, (ϕ,ψ) =

(
T(ϕ,ψ),T(ϕ,ψ)

)
, (.)

then by (.)-(.) and (H∗), we have

(ϕ,ψ) =
(
T(ϕ,ψ),T(ϕ,ψ)

) ≤ (
T(, ),T(, )

)
≤ (

T(ϕ,ψ),T(ϕ,ψ)
)
= (ϕ,ψ), (.)

(ϕ,ψ) ≤
(
T(, ),T(, )

)
= (ϕ,ψ),

(ϕ,ψ) =
(
T(, ),T(, )

) ≥ (ϕ,ψ).
(.)

Consequently, it follows from (.) and (.) that

Dα
+ϕ(t) + f

(
t,ϕ(t),ψ(t)

)
=Dα

+T(ϕ,ψ)(t) + f
(
t,ϕ(t),ψ(t)

)
= –f (t, , ) + f

(
t,ϕ(t),ψ(t)

) ≤ –f (t, , ) + f (t, , ) = , (.)

Dβ
+ψ(t) + g

(
t,ϕ(t),ψ(t)

)
=Dβ

+T(ϕ,ψ)(t) + g
(
t,ϕ(t),ψ(t)

)
= –g(t, , ) + g

(
t,ϕ(t),ψ(t)

) ≤ –g(t, , ) + g(t, , ) = , (.)

http://www.advancesindifferenceequations.com/content/2014/1/323
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and

Dα
+ϕ(t) + f

(
t,ϕ(t),ψ(t)

)
=Dα

+T(ϕ,ψ)(t) + f
(
t,ϕ(t),ψ(t)

)
= –f

(
t,ϕ(t),ψ(t)

)
+ f

(
t,ϕ(t),ψ(t)

)
≥ –f

(
t,ϕ(t),ψ(t)

)
+ f

(
t,ϕ(t),ψ(t)

)
= , (.)

Dβ
+ψ(t) + g

(
t,ϕ(t),ψ(t)

)
=Dβ

+T(ϕ,ψ)(t) + g
(
t,ϕ(t),ψ(t)

)
= –g

(
t,ϕ(t),ψ(t)

)
+ g

(
t,ϕ(t),ψ(t)

)
≥ –g

(
t,ϕ(t),ψ(t)

)
+ g

(
t,ϕ(t),ψ(t)

)
= . (.)

Thus (.) and (.)-(.) imply that (ϕ,ψ), (ϕ,ψ) are lower and upper solutions of
the system (.), and (ϕ,ψ), (ϕ,ψ) ∈ P.
On the other hand, by Lemma .,

ϕ(t) = T(, )(t) =
∫ 


Hα(t, s)f (s, , )ds≤ λtα–

∫ 


f (s, , )ds≤ L̃tα–,

ψ(t) = T(, )(t) =
∫ 


Hβ (t, s)g(s, , )ds≤ μtβ–

∫ 


g(s, , )ds≤ L̃tβ–.

Thus the rest of proof is similar to those of Theorem .. �

Next, if f , g have no singularity at x, y =  and t = , , we copy the proof of Theorem .,
and we have the following interesting result.

Theorem . Suppose (H) holds, f (t, , ) �≡ , g(t, , ) �≡ , t ∈ [, ], and f , g ∈
C([, ] × [,∞) × [,∞), [, +∞)) are decreasing in second and third variables. Then
the system (.) has at least a positive solution (x∗, y∗), which satisfies

(, )≤ (
x∗, y∗) ≤ (̃

Ltα–, L̃tβ–
)
,

where

L̃ =max

{
λ

∫ 


f (s, , )ds,μ

∫ 


g(s, , )ds

}
.

5 Examples
Take functions of bounded variation,

A(t) =

⎧⎪⎨⎪⎩
, t ∈ [,  ),

 , t ∈ [  ,


 ),

, t ∈ [  , ],
B(t) =

⎧⎪⎨⎪⎩
, t ∈ [,  ),
, t ∈ [  ,


 ),

, t ∈ [  , ].
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Example . Suppose that αi,βi,γi > , and  < γi + 
αi < ,  < γi + 

βi < , i = , . We
consider the following singular fractional differential system:

–D


+x(t) = t–γ

(
x–α + y–β

)
, –D



+y(t) = t–γ

(
x–α + y–β

)
, (.)

subject to the nonlocal boundary condition

x() = , x() =
∫ 


x(s)dA(s), y() = , y() =

∫ 


y(s)dB(s). (.)

By a simple calculation, the system (.) with boundary condition (.) is equivalent to
the following system with coefficients of both signs:

{
–D



+x(t) = t–γ (x–α + y–β ), –D



+y(t) = t–γ (x–α + y–β ),

x() = , x() = 
x(


 ) +


x(


 ), y() = , y() = y(  ) – y(  ),

and

 ≤A =
∫ 


t

 dA(t) =




(



) 

+



(



) 
 ≈ . < ,

 ≤ B =
∫ 


t

 dB(t) = 

(



) 

–

(



) 
 ≈ . < .

Clearly, GA(s),GB(s)≥  for s ∈ [, ] also hold.
Let f (t,x, y) = t–γ (x–α + y–β ), g(t,x, y) = t–γ (x–α + y–β ), then f , g are decreasing in x

and y, and

f
(
s, sα–, sβ–

)
= s–γ– 

 α + s–γ– 
 β , g

(
s, sα–, sβ–

)
= s–γ– 

 α + s–γ– 
 β ∈ L(, ).

Moreover, for all r ∈ (, ) and (t,x, y) ∈ (, )× (, +∞)× (, +∞), we have

f (t, rx, ry)≤ r–max{α,β}f (t,x, y), g(t, rx, ry) ≤ r–max{α,β}g(t,x, y).

By Theorem ., the system (.) with boundary condition (.) has at least a positive
solution (x∗, y∗).

Example . Consider the singular fractional differential system

–D


+x(t) = t–




(


x + 
+ cos y

)
, –D



+y(t) =

| ln t| + t– 


(x 
 + )(sin y + )

, (.)

subject to nonlocal boundary condition (.). Let

f (t,x, y) = t–



(


x + 
+ cos y

)
, g(t,x, y) =

| ln t| + t– 


(x 
 + )(sin y + )

,
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then f , g are decreasing in x and y, and

∫ 


f (s, , )ds =




∫ 


s–


 ds = ,

∫ 


g(s, , )ds =

∫ 



(
s–


 – ln s

)
ds = .

Thus by Theorem ., the system (.) with boundary condition (.) has at least a positive
solution (x∗, y∗).

Remark . In this work, themonotone assumption of f and g is an essential condition. In
particular, for nonsingular case, the result is interesting since only monotone assumption
is requested, which meets a large classes of functions.
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