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Abstract
We study continuous solutions of the 3rd-order iterative equation of the linear
dependence for hyperbolic cases and generalize the results to the nth-order
polynomial-like iterative equation, in some cases recursively. This paper partly
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1 Introduction
Consider a real function f : R → R. Its nth iterate is defined by f n(x) = f (f n–(x)), f (x) =
x for all x ∈ R recursively. A functional equation involving the iterates of the unknown
function is called an iterative functional equation. Some problems of dynamical systems
such as iterative root [, ] and invariant curve [, ] reduce to those iterative equations,
a more general and important form is the polynomial-like iterative equation

λnf n(x) + λn–f n–(x) + · · · + λf (x) = F(x), (.)

an equation of the linear dependence of iterates. While attention was paid to the case of
nonlinear F (see e.g. [–]) and further generalized forms [, ], the case of linear F ,
that is,

f n(x) + λn–f n–(x) + · · · + λf (x) + λx = c, (.)

even the homogeneous equation

f n(x) + λn–f n–(x) + · · · + λf (x) + λx =  (.)

is also fascinating. In  Nabeya [] investigated the generalized Euler equation f (p +
qx + rf (x)) = a + bx + cf (x), which actually is equivalent to (.) for n = . He showed all
iterates f k by a system of linear homogeneous difference equations and formulated con-
tinuous solutions by this system’s eigenvalues. However, all continuous solutions of (.)
for n ≥  have long been in suspense. In  Matkowski [] raised an open problem
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in the th international symposium on functional equations: ‘How to determine all the
continuous solutions f :R →R of the nth-order homogeneous iterative equation under the
condition λ �= , even for n = ?’, which has attracted attention of many scholars.
Let r, r, . . . , rn be n complex roots of the characteristic equation

P(r) := rn + λn–rn– + · · · + λr + λ = .

In  Jarczyk [] discussed (.) defined on the interval not containing zero and gave the
linear solution f = cx, where λi >  > λ (i = , . . . ,n – ) and c is the unique positive char-
acteristic root. Tabor and Tabor [] investigated (.) defined on the same domain. As-
suming that r is the unique positive and simple characteristic root and is smaller than the
module of all complex ones, they proved that the equation has exactly a solution f (x) = rx
depending continuously on all coefficients. In Matkowski and Zhang [] established
a characteristic theory of the second order (.) with λ �= , i.e., all continuous solutions
were represented by using two characteristic solutions f (x) = rix (i = , ).
Characteristic theory of (.) for n ≥ , as we know, is more complicated. In 

Yang and Zhang [] constructed all continuous solutions of (.) for the hyperbolic
cases: ()  < r < r < · · · < rn; ()  < r < r < · · · < rn < ; () r < r < · · · < rn < –;
() – < r < r < · · · < rn < , and they proved no continuous solutions when the character-
istic roots are all complex roots, and they gave a lowing order method for the n-multiple
characteristic roots case. The authors pointed out [, Remark ] that when (.) has both
positive characteristic roots and negative ones or some characteristic roots are greater
than  in absolute value and the others less than  in absolute value, the construction of
continuous solutions is not yet known. Recently, Zhang and Zhang [, Lemma ] indi-
cated that a solution of (.) is a translation of that of (.) if all ri �= ,  (i = , , . . . ,n). The
authors gave a method to lower the order of (.) when the module of all complex char-
acteristic roots is larger than that of the real characteristic roots. Furthermore, the paper
obtained the continuous solutions of (.) for the nonhyperbolic case  = r < r < · · · < rn,
and proved no continuous solutions for (.) with c �=  in the case of all characteristic
roots being .
So far, for n ≥  there are no results on the theory of characteristics for (.) in the

following cases:

(E+C+) All characteristics are positive but some are greater than  and others are less than .
(E–C–) All characteristics are negative but some are greater than  in absolute value and

others are less than  in absolute value.
(E+C–) Some characteristics are positive and greater than  but others are negative and less

than  in absolute value.
(E–C+) Some characteristics are negative and greater than  in absolute value but others

are positive and less than .
(C+C–) Some characteristics are positive and less than  but others are negative and less

than  in absolute value.
(E+E–) Some characteristics are positive and greater than  but others are negative and

greater than  in absolute value.

Besides, there are cases including complex roots and many critical cases (a characteristic
is equal to ±) and degenerate cases (a characteristic vanishes).
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Following directly the idea from [] and referring to [, ], in this paperwe first get the
general iterates f m of (.) with simple characteristic roots, where m is a positive integer.
Using this formula we construct all C solutions of the homogeneous equation

f (x) – (r + r + r)f (x) + (rr + rr + rr)f (x) – rrrx = , (.)

where |ri| �= ,  (i = , , ) and have different modules. Those results are generalized to
the nth-order polynomial-like iterative equation, in some cases recursively. This paper is
organized as follows: Section  introduces the properties of linear difference form and
prove the generally iterative formula. Section  gives all continuous solutions for the cases
(E+C+), (E–C–), and Section  gives that of the cases (E+C–), (E–C+), (C+C–), (E+E–). Fi-
nally, we give continuous solutions of the nth-order polynomial-like iterative equation, in
some cases. For convenience of statement, we write the dual equation of (.)

f –(x) –
(

r

+

r

+

r

)
f –(x) +

(


rr
+


rr

+


rr

)
f –(x) –


rrr

x = . (.)

2 Preliminaries
In this section we state some notations and lemmas used in the proof of our results. Ap-
plying the linear difference form

Fk[r, . . . , rn](x�)�∈Z =
n∑
j=

(–)j
∑

≤s<···<sj≤n

rsrs · · · rsjxk+n–j

first introduced in [], where (x�)�∈Z := (. . . ,x–,x,x, . . .) is a bilateral sequence in vector
space X over C, (.) is simplified to

F[r, . . . , rn]
(
f �(x)

)
�∈Z = c, ∀x ∈R. (.)

Lemma . ([, Lemma ]) Suppose that f : R → R is a C solution of (.). If λ �= ,
then f is a homeomorphism.

Using Lemma ., if λ �= , the inverse f – satisfies the dual equation

F
[
r– , . . . , r–n

](
f –�(x)

)
�∈Z = (–)nr– · · · r–n c, ∀x ∈R. (.)

Lemma . ([, Lemmas , , ], [, Lemma ]) Suppose that n ≥  and k are integers,
and r, r, . . . , rn are complex numbers. If (r̃, . . . , r̃n) is a permutation of (r, . . . , rn), then
Fk[r̃, . . . , r̃n] =Fk[r, . . . , rn].Moreover,

(i) (Lower order) for integer ≤ q ≤ n,

Fk[r, . . . , rn] =
q∑
j=

(–)j
∑

n–q+≤s<···<sj≤n

rsrs · · · rsjFk+q–j[r, . . . , rn–q];

(ii) (Reduce to dual) if ri �=  (i = , , . . . ,n) then

Fk[r, . . . , rn]
(
f �

)
�∈Z = (–)nr · · · rnF–(k+n)

[
r– , . . . , r–n

](
f –�

)
�∈Z;
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(iii) (Shift on iteration) if the C function f :R →R satisfies F[r, r, . . . , rn](f �)�∈Z = ,
then

Fk+p[r, . . . , rt–, rt+, . . . , rn]
(
f �

)
�∈Z = rpt Fk[r, . . . , rt–, rt+, . . . , rn]

(
f �

)
�∈Z

for arbitrary positive integers p, t with ≤ t ≤ n.

Lemma . ([, Lemma ]) Suppose that all numbers ri �=  (i = , , . . . ,n) are real and
none of them is equal to . Then the equation F[r, r, . . . , rn](f �(x))�∈Z = c for all x ∈ |α,β|
can be reduced to the equation F[r, r, . . . , rn](f̃ �(x))�∈Z =  for all x ∈ |α – ξ ,β – ξ | by the
substitution f̃ (x) = f (x + ξ ) – ξ , where ξ := c/

∏n
ς=( – rς ), and vice versa.

Lemma . If a C solution f : R → R of (.) with c =  has a nonzero fixed point, then
at least one of its characteristic roots equals .

Proof Assume that f (μ) = μ �= . Substituting x = μ into (.) with c = , we have
F[r, . . . , rn](μ)�∈Z = , i.e.,

n∏
i=

( – ri)μ = .

Then one of ri (i = , , . . . ,n) equals . This completes the proof. �

Lemma . Suppose that the characteristic polynomial P(r) has n distinct roots r, . . . , rn
in C. If f :R →R is a C solution of (.) with c = , then

f m =
n∑
i=

rmi
�(r, . . . ; ri; . . . , rn)

F[r, . . . , ri–, ri+, . . . , rn]
(
f �

)
�∈Z, (.)

f –m =
n∑
i=

r–mi
�(r– , . . . ; r–i ; . . . , r–n )

F
[
r– , . . . , r–i–, r

–
i+, . . . , r

–
n

](
f –�

)
�∈Z (.)

for all integers m ≥  and i = , , . . . ,n, where �(r, . . . ; ri; . . . , rn) =
∏n

j=,j �=i(ri – rj).

Proof Let f :R→ R be a C solution of (.) with c = , we have the shift on the iteration

Fm[r, . . . , ri–, ri+, . . . , rn]
(
f �

)
�∈Z = rmi F[r, . . . , ri–, ri+, . . . , rn]

(
f �

)
�∈Z (.)

by using (iii) of Lemma .. For fixed integerm ≥  and i = , , . . . ,n, (.) is a system of n
linear equations for f m+n–, f m+n–, . . . , f m. Let

F :=
(
f m+n–, f m+n–, . . . , f m

)τ ,

T :=
(
rm F[r, . . . , rn]

(
f �

)
�∈Z, . . . , r

m
n F[r, . . . , rn–]

(
f �

)
�∈Z

)
,

where ‘τ ’ stands for transposing a vector. Then (.) is rewritten as

AF = T , (.)
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in which

A :=

⎛
⎜⎜⎜⎜⎜⎝

 –
∑n

j= rj
∑

≤j<k≤n rjrk · · · (–)n–r · · · rn
...

...
...

...
...

...
...

...
...

...
 –

∑n–
j= rj

∑
≤j<k≤n– rjrk · · · (–)n–r · · · rn–

⎞
⎟⎟⎟⎟⎟⎠ . (.)

In order to obtain f m, our strategy is to transform A into upper triangular matrix and
every element of the principal diagonal is . More precisely, multiplying the first row by
– and then adding other rows, we see that the first element of the ith ( ≤ i ≤ n) row
equals . Then for the ith (≤ i≤ n) row, we divide the second element and the matrix A
changes into

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

 –
∑n

j= rj
∑

≤j<k≤n rjrk · · · (–)n–r · · · rn
  ∗ · · · ∗
...

...
...

...
...

...
...

...
...

...
  ∗ · · · ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where all ∗ are nonzero elements since ri �= rj for  ≤ i, j ≤ n. Note that the submatrix
⎛
⎜⎜⎝
 ∗ · · · ∗
...

...
...

...
 ∗ · · · ∗

⎞
⎟⎟⎠

has the same form as that of A, using the same idea and arguments we obtain at last an
upper triangular matrix such that⎛

⎜⎜⎜⎜⎜⎜⎜⎝

 –
∑n

j= rj
∑

≤j<k≤n rjrk · · · (–)n–r · · · rn
  ∗ ∗ ∗
   ∗ ∗
...

...
...

...
...

   · · · 

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

By using the above elementary invertible linear transformations, the augmented matrix
[A|T] transforms into row-echelon form, which yields (.) from the last low.
The proof of (.) is the same as that of (.) by considering the dual equation (.) and

is omitted. This completes the proof. �

From Lemma . we obtain the main tool used in our paper immediately.

Lemma . Suppose that (.) has three different characteristic roots r, r, r in C. If
f :R →R is a C solution of (.), then

f m =
rm

(r – r)(r – r)
{
f (x) – (r + r)f (x) + rrx

}

+
rm

(r – r)(r – r)
{
f (x) – (r + r)f (x) + rrx

}
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+
rm

(r – r)(r – r)
{
f (x) – (r + r)f (x) + rrx

}
, (.)

f –m(x) =
( 
r
)m

( 
r
– 

r
)( 

r
– 

r
)

{
f –(x) –

(

r

+

r

)
f –(x) +


rr

x
}

+
( 
r
)m

( 
r
– 

r
)( 

r
– 

r
)

{
f –(x) –

(

r

+

r

)
f –(x) +


rr

x
}

+
( 
r
)m

( 
r
– 

r
)( 

r
– 

r
)

{
f –(x) –

(

r

+

r

)
f –(x) +


rr

x
}

(.)

for any integer m≥ .

3 Same signs with both expansion and contraction
In this section we construct all C solutions of (.) for the cases (E+C+) and (E–C–) listed
in Table .

Lemma . Suppose that  < r <  < r < r. Then for x =  and arbitrarily given x, x
such that

x >  and (r + r)x < x < (r + r)x, (.)

the sequence (. . . ,x–,x–;x,x,x, . . .) defined by

xn+ = (r + r + r)xn+ – (rr + rr + rr)xn + rrrxn–, (.)

x–n =
(

r

+

r

+

r

)
x–n+ –

(


rr
+


rr

+


rr

)
x–n+

+


rrr
x–n+, (.)

is strictly increasing and satisfies

lim
n→+∞xn = +∞, lim

n→–∞xn = –∞. (.)

Proof In order to prove the monotonicity and divergence of the sequence (xn), we prove
that

xn+ > rxn, n = , , , . . . . (.)

First of all, we claim that

(r + r)xn+ – rrxn < xn+ < (r + r)xn+ – rrxn, n = , , , . . . . (.)

Table 1 Three characteristic roots with same signs

0 < r1 < 1 < r2 < r3 r1 < r2 < –1 < r3 < 0
0 < r3 < r2 < 1 < r1 r3 < –1 < r2 < r1 < 0
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In fact (.) holds for n =  by (.). Now, fix integer k ≥  and suppose that (.) holds for
n = k – . Then using (.) we get

xk+ – (r + r)xk+ + rrxk

= rxk+ – (rr + rr)xk + rrrxk–

= r
[
xk+ – (r + r)xk + rrxk–

]
> , (.)

xk+ – (r + r)xk+ + rrxk

= rxk+ – (rr + rr)xk + rrrxk–

= r
[
xk+ – (r + r)xk + rrxk–

]
< , (.)

implying (.) holds for n = k. Thus (.) is proved by induction for k, from which we get

(r + r)xn+ – rrxn < (r + r)xn+ – rrxn,

i.e., (.) holds. Since r > , it follows that (xn)n≥ is strictly increasing. From (.) we have

xn+ > rxn > · · · > rnx > . (.)

Hence for arbitrarily givenM > , there exists an integer N large enough such that

xN+ > rN x >M > .

Consequently, limn→+∞ xn = +∞. In a similar way as before, we get

(

r

+

r

)
x–n+ –


rr

x–n+ < x–n <
(

r

+

r

)
x–n+ –


rr

x–n+ (.)

for n = , , , . . . . Hence x–n+ < 
r
x–n+, n = , , , . . . . This jointly with x– <  implies

(xn)n≤ is strictly increasing and limn→–∞ xn = –∞. �

Lemma . Suppose that  < r <  < r < r. Then for x =  and arbitrary points x, x
such that

x <  and (r + r)x < x < (r + r)x, (.)

the sequence (. . . ,x,x;x,x–,x–, . . .) defined by (.) and (.) is strictly decreasing and
satisfies

lim
n→+∞xn = –∞, lim

n→–∞xn = +∞. (.)
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Proof Our strategy is similar to that of Lemma ., in order to prove themonotonicity and
divergence of the sequence (xn), we first show that

xn+ < rxn, n = , , , . . . . (.)

By induction we can prove

(r + r)xn+ – rrxn < xn+ < (r + r)xn+ – rrxn, (.)

which yields (.), whence

lim
n→+∞xn = –∞.

On the other hand, by a similar procedure we inductively prove that

(

r

+

r

)
x–n+ –


rr

x–n+ < x–n <
(

r

+

r

)
x–n+ –


rr

x–n+ (.)

for n = , , . . . , which yields

x–n+ >

r
x–n+,

implying

lim
n→–∞xn = +∞.

This completes the proof. �

Theorem . Suppose that  < r <  < r < r. Then all C solutions f :R →R of (.) are
strictly increasing. Additionally:
(i) If f has fixed points, then  is the unique fixed point and

f (x) =

{
fi(x), x ≥ ,
fj(x), x < ,

i, j = , , (.)

where f(x) = rx and f(x) is a solution given in Theorem  of [].
(ii) If f (x) > x for all x ∈ R, then the set of f contains both f (x) > max{rx, rix} (i = , )

constructed by Theorem  of [] and

f (x) :=

{
fn(x), x ∈ [xn,xn+],n = , , . . . ,
f ––n (x), x ∈ [x–n,x–n+],n = , , . . . ,

(.)

where the bilateral sequence (xi) is given in Lemma ., and fn : [xn,xn+] → [xn+,xn+]
and f–n : [x–n+,x–n+] → [x–n,x–n+] are orientation-preserving homeomorphisms defined
inductively as

fn+(x) = (r + r + r)x – (rr + rr + rr)f –n+(x) + rrrf –n
(
f –n+(x)

)
,

f–n(x) =
(

r

+

r

+

r

)
x –

(


rr
+


rr

+


rr

)
f ––n+(x) +


rrr

f ––n+
(
f ––n+(x)

)
,
(.)
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Zhang and Gong Advances in Difference Equations 2014, 2014:318 Page 9 of 19
http://www.advancesindifferenceequations.com/content/2014/1/318

which are uniquely determined by two given functions f : [x,x] → [x,x] and f :
[x,x] → [x,x].
(iii) If f (x) < x for all x ∈ R, then the set of f contains both f (x) < max{rx, rix} (i = , )

constructed by Theorem  of [] and

f (x) :=

{
fn(x), x ∈ [xn+,xn],n = , , . . . ,
f ––n (x), x ∈ [x–n+,x–n],n = , , . . . ,

(.)

where the bilateral sequence (xi) is given in Lemma ., and fn : [xn+,xn] → [xn+,xn+]
and f–n : [x–n+,x–n+] → [x–n+,x–n] are orientation-preserving homeomorphisms defined
inductively as (.) which are uniquely determined by two given functions f : [x,x] →
[x,x] and f : [x,x] → [x,x].

Proof For an indirect proof, assume that f is a C strictly decreasing solution of (.). By
Lemma . we get

lim
m→∞

f m

rm
=


(r – r)(r – r)

{
f (x) – (r + r)f (x) + rrx

}
(.)

for any integer m ≥ . The function limm→∞ f m/rm is both nondecreasing for even m and
nonincreasing for odd m, there is a constant c such that

f (x) – (r + r)f (x) + rrx = c (.)

for all x ∈ R. Substituting (.) into (.), we get c = rc implying c =  since r �= .
Hence (.) reduces to the equation

f (x) – (r + r)f (x) + rrx = , (.)

which has only strictly increasing solutions by Theorem  from []; a contradiction.
In order to prove the case (i), let f be a C strictly increasing solution with fixed points.

Then f has the unique fixed point  by Lemma ., which implies either  < f (x) < x or
f (x) > x for x > . In the case  < f (x) < xwe have limm→∞ f m(x) =  because  is an attract-
ing fixed point, then (.) from (.) directly. Thus (.) yields f (x) = rx by Theorem 
of [], which is the C strictly increasing solution satisfying  < f (x) < x for x > . The
other case f (x) > x can be reduced to the first one by considering the dual equation (.).
Using Lemma . and repeating the samemethod as the previous one to eliminate /r we
have

f –(x) –
(

r

+

r

)
f – +


rr

x = , x > ,

that is, f is a solution of the equation

f (x) – (r + r)f (x) – rrx = , x > . (.)

Thus f is a solution given in Theorem  of [] on (,∞). A similar discussion can be done
for the half-line (–∞, ). Therefore, every C solution f of (.) involving a fixed point has
the form (.).

http://www.advancesindifferenceequations.com/content/2014/1/318
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In order to prove (ii), we use the formula

f m+ – f m =
rm (r – )

(r – r)(r – r)
{
f (x) – (r + r)f (x) + rrx

}

+
rm (r – )

(r – r)(r – r)
{
f (x) – (r + r)f (x) + rrx

}

+
rm (r – )

(r – r)(r – r)
{
f (x) – (r + r)f (x) + rrx

}
, (.)

generated by Lemma .. If f (x) > x for all x ∈R, we assert that one of the three situations
holds:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ir,m := rm (r–)

(r–r)(r–r)
{f (x) – (r + r)f (x) + rrx} > ,

Ir,m := rm (r–)
(r–r)(r–r)

{f (x) – (r + r)f (x) + rrx} > ,

Ir,m := rm (r–)
(r–r)(r–r)

{f (x) – (r + r)f (x) + rrx} > ,

(.)

f (x) – (r + r)f (x) + rrx = , (.)

f (x) – (r + r)f (x) + rrx = . (.)

Clearly, f (x) > x implies that f m+(x) > f m(x) and f –m(x) > f –m–(x). Firstly, from  < r <  <
r < r the sign of f m+ – f m is uniquely determined by the third term in (.) when m
is large enough, that is, Ir,m ≥ , thus we get the third inequality in (.) or the equality
(.). Secondly, by the same argument for the dual equation (.), we get Ir,m ≥  using
f –m(x) > f –m–(x). Further, we prove that Ir,m �= , otherwise, the equality f (x) – (r +
r)f (x) + rr =  implies f has the fixed point  by Theorem  of []. This contradicts the
assumption f (x) > x, implying the first inequality of (.) holds, i.e., Ir,m > . Finally, we
prove Ir,m ≥ . Conversely, assume that Ir,m < .When (.) holdswe get f m+(x) < f m(x)
whenm is large enough by using (.), which contradicts f (x) > x on R. Thus the second
inequality in (.) and the equality (.) are proved.
In addition, we see that (.) is equivalent to

⎧⎪⎨
⎪⎩
f (x) – (r + r)f (x) + rrx < ,
f (x) – (r + r)f (x) + rrx < ,
f (x) – (r + r)f (x) + rrx > ,

implying

{
(r + r)f (x) – rrx < f (x) < (r + r)f (x) – rrx,
(r + r)f (x) – rrx < f (x) < (r + r)f (x) – rrx,

that is,

(r + r)f (x) – rrx < f (x) < (r + r)f (x) – rrx, ∀x ∈R. (.)

In a word, if f (x) > x for all x ∈ R, then f satisfies the inequality (.) or the equality (.)
or (.).

http://www.advancesindifferenceequations.com/content/2014/1/318
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Conversely, all solutions of (.) satisfying f (x) >max{rx, rx} and all solutions of (.)
satisfying f (x) >max{rx, rx}, constructed by Theorem  of [], are C strictly increasing
solutions of (.) satisfying f (x) > x for all x ∈ R. Moreover, every C strictly increasing
solution f of (.) fulfilling (.) is uniquely determined up to two orientation-preserving
homeomorphisms f : [x,x] → [x,x] and f : [x,x] → [x,x] and can be constructed
by the recursively orientation-preserving homeomorphisms

fn : [xn,xn+] → [xn+,xn+], n = , , , . . . , (.)

f–n : [x–n+,x–n+] → [x–n,x–n+], n = , , . . . , (.)

defined by (.), where the sequence (. . . ,x–,x–;x,x,x, . . .) is given in Lemma .. Ac-
tually, by induction the inequality (.) and the orientation-preserving homeomorphisms
(.) yield

(r + r)fn(x) – rrx < fn+ ◦ fn(x) < (r + r)fn(x) – rrx

for arbitrary x ∈ [xn,xn+], n = , , . . . , then the function f defined by those orientation-
preserving homeomorphisms fn is the unique solution of (.) on [,+∞). On the other
hand, the inequality (.) and the orientation-preserving homeomorphisms (.) yield

(

r

+

r

)
f–n(x) –


rr

x < f–n– ◦ f–n(x) <
(

r

+

r

)
f–n(x) –


rr

x

for arbitrary x ∈ [x–n+,x–n+], n = , , . . . , then the function f – defined by those orien-
tation-preserving homeomorphisms f–n is the unique solution of the dual equation (.)
on (–∞, ]. Finally, we define f as (.), i.e.,

f (x) :=

{
fn(x), x ∈ [xn,xn+],n = , , . . . ,
f ––n (x), x ∈ [x–n,x–n+],n = , , . . . .

Then f : R → R is the unique C strictly increasing solution of (.), depending on the
given initial functions f and f. Thus all those C strictly increasing solutions f of (.),
fulfilling inequality (.), can be constructed by this method.
Using the same idea and arguments we prove the case (iii). From f (x) < x we see that

f m+(x) < f m(x) for x ∈ R. By using (.) and a similar discussion to (ii), f (x) < x shows
that one of three situations holds: (.) and (.), and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ir,m := rm (r–)

(r–r)(r–r)
{f (x) – (r + r)f (x) + rrx} < ,

Ir,m := rm (r–)
(r–r)(r–r)

{f (x) – (r + r)f (x) + rrx} < ,

Ir,m := rm (r–)
(r–r)(r–r)

{f (x) – (r + r)f (x) + rrx} < ,

i.e.,

(r + r)f (x) – rrx < f (x) < (r + r)f (x) – rrx, ∀x ∈R. (.)

Conversely, all solutions of (.) satisfying f (x) <max{rx, rx} and all solutions of (.)
satisfying f (x) <max{rx, rx}, constructed by Theorem  of [], are C strictly increasing

http://www.advancesindifferenceequations.com/content/2014/1/318
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solutions of (.) satisfying f (x) < x for all x ∈R. Furthermore, every C strictly increasing
solution f of (.) fulfilling (.) is uniquely determined up to two orientation-preserving
homeomorphisms f : [x,x] → [x,x] and f : [x,x] → [x,x] and can be constructed
by the recursively orientation-preserving homeomorphisms

fn : [xn+,xn] → [xn+,xn+], n = , , , . . . , (.)

f–n : [x–n+,x–n+] → [x–n+,x–n], n = , , . . . , (.)

defined by (.), where the sequence (. . . ,x–,x–;x,x,x, . . .) is given in Lemma .. In
fact, the inequality (.) and the orientation-preserving homeomorphisms (.) yield

(r + r)fn(x) – rrx < fn+ ◦ fn(x) < (r + r)fn(x) – rrx

for arbitrary x ∈ [xn+,xn], n = , , . . . , then the function f defined by those orientation-
preserving homeomorphisms fn is the unique solution of (.) on (–∞, ]. On the other
hand, (.) and the orientation-preserving homeomorphisms (.) yield

(

r

+

r

)
f–n(x) –


rr

x < f–n– ◦ f–n(x) <
(

r

+

r

)
f–n(x) –


rr

x

for arbitrary x ∈ [x–n+,x–n+], n = , , . . . , then the function f – defined by those orienta-
tion-preserving homeomorphisms f–n is the unique solution of the dual equation of (.)
on [,+∞). Finally, we see that the unique C strictly increasing solution of (.), depend-
ing on the given initial functions f and f, can be presented in the form

f (x) :=

{
fn(x), x ∈ [xn+,xn],n = , , . . . ,
f ––n (x), x ∈ [x–n+,x–n],n = , , . . . .

All those C strictly increasing solutions f of (.), fulfilling inequality (.), can be con-
structed by this method. This completes the proof. �

Corollary . Suppose that  < r < r <  < r. Then every C solution f : R → R of (.)
is strictly increasing and f – is a solution given in Theorem ..

Theorem . Suppose that r < r < – < r < . Then all C solutions f : R → R of (.)
are strictly decreasing and x =  is the unique fixed point of every f .Moreover:

(i) If x =  is attractive fixed point of f , then f (x) = rx.
(ii) If x =  is repelling fixed point of f , then f (x) is a solution in the class given in

Theorem  of [].

Proof For an indirect proof, assume that f : R → R is a C strictly increasing solution of
(.). By using (.) and similar arguments to the preceding part of Theorem ., we get
at last

f (x) – (r + r)f (x) + rrx = ,

which yields f(x) = rx and f(x) = rx by Theorem  of []. This contradicts the strictly
increasing of f , then every C solution of (.) is strictly decreasing. It is easy to see that

http://www.advancesindifferenceequations.com/content/2014/1/318


Zhang and Gong Advances in Difference Equations 2014, 2014:318 Page 13 of 19
http://www.advancesindifferenceequations.com/content/2014/1/318

x =  is the unique fixed point of every C strictly decreasing solution by Lemma . and
f  is C strictly increasing satisfying f () = . It follows that either limm→+∞ f m(x) = 
(i.e.,  is an attractive fixed point of f ) or limm→+∞ f m(x) = ∞ (i.e.,  is a repelling fixed
point of f ).
In case (i), x =  is an attractive fixed point of f . Using Lemma . we have

lim
m→∞

f m

rm
=


(r – r)(r – r)

{
f (x) – (r + r)f (x) + rrx

}
. (.)

Since the left-hand side tends to  as n→ ∞ we have

f (x) – (r + r)f (x) + rrx = , (.)

which yields f(x) = rx and f(x) = rx by Theorem  of []. Thus f(x) = rx is the only
solution of (.), where f  has the attractive fixed point x = .
In case (ii), since x =  is a repelling fixed point of f , it is an attractive fixed point of f –.

Using Lemma . we get

f –m(x) =
( 
r
)m

( 
r
– 

r
)( 

r
– 

r
)

{
f –(x) –

(

r

+

r

)
f –(x) +


rr

x
}

+
( 
r
)m

( 
r
– 

r
)( 

r
– 

r
)

{
f –(x) –

(

r

+

r

)
f –(x) +


rr

x
}

+
( 
r
)m

( 
r
– 

r
)( 

r
– 

r
)

{
f –(x) –

(

r

+

r

)
f –(x) +


rr

x
}
. (.)

By the same argument as (i) to remove /r, we have

f –(x) –
(

r

+

r

)
f –(x) +


rr

x = .

It follows that

f (x) – (r + r)f (x) + rrx = ,

implying f (x) is a solution given in Theorem  of []. This completes the proof. �

Corollary . Suppose that r < – < r < r < . Then all C solutions f : R → R of (.)
are strictly decreasing with the unique fixed point , and the inverse f – is a solution given
in Theorem ..

4 Different signs with both expansion and contraction
In this section we construct all C solutions of (.) for the cases (E+C–), (E–C+), (C+C–),
and (E+E–), where Table  contains one negative root and two positive ones, Table  con-
tains two negative roots and one positive root.

Theorem . Suppose that  < –r < r < r ( < r < –r < r,  < r < r < –r,  < –r <  <
r < r).

http://www.advancesindifferenceequations.com/content/2014/1/318
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Table 2 Two positive and one negative characteristic roots

1 < –r1 < r2 < r3 1 < r2 < –r1 < r3 1 < r2 < r3 < –r1
0 < –r1 < r2 < r3 < 1 0 < r2 < –r1 < r3 < 1 0 < r2 < r3 < –r1 < 1
0 < –r1 < 1 < r2 < r3 0 < r2 < 1 < –r1 < r3 0 < r2 < 1 < r3 < –r1
0 < r2 < r3 < 1 < –r1 0 < r2 < –r1 < 1 < r3 0 < –r1 < r2 < 1 < r3

Table 3 One positive and two negative characteristic roots

1 < –r1 < –r2 < r3 1 < –r1 < r3 < –r2 1 < r3 < –r1 < –r2
0 < –r1 < –r2 < r3 < 1 0 < –r1 < r3 < –r2 < 1 0 < r3 < –r1 < –r2 < 1
0 < –r1 < 1 < –r2 < r3 0 < –r1 < 1 < r3 < –r2 0 < r3 < 1 < –r1 < –r2
0 < r3 < –r1 < 1 < –r2 0 < –r1 < r3 < 1 < –r2 0 < –r1 < –r2 < 1 < r3

(i) If f :R →R is a C strictly increasing solution of (.), then f is a function in the
class given in Theorem  of [].

(ii) If f :R →R is a C strictly decreasing solution of (.), then f (x) = rx.

Proof We first consider the case  < –r < r < r. Let f :R →R be a C strictly increasing
solution of (.), then f – is a C strictly increasing solution of the dual equation (.).
Making use of Lemma . and the monotonicity of f – to remove /r, we get

f –(x) –
(

r

+

r

)
f –(x) +


rr

x = ,

that is,

f (x) – (r + r)f (x) + rrx = ,

thus f is a function in the class given in Theorem  of []. On the other hand, if f :R →R

is a C strictly decreasing solution of (.), by the same method as previous to remove
r of (.), the unique C strictly decreasing solution f (x) = rx is obtained by Theorem 
of [].
In what follows attention is paid to the case  < r < –r < r. If f :R → R is a C strictly

increasing solution of (.), from Lemma . and the monotonicity of f we have

lim
m→+∞

f m

rm
=


(r – r)(r – r)

{
f (x) – (r + r)f (x) + rrx

}

+ lim
m→+∞

( rr )
m

(r – r)(r – r)
{
f (x) – (r + r)f (x) + rrx

}
. (.)

Note that limm→+∞ f m/rm is nondecreasing for even m and nonincreasing for odd m, the
left-hand side of (.) is a constant. We assert that

f (x) – (r + r)f (x) + rrx = . (.)

Otherwise, f (x) – (r + r)f (x) + rrx �=  yields f (x) �= rx, then we have f (x) – (r +
r)f (x) + rrx �=  by Theorem  of []. Consequently, the limit of the right-hand side of
(.) tends to infinity asm→ ∞ but the left-hand side of (.) is constant. The contradic-
tion illustrates (.). So every C strictly increasing solution f of (.) is a function in the

http://www.advancesindifferenceequations.com/content/2014/1/318
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class given in Theorem  of []. On the other hand, if f :R→ R is a C strictly decreasing
solution of (.), the conclusion can be obtained by a similar argument to the first case
 < –r < r < r.
For the case  < r < r < –r, assume that f : R → R is a C strictly increasing solution

of (.). Using Lemma . and the monotonicity of f to remove r, we obtain

f (x) – (r + r)f (x) + rrx = ,

implying that f is a function in the class given in Theorem  of []. On the other hand, if
f :R →R is a C strictly decreasing solution of (.), we consider the dual equation (.).
By Lemma . and the monotonicity of f – to eliminate /r, we eventually have

f (x) – (r + r)f (x) + rrx = .

Thus f (x) = rx is the only C strictly decreasing solution according to Theorem  of [].
The proof for the case  < –r <  < r < r is the same as that of the case  < –r < r < r

and is omitted. This completes the proof. �

By considering the dual equation (.) we get the following corollary.

Corollary . Suppose that  < –r < r < r <  ( < r < –r < r < ,  < r < r < –r < ,
 < r < r <  < –r). If f :R→R is a C solution of (.), then f – is a function in the class
given in Theorem ..

Theorem . Suppose that  < –r < r <  < r ( < r < –r <  < r).
(i) If f :R →R is a C strictly increasing solution of (.), then f is a function in the

class given in Theorem  of [].
(ii) If f :R →R is a C strictly decreasing solution of (.), then f (x) = rx.

The proof is similar to that of the case  < –r < r < r ( < r < –r < r) in Theorem .
and is omitted. By using the dual equation (.) we have the following corollary.

Corollary . Suppose that  < r <  < r < –r ( < r <  < –r < r). If f :R → R is a C

solution of (.), then f – is a function in the class given in Theorem ..

Theorem . Suppose that  < –r < –r < r ( < –r < r < –r,  < r < –r < –r,  < r <
 < –r < –r).

(i) If f :R →R is a C strictly increasing solution of (.), then f (x) = rx.
(ii) If f :R →R is a C strictly decreasing solution of (.), then f is a function in the

class given in Theorem  of [].

Proof First we consider the case  < –r < –r < r. Let f :R→ R be aC strictly increasing
solution of (.), then f – is a C strictly increasing solution of the dual equation (.).
Making use of Lemma . and the monotonicity of f – to eliminate /r, we get the unique
C strictly increasing solution f (x) = rx according to Theorem  of []. Assume that
f :R →R is a C strictly decreasing solution of (.). Removing r by Lemma . and the

http://www.advancesindifferenceequations.com/content/2014/1/318
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monotonicity of f we have

f (x) – (r + r)f (x) + rrx = ,

naturally, f is a function in the class given in Theorem  of [].
For the case  < –r < r < –r, assume that f :R →R is a C strictly increasing solution

of (.). By removing r, we get

f (x) – (r + r)f (x) + rrx = ,

then the unique C strictly increasing solution f (x) = rx is obtained by Theorem  of [].
Assume that f :R→R is a C strictly decreasing solution of (.). By Lemma . we have

lim
m→+∞

f m

rm
=


(r – r)(r – r)

{
f (x) – (r + r)f (x) + rrx

}

+ lim
m→+∞

( rr )
m

(r – r)(r – r)
{
f (x) – (r + r)f (x) + rrx

}
.

Using the same idea and arguments as that of the case  < r < –r < r in Theorem ., we
get

f (x) – (r + r)f (x) + rrx = .

Hence every C strictly decreasing solution f of (.) is a function in the class given in
Theorem  of [].
In the sequel we consider the case  < r < –r < –r. Let f : R → R be a C strictly

increasing solution of (.), the proof is the same as the case  < –r < r < –r. If f :R →R

is a C strictly decreasing solution of (.), then f – is a solution of the dual equation (.).
By Lemma . and the monotonicity of f – we get

f (x) – (r + r)f (x) + rrx = ,

by removing /r. Thus all C strictly decreasing solutions of (.) are in the class given in
Theorem  of [].
The proof for the case  < r <  < –r < –r is the same as that of the case  < r < –r <

–r. This completes the proof. �

By considering the dual equation (.) we have the following corollary.

Corollary . Suppose that  < –r < –r < r <  ( < –r < r < –r < ,  < r < –r <
–r < ,  < –r < –r <  < r). If f :R →R is a C solution of (.), then f – is a function in
the class given in Theorem ..

Theorem . Suppose that  < –r <  < –r < r ( < –r <  < r < –r).
(i) If f :R →R is a C strictly increasing solution of (.), then f (x) = rx.
(ii) If f :R →R is a C strictly decreasing solution of (.), then f (x) = rx or f (x) = rx.
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The proof is similar to that of  < –r < –r < r ( < –r < r < –r) of Theorem .. By
using the dual equation (.) we have the following corollary.

Corollary . Suppose that  < r < –r <  < –r ( < –r < r <  < –r). If f : R → R is a
C solution of (.), then f – is a function in the class given in Theorem ..

5 Further discussion and remarks
As shown in the previous sections, we obtain all C solutions of (.) for the cases listed
in Tables -. Consequently, all C solutions of the rd-order equation (.) with c �=  can
be obtained by using Lemma .. In what follows we prove some cases, listed in Tables 
and , which can also be generalized to the nth-order polynomial-like iterative equation
recursively. For examplewe consider the th-order equation (.) and take the first case  <
–r < r < r in Table . Adding r >  as the th characteristic root, we have the following
result.

Theorem . Suppose that  < –r < r < r < r ( < –r < r < r < r,  < –r < r < r <
r).

(i) If f :R →R is a C strictly increasing solution of the th-order equation (.). Then f
is a solution given in Theorem  of [] for the characteristic roots r, r, r.

(ii) If f :R →R is a C strictly decreasing solution of the th-order equation (.). Then
f (x) = rx.

Proof We first consider the case  < –r < r < r < r. Let f : R → R be a C strictly in-
creasing solution of the th-order equation (.), then f – is a C strictly increasing solu-
tion of its dual equation. Making use of Lemma . and the monotonicity of f – to remove
/r, we get

f –(x) –
(

r

+

r

+

r

)
f –(x) +

(


rr
+


rr

+


rr

)
f –(x) –


rrr

x = ,

that is

f (x) – (r + r + r)f (x) + (rr + rr + rr)f (x) – rrrx = ,

thus f is a solution given in Theorem  of [] for characteristic roots ri (i = , , ). On
the other hand, assume that f :R →R is a C strictly decreasing solution of the th-order
equation (.). By using Lemma . and the monotonicity of f to remove r, we have

f (x) – (r + r + r)f (x) + (rr + rr + rr)f (x) – rrrx = .

Therefore, f (x) = rx from Theorem ..
The proof for the cases  < –r < r < r < r and  < –r < r < r < r is similar to the

previous one and is omitted. This completes the proof. �

Assuming that the characteristic root r < –, we have the following result.

Theorem . Suppose that  < –r < r < –r < r ( < –r < –r < r < r,  < –r < –r <
r < r).
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(i) If f :R →R is a C strictly increasing solution of the th-order equation (.). Then f
is a solution given in Theorem ..

(ii) If f :R →R is a C strictly decreasing solution of the th-order equation (.). Then
f is a solution given in Theorem ..

The proof is similar to that of Theorem . and is omitted.
Using the same idea and arguments as previous, we can obtain allC solutions of the th-

order equation (.) for some cases listed in Tables  and  by adding the th characteristic
root r. In general, for those cases that the characteristic root with the largest module has
different sign from the ones with the smallestmodule, we can obtain allC solutions of the
nth-order polynomial-like iterative equation by using that of the n–th-order polynomial-
like iterative equation without essential difficulty.
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