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Abstract
In this paper, we discuss the dynamics of a stochastic SIQS epidemic model. When the
noise is large, the infective decays exponentially to zero regardless of the magnitude
of R0. When the noise is small, sufficient conditions for extinction exponentially and
persistence in the mean are established. The results are illustrated by computer
simulations.
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1 Introduction
One intervention procedure to control the spread of infectious diseases is to isolate some
infectives, in order to reduce transmissions of the infection to susceptibles. Isolation may
have been the first infection control method. Over the centuries quarantine has been used
to reduce the transmission of human diseases such as leprosy, plague, cholera, typhus,
yellow fever, smallpox, diphtheria, tuberculosis, measles, mumps, ebola, and lassa fever.
Quarantine has also been used for animal diseases such as rinderpest, foot and mouth,
psittacosis, Newcastle disease, and rabies. Studies of epidemic models with quarantine
have become an important area in the mathematical theory of epidemiology, and they
have largely been inspired by Refs. [–].
Hethcote et al. in [] discuss an SIQS epidemic model:

⎧⎪⎨
⎪⎩
Ṡ(t) = A – βS(t)I(t) –μS(t) + γ I(t) + εQ(t),
İ(t) = βS(t)I(t) – (μ + δ + γ + α)I(t),
Q̇(t) = δI(t) – (μ + ε + α)Q(t),

(.)

where parameters A, μ, and β are positive constants, and α, γ , ε, and δ are non-negative
constants. Here S(t) denotes the number of members who are susceptible to an infection
at time t. I(t) denotes the number of members who are infective at time t.Q(t) denotes the
number of members who are removed and isolated either voluntarily or coercively from
the infectious class. The parameters in the model are summarized in the following list:

A: the recruitment rate of susceptibles corresponding to births and immigration;
β : transmission coefficient between compartments S and I ;
μ: the per capita natural mortality rate;
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δ: the rate for individuals leaving the infective compartment I for the quarantine compart-
ment Q;

γ : recovery rate of infectious individuals;
ε: the rate at which individuals return to susceptible compartment S from compart-

ments Q;
α: disease-caused death rate of infectious individuals.

In a simple epidemic model, there is generally the basic reproduction number (or the
threshold) R. If R ≤ , the disease-free equilibrium is a unique equilibrium in this type
of epidemic model and it is globally asymptotically stable; if R > , this type of model has
also a unique endemic equilibrium, which is globally asymptotically stable. The threshold
of system (.) is

R =
βA

μ(μ + δ + γ + α)
. (.)

In [], the system (.) always has the disease-free equilibrium P = (S, I,Q) = (A
μ
, , ).

If R ≤ , then P is the unique equilibrium of (.) and it is globally stable in invariant
set �, where

� =
{
(S, I,Q) : S > , I ≥ ,Q ≥ ,S + I +Q ≤ A

μ

}
.

If R > , then P is unstable and there is an endemic equilibrium

P∗ =
(
S∗, I∗,Q∗) = (

μ + δ + γ + α

β
,

A( – 
R
)

(μ + α)( + δ
μ+ε+α

)
,

δI∗

μ + ε + α

)
,

which is globally asymptotically stable under a sufficient condition in invariant set �.
In fact, epidemic models are inevitably affected by environmental white noise which is

an important component in realism, because it can provide an additional degree of realism
in comparison to their deterministic counterparts. Many stochastic models for epidemic
populations have been developed in [–]. Dalal et al. [] have previously used the tech-
nique of parameter perturbation to examine the effect of environmental stochasticity in
a model of AIDS and condom use. They found that the introduction of stochastic noise
changes the basic reproduction number of the disease and can stabilize an otherwise un-
stable system. Tornatore et al. [] propose a stochastic disease model where vaccination
is included. They prove existence, uniqueness, and positivity of the solution and the sta-
bility of the disease-free equilibrium. Zhao et al. [] discuss the dynamics of a stochastic
SIS epidemic model with vaccination. They obtain the condition of the disease extinction
and persistence according to the threshold of the deterministic system and the noise. Ji et
al. [] discuss the SDE SIR model with no delay. They obtain if β < γ + μ – σ /, then
the disease-free equilibrium is stochastically asymptotically stable in the large and expo-
nentially mean-square stable. If β > γ + μ, then the solution of the system is fluctuating
around (S∗, I∗,R∗), which is the endemic equilibrium of the corresponding deterministic
system. The disease will prevail if the white noise is small.
However, compared to deterministic systems, it is difficult to give the threshold of

stochastic systems. Recently, Gray et al. in [] investigate the stochastic SIS epidemic
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model with fluctuations around the transmission coefficient β . They prove that this model
has a unique global positive solution and establish conditions for extinction and persis-
tence of I(t) according to the threshold of the stochastic model. In the case of persistence
they show the existence of a stationary distribution and derive expressions for its mean
and variance. Zhao and Jiang [] continue to discuss the stochastic SIS epidemic model
with vaccination.When the noise is small, they obtain a threshold of the stochastic system
which determines the extinction and persistence of the epidemic. Besides, they find that
large noise will suppress the epidemic from prevailing.
In this paper, taking into account the effect of randomly fluctuating environment, we as-

sume that fluctuations in the environment will manifest themselves mainly as fluctuations
in the parameter β ,

β → β + σ Ḃ(t),

where B(t) is standard Brownian motions with B() = , and with intensity of white noise
σ  > . The stochastic version corresponding to the deterministic model (.) takes the
following form:

⎧⎪⎨
⎪⎩
dS(t) = (A – βS(t)I(t) –μS(t) + γ I(t) + εQ(t))dt – σS(t)I(t)dB(t),
dI(t) = (βS(t)I(t) – (μ + δ + γ + α)I(t))dt + σS(t)I(t)dB(t),
dQ(t) = (δI(t) – (μ + ε + α)Q(t))dt,

(.)

This paper is organized as follows. In Section , we show there is a unique positive solu-
tion of system (.). In Section , we investigate system (.) is exponential stability when
the noise is large. In this case, the infective decays exponentially to zero. When the noise
is small, we deduce the condition R̃ <  which will enable the disease to die out expo-
nentially in Section  and the condition R̃ >  for the disease being persistent is given
in Sections . Throughout the paper, outcomes of numerical simulations are reported to
support the analytical results.
Next, we give some basic theory in stochastic differential equations (see []).
Throughout this paper, unless otherwise specified, let (	, {Ft}t≥,P) be a complete prob-

ability space with a filtration {Ft}t≥ satisfying the usual conditions (i.e. it is right contin-
uous and F contains all P-null sets). Let

R
d
+ =

{
x ∈R

d : xi >  for all  ≤ i≤ d
}
, R̄

d
+ =

{
x ∈R

d : xi ≥  for all  ≤ i≤ d
}
.

In general, consider the n-dimensional stochastic differential equation

dx(t) = f
(
x(t), t

)
dt + g

(
x(t), t

)
dB(t), for t ≥ t, (.)

with initial value x(t) = x ∈ Rd . B(t) denotes n dimensional standard Brownian motion
defined on the above probability space. Define the differential operator L associated with
(.) by

L =
∂

∂t
+

d∑
i=

fi(x, t)
∂

∂xi
+



d∑
i,j=

[
gT (x, t)g(x, t)

]
ij

∂

∂xi ∂xj
.
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If L acts on a function V ∈ C,(Rd × R̄+; R̄+), then

LV (x, t) = Vt(x, t) +Vx(x, t)f (x, t) +


trace

[
gT (x, t)Vxx(x, t)g(x, t)

]
,

where Vt = ∂V
∂t , Vx = ( ∂V

∂x
, . . . , ∂V

∂xd
), Vxx = ( ∂V

∂xi ∂xj
)d×d . By Itô’s formula, if x(t) ∈ Rd , then

dV
(
x(t), t

)
= LV

(
x(t), t

)
dt +Vx

(
x(t), t

)
g
(
x(t), t

)
dB(t).

Consider (.), assume f (, t) =  and g(, t) =  for all t ≥ t. So x(t) ≡  is a solution of
(.), called the trivial solution or equilibrium position.

2 Existence and uniqueness of positive solution
In this section we first show that the solution of system (.) is global and positive. To get
a unique global (i.e. no explosion in a finite time) solution for any given initial value, the
coefficients of the equation are generally required to satisfy the linear growth condition
and local Lipschitz condition (cf. []). However, the coefficients of system (.) do not
satisfy the linear growth condition, though they are locally Lipschitz continuous, so the
solution of system (.) may explode in finite time. In this section, using the Lyapunov
analysis method (mentioned in [, ]), we show the solution of system (.) is positive
and global.

Theorem . There is a unique solution (S(t), I(t),Q(t)) of system (.) on t ≥  for any
initial value (S(), I(),Q()) ∈ R


+, and the solution will remain in R


+ with probability ,

namely, (S(t), I(t),Q(t)) ∈R

+ for all t ≥  almost surely.

Proof Since the coefficients of the equation are locally Lipschitz continuous for any given
initial value (S(), I(),Q()) ∈ R


+, there is a unique local solution (S(t), I(t),Q(t)) on t ∈

[, τe), where τe is the explosion time (see []). To show this solution is global, we need
to show that τe = ∞ a.s. Let k ≥  be sufficiently large so that S(), I(), and Q() all lie
within the interval [/k,k]. For each integer k ≥ k, define the stopping time

τk = inf

{
t ∈ [, τe) :min

{
S(t), I(t),Q(t)

} ≤ 
k
or max

{
S(t), I(t),Q(t)

} ≥ k
}
,

where, throughout this paper, we set inf∅ =∞ (as usual ∅ denotes the empty set). Accord-
ing to the definition, τk is increasing as k → ∞. Set τ∞ = limk→∞ τk , whence τ∞ ≤ τe a.s.
If we can show that τ∞ = ∞ a.s., then τe = ∞ and (S(t), I(t),Q(t)) ∈ R


+ a.s. for all t ≥ . In

other words, to complete the proof all we need to show is that τ∞ =∞ a.s. If this statement
is false, then there exist a pair of constants T >  and ε ∈ (, ) such that

P{τ∞ ≤ T} > ε.

Hence there is an integer k ≥ k such that

P{τk ≤ T} ≥ ε for all k ≥ k. (.)
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For t ≤ τk , we can see, for each k,

d(S + I +Q) =
[
A –μ(S + I +Q) – α(I +Q)

]
dt ≤ [

A –μ(S + I +Q)
]
dt

and so

S(t) + I(t) +Q(t)≤
{

A
μ
, if S() + I() +Q()≤ A

μ
,

S() + I() +Q(), if S() + I() +Q() > A
μ

:=M.

Define a C-function V :R
+ → R̄+ by

V (S, I,Q) = (S –  – logS) + (I –  – log I) + (Q –  – logQ).

The nonnegativity of this function can be seen from u –  – logu ≥ , ∀u > . Let k ≥ k
and T >  be arbitrary. Applying the Itô formula, we obtain

dV (S, I,Q) =
(
 –


S

)
dS +


S

(dS) +
(
 –


I

)
dI +


I

(dI) +
(
 –


Q

)
dQ

= LV dt + σ (I – S)dB(t), (.)

where LV :R
+ →R+ is defined by

LV =
(
 –


S

)
(A – βSI –μS + γ I + εQ) +



σ I +

(
 –


I

)[
βSI – (μ + δ + γ + α)I

]

+


σ S +

(
 –


Q

)[
δI – (μ + ε + α)Q

]

= A – βSI –μS + γ I + εQ –
A
S
+ βI +μ – γ

I
S
– ε

Q
S
+


σ I

+ βSI – (μ + δ + γ + α)I

– βS + (μ + δ + γ + α) +


σ S + δI – (μ + ε + α)Q – δ

I
Q

+ (μ + ε + α)

≤ A + μ + α + δ + γ + ε + (γ + ε + β + δ)M + σ M

:= K .

The remainder of the proof follows that in Ji et al. []. �

Remark . From Theorem ., for any initial value (S(), I(),Q()) ∈ R

+, there is a

unique global solution (S(t), I(t),Q(t)) ∈R

+ almost surely of system (.). Hence

d(S + I +Q) ≤ [
A –μ(S + I +Q)

]
dt

and

S(t) + I(t) +Q(t)≤ A
μ

+ e–μt
(
S() + I() +Q() –

A
μ

)
.
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If S() + I() +Q()≤ A
μ
, then S(t) + I(t) +Q(t) ≤ A

μ
a.s. so the region

�∗ =
{
(S, I,Q) : S > , I > ,Q > ,S + I +Q ≤ A

μ
a.s.

}
(.)

is a positively invariant set of system (.) on �∗, which is similar to � of system (.).

From now on, we always assume that (S(), I(),Q()) ∈ �∗.

3 Extinction
In this section, we investigate the conditions for the extinction of the disease. For conve-
nience we introduce the notation:

〈
x(t)

〉
=

t

∫ t


x(r)dr, R̃ = β

(
A
μ

)


(μ + γ + δ + α) + 
σ

(A
μ
)
.

We first give a useful lemma.

Lemma . ([] (Strong Law of Large Numbers)) Let M = {Mt}t≥ be a real-value con-
tinuous local martingale vanishing at t = . Then

lim
t→∞〈M,M〉t =∞ a.s. ⇒ lim

t→∞
Mt

〈M,M〉t =  a.s.

and also

lim sup
t→∞

〈M,M〉t
t

< ∞ a.s. ⇒ lim
t→∞

Mt

t
=  a.s.

The following is the main theorem of this section.

Theorem . Let (S(t), I(t),Q(t)) be the solution of system (.) with initial value (S(),
I(),Q()) ∈ �∗. If
(a) σ  >max{ β

(γ+δ+μ+α) ,
βμ

A }, or
(b) R̃ <  and σ  ≤ βμ

A .
Then

lim sup
t→∞

log I(t)
t

≤ –(μ + γ + α + δ) +
β

σ  <  a.s. if (a) holds; (.)

lim sup
t→∞

log I(t)
t

≤ β
A
μ

(
 –


R̃

)
<  a.s. if (b) holds; (.)

namely, I(t) tends to zero exponentially a.s. i.e., the disease will die out with probability
one. In addition

lim
t→∞S(t) =

A
μ

= S, lim
t→∞ I(t) = , lim

t→∞Q(t) =  a.s.
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Proof An integration of the system (.) yields

S(t) – S()
t

= A – β
〈
S(t)I(t)

〉
–μ

〈
S(t)

〉
+ γ

〈
I(t)

〉
+ ε

〈
Q(t)

〉
–

σ

t

∫ t


S(r)I(r)dB(r),

I(t) – I()
t

= β
〈
S(t)I(t)

〉
– (γ + δ +μ + α)

〈
I(t)

〉
+

σ

t

∫ t


S(r)I(r)dB(r),

Q(t) –Q()
t

= δ
〈
I(t)

〉
– (μ + ε + α)

〈
Q(t)

〉
,

(.)

then we have

μ + ε + α

ε

[
S(t) – S()

t
+
I(t) – I()

t

]
+
Q(t) –Q()

t

=
μ + ε + α

ε
A –

(μ + ε + α)μ
ε

〈
S(t)

〉
–
(μ + ε + α)(α + δ + α)

ε

〈
I(t)

〉
+ δ

〈
I(t)

〉
.

We compute that

〈
S(t)

〉
=
A
μ

–
(

μ + α

μ

)
μ + ε + α + δ

μ + ε + α

〈
I(t)

〉
+ ϕ(t), (.)

where ϕ(t) is defined by

ϕ(t) = –
ε

μ(μ + ε + α)

{
μ + ε + α

ε

[
S(t) – S()

t
+
I(t) – I()

t

]
+
Q(t) –Q()

t

}

= –

μ

[
S(t) – S()

t
+
I(t) – I()

t

]
–

ε

μ(μ + ε + α)
Q(t) –Q()

t
.

Obviously ϕ(t)→ , t → ∞. Applying Itô’s formula to system (.) leads to

d log I =
[[

βS – (γ + δ +μ + α)
]
dt –



σ S

]
dt + σS dB(t). (.)

Integrating this from  to t and dividing t on the both sides, we have

log I(t) – log I()
t

= β
〈
S(t)

〉
– (μ + γ + δ + α) –



σ 〈S(t)〉 + σ

t

∫ t


S(r)dB(r)

≤ β
〈
S(t)

〉
– (μ + γ + δ + α) –



σ 〈S(t)〉 + σ

t

∫ t


S(r)dB(r). (.)

Substituting (.) into (.) yields

log I(t) – log I()
t

= β

[
A
μ

–
μ + α

μ

(
 +

δ

μ + ε + α

)〈
I(t)

〉
+ ϕ(t)

]
– (μ + γ + δ + α)

–


σ 

[
A
μ

–
μ + α

μ

(
 +

δ

μ + ε + α

)〈
I(t)

〉
+ ϕ(t)

]

+
σ

t

∫ t


S(r)dB(r)

= β

[
A
μ

–
(

μ + α

μ

)
μ + ε + α + δ

μ + ε + α

〈
I(t)

〉
+ ϕ(t)

]
– (μ + σ + δ + α) –



σ 

[(
A
μ

)

http://www.advancesindifferenceequations.com/content/2014/1/320
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+
(

μ + α

μ

)(
μ + ε + α + δ

μ + ε + α

)〈
I(t)

〉 + ϕ(t) –
(
A
μ

)(
μ + α

μ

)
μ + ε + α + δ

μ + ε + α

〈
I(t)

〉

+
A
μ

ϕ(t) – 
(

μ + α

μ

)
μ + ε + α + δ

μ + ε + α

〈
I(t)

〉
ϕ(t)

]
+

σ

t

∫ t


S(r)dB(r)

=
βA
μ

– (μ + γ + δ + α) –


σ 

(
A
μ

)

–
(

μ + α

μ

)
μ + ε + α + δ

μ + ε + α

(
β – σ A

μ

)〈
I(t)

〉

–


σ 

(
μ + α

μ

)(
μ + ε + α + δ

μ + ε + α

)〈
I(t)

〉 + βϕ(t) –


σ ϕ(t) – σ 

(
A
μ

)
ϕ(t)

+ σ 
(

μ + α

μ

)
μ + ε + α + δ

μ + ε + α

〈
I(t)

〉
ϕ(t) +

σM(t)
t

≤ βA
μ

(
 –


R̃

)
–

(
μ + α

μ

)
μ + ε + α + δ

μ + ε + α

(
β – σ A

μ

)〈
I(t)

〉
+
(t) +

σM(t)
t

, (.)

where


(t) = βϕ(t) –
σ 


ϕ(t) + σ  (μ + ε)(μ + α)

μ(μ + ε + p)
〈
I(t)

〉
ϕ(t) – σ A

μ
ϕ(t),

M(t) =
∫ t


S(r)dB(r).

If the condition (b) is satisfied, we have

log I(t) – log I()
t

≤ β
A
μ

(
 –


R̃

)
+
(t) +

σM(t)
t

. (.)

Moreover,

lim sup
t→∞

〈M,M〉t
t

≤ σ A

μ <∞ a.s.

By Lemma . and ϕ(t)→ , t → ∞, we obtain

lim
t→∞

M(t)
t

=  and lim
t→∞
(t) =  a.s. (.)

It follows from (.) and (.) that

lim sup
t→∞

log I(t)
t

≤ β
A
μ

(
 –


R̃

)
<  a.s.

Conclusion (.) is proved.
Next, according to (.), we obtain

log I(t) – log I()
t

≤ β
〈
S(t)

〉
– (μ + γ + δ + α) –



σ 〈S(t)〉 + σ

t

∫ t


S(r)dB(r)

= –


σ 

(〈
S(t)

〉
–

β

σ 

)

+
β

σ  – (γ + δ +μ + α).
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If the condition (a) is satisfied, we have

log I(t)
t

≤ β

σ  – (γ + δ +μ + α) + σ
M(t)
t

+
log I()

t
.

Conclusion (.) is proved.

lim sup
t→∞

log I(t)
t

≤ –(μ + γ + α + δ) +
β

σ  <  a.s.

According to (.) and (.), they implies

lim
t→∞ I(t) =  a.s. (.)

Next, let us prove the last assertion. We solve the last equation of system (.), then

Q(t) = e–(μ+ε+α)t
[
Q() +

∫ t


δI(s)e(μ+ε+α)s ds

]
.

Applying L’Hospital’s rule and (.), we get

lim
t→∞Q(t) = lim

t→∞
Q() +

∫ t
 δI(s)e(μ+ε+α)s ds
e(μ+ε+α)t = lim

t→∞
δI(t)

μ + ε + α
= .

According to system (.), we obtain

d(S + I +Q) =
[
A –μ(S + I +Q) – α(I +Q)

]
dt,

then

S(t) + I(t) +Q(t) = e–μt
{[

S() + I() +Q()
]
+

∫ t



[
A – α

(
I(s) +Q(s)

)]
eμs ds

}
,

then

lim
t→∞S(t) = lim

t→∞

{ [S() + I() +Q()] +
∫ t
 [A – α(I(s) +Q(s))]eμs ds
eμt – I(t) –Q(t)

}

= lim
t→∞

A – α(I(s) +Q(s))
μ

=
A
μ

a.s.

This finishes the proof of Theorem .. �

Remark . Theorem . tells us the disease will die out if R̃ <  and the white noise is
not large satisfied σ  ≤ βμ

A . Moreover, we notice the conditions for I(t) to become extinct
in the SDE model (.) are weaker than in the corresponding deterministic model. When
the white noise is large enough such that σ  >max{ β

(γ+δ+μ+α) ,
βμ

A } is satisfied, the disease
will also die out. The following examples illustrate this result more explicitly.
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Figure 1 Computer simulation of the path S(t), I(t), Q(t) for model (1.3) and (1.1) for parameter values
A = 0.8, β = 0.6, μ = 0.4, α = 0.2, γ = 0.3, ε = 0.2, δ = 0.1 and σ = 0.4, with step size �t = 0.001 and
initial value (S(0), I(0),Q(0)) = (0.8, 0.4, 0.5).

Example . Throughout the paper we shall assume that the unit of time is one day and
the population sizes are measured in units of  million. Choose the parameters in system
(.) as follows:

A = ., β = ., μ = ., α = ., γ = .,

ε = ., δ = ., σ = ..
(.)

Note that

R̃ = β

(
A
μ

)


(μ + γ + δ + α) + 
σ

(A
μ
)

= . <  and σ  = . ≤ βμ

A
= .,

then by Theorem ., the solution (S(t), I(t),Q(t)) of system (.) obeys

lim sup
t→∞

log I(t)
t

≤ β
A
μ

(
 –


R̃

)
= –. < , a.s.

and

lim
t→∞S(t) =

A
μ

= , lim
t→∞Q(t) =  a.s.

with any initial value (S(), I(),Q()) = (., ., .) ∈ �∗. That is, I(t) will tend to zero
exponentially with probability one.
On the other hand, for the corresponding deterministic model (.),

R =
βA

μ(μ + δ + γ + α)
= . > , (.)

then the endemic equilibrium (S∗, I∗,Q∗) is globally asymptotically stable in �. Using the
method mentioned in [], we give the simulations shown in Figure  to support our re-
sults.
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Figure 2 Computer simulation of the path S(t), I(t), Q(t) for model (1.3) and (1.1) for parameter values
A = 0.5, q = 0.8, β = 0.5, μ = 0.1, p = 0.6, α = 0.2, γ = 0.3, ε = 0.2, and σ = 0.6, with step size �t = 0.001
and initial value (S(0), I(0),Q(0)) = (0.8, 0.4, 0.5).

Example . We keep all the parameters of (.) unchanged but increase σ to ..
Note that σ  = . > . = max{ β

(γ+δ+μ+α) ,
βμ

A }, then by Theorem ., the solution
(S(t), I(t),Q(t)) of system (.) obeys

lim sup
t→∞

log I(t)
t

≤ –(μ + γ + α + δ) +
β

σ  = –. <  a.s.

That is, I(t) will tend to zero exponentially with probability one. But, for the correspond-
ing deterministic model (.), note (.), R = . > , then the endemic equilibrium
(S∗, I∗,Q∗) is globally asymptotically stable in �. Using the method mentioned in [], we
give the simulations shown in Figure  to support our results.

4 Persistence
Since there is no internal equilibrium model in the stochastic infectious disease model,
how to choose the appropriate scale to reflect the widespread prevalence of the disease is
a key issue. We first give a definition of persistence in the mean and a lemma to be used
in proof.

Definition . System (.) is said to be persistent in the mean, if

lim inf
t→∞


t

∫ t


I(r)dr >  a.s.

Lemma . [] Let f ∈ C[[,∞) × 	, (,∞)] and F(t) ∈ C([,∞) × 	,R). If there exist
positive constants λ, λ, and T such that

log f (t) ≤ λt – λ

∫ t


f (s)ds + F(t) a.s.

for all t ≥ T , and limt→∞ F(t)
t =  a.s., then

lim sup
t→∞


t

∫ t


f (s)ds≤ λ

λ
a.s.
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Theorem . If R̃ >  and σ  < βμ

A , then for any initial value (S(), I(),Q()) ∈ �∗, the
solution (S(t), I(t),Q(t)) of system (.) has the following property:

Ĩ∗ ≤ lim inf
t→∞

〈
I(t)

〉 ≤ lim sup
t→∞

〈
I(t)

〉 ≤ Ĩ∗ a.s., (.)

where

Ĩ∗ =
A
μ
( – 

R̃
)

(μ+α

μ
)μ+ε+α+δ

μ+ε+α

, Ĩ∗ =
β A

μ
( – 

R̃
)

(μ+α

μ
)μ+ε+α+δ

μ+ε+α
(β – σ  A

μ
)
.

Moreover,

A
μ

–
β A

μ
( – 

R̃
)

β – σ  A
μ

≤ lim inf
t→∞

〈
S(t)

〉 ≤ lim sup
t→∞

〈
S(t)

〉 ≤ A
μR̃

a.s., (.)

and

Aδ( – 
R̃
)

(μ + α)(μ + ε + α + δ)
≤ lim inf

t→∞
〈
Q(t)

〉 ≤ lim sup
t→∞

〈
Q(t)

〉

≤
βAδ( – 

R̃
)

(μ + α)(μ + ε + α + δ)(β – σ  A
μ
)

a.s. (.)

Proof By the last inequality of (.), we have

log I(t)
t

≤ β
A
μ

(
 –


R̃

)
–

(
μ + α

μ

)
μ + ε + α + δ

μ + ε + α

[
β – σ A

μ

]〈
I(t)

〉

+
(t) +
σM(t)

t
+
log I()

t
.

If R̃ >  and σ  < βμ

A , together with Lemma . and (.), then

lim sup
t→∞

〈
I(t)

〉 ≤ β A
μ
( – 

R̃
)

(μ+α

μ
)μ+ε+α+δ

μ+ε+α
(β – σ  A

μ
)
. (.)

On the other hand, substituting (.) into the first equality of (.), then

log I(t) – log I()
t

≤ β

[
A
μ

–
(

μ + α

μ

)
μ + ε + α + δ

μ + ε + α

〈
I(t)

〉
+ ϕ(t)

]

– (μ + γ + δ + α) –



(
A
μ

)

+
σ

t

∫ t


S(r)dB(r).

We compute that

〈
I(t)

〉 ≥ μ(μ + ε + α)
β(μ + α)(μ + ε + α + δ)

[
β
A
μ

– (μ + γ + δ + α) –


σ 

(
A
μ

)

+ βϕ(t)

+
σ

t

∫ t


S(r)dB(r) –

log I(t) – log I()
t

]
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=
μ(μ + ε + α)

β(μ + α)(μ + ε + α + δ)

[
β
A
μ

(
 –


R̃

)
+ βϕ(t)

+
σ

t
M(t) –

log I(t) – log I()
t

]
. (.)

If R̃ >  and σ  < βμ

A , taking the limit inferior of both sides (.) leads to

lim inf
t→∞

〈
I(t)

〉 ≥ μ(μ + ε + α)
β(μ + α)(μ + ε + α + δ)

β
A
μ

(
 –


R̃

)
=

A
μ
( – 

R̃
)

(μ+α)
μ

μ+ε+α+δ

μ+ε+α

. (.)

Combining (.) with (.), conclusion (.) is proved.
Moreover, due to equality (.) and inequalities (.), (.), we have

lim inf
t→∞

〈
S(t)

〉
=
A
μ

–
(μ + α)(μ + ε + α + δ)

μ(μ + ε + α)
lim sup
t→∞

〈
I(t)

〉 ≥ A
μ

–
β A

μ
( – 

R̃
)

β – σ  A
μ

and

lim sup
t→∞

〈
S(t)

〉
=
A
μ

–
(μ + α)(μ + ε + α + δ)

μ(μ + ε + α)
lim inf
t→∞

〈
I(t)

〉 ≤ A
μR̃

.

In view of (.), (.), and (.), we get

lim inf
t→∞

〈
Q(t)

〉
=

δ

μ + ε + α
lim inf
t→∞

〈
I(t)

〉 ≥ Aδ( – 
R̃
)

(μ + α)(μ + ε + α + δ)

and

lim sup
t→∞

〈
Q(t)

〉
=

δ

μ + ε + α
lim sup
t→∞

〈
I(t)

〉 ≤ βAδ( – 
R̃
)

(μ + α)(μ + ε + α + δ)(β – σ  A
μ
)
.

This finishes the proof of Theorem .. �

Remark . From Theorem . and Theorem ., we can see when the noise is so small
that σ  < βμ

A , then the value of R̃ <  will lead to the disease dying out and the value of
R̃ >  will lead to the disease prevailing. So we consider R̃ as the threshold of stochastic
system (.).

Example . Assume that the parameters of system (.) are given by

A = ., β = ., μ = ., α = ., γ = .,

ε = ., δ = ., σ = ..
(.)

Note that

R̃ = β

(
A
μ

)


(μ + γ + δ + α) + 
σ

(A
μ
)

= . >  and σ  = . <
βμ

A
= .,
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Figure 3 Computer simulation of the path S(t), I(t), Q(t) for model (1.3) and (1.1) for parameter values
A = 0.8, β = 0.8, μ = 0.2, α = 0.2, γ = 0.3, ε = 0.2, δ = 0.1, σ = 0.1, and σ = 0.05, with step size
�t = 0.001 and initial value (S(0), I(0),Q(0)) = (0.8, 0.4, 0.5).

then by Theorem ., for any initial value (S(), I(),Q()) = (., ., .) ∈ �∗, we con-
clude that the solution (S(t), I(t),Q(t)) of system (.) obeys

.≤ lim inf
t→∞

〈
I(t)

〉 ≤ lim sup
t→∞

〈
I(t)

〉 ≤ . a.s.

That is to say, the disease will prevail.
To further illustrate the effect of the noise intensity σ on the model (.), we keep all

the parameters of (.) unchanged but increase σ to .. Using the method mentioned
in [], we give the simulations to support our results in Figure . Comparing the first
picture and the second picture in Figure , with the noise getting smaller, the fluctuation
of the solution of system (.) is getting weaker.
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