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Abstract
In this paper, we study the existence and uniqueness of solution for a problem
consisting of a sequential nonlinear fractional Caputo-Langevin equation with
nonlocal Riemann-Liouville fractional integral conditions. A variety of fixed point
theorems, such as Banach’s fixed point theorem, Krasnoselskii’s fixed point theorem,
Leray-Schauder’s nonlinear alternative and Leray-Schauder degree theory, are used.
Examples illustrating the obtained results are also presented.
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1 Introduction
In this paper, we concentrate on the study of existence and uniqueness of solution for
the following nonlinear fractional Caputo-Langevin equation with nonlocal Riemann-
Liouville fractional integral conditions:

Dp(Dq + λ
)
x(t) = f

(
t,x(t)

)
, t ∈ [,T],

m∑
i=

μiIαi x(ηi) = σ, (.)

n∑
j=

νjIβj x(ξj) = σ,

where  < p,q ≤ ,  < p + q ≤ , Dq and Dp are the Caputo fractional derivatives of order
q and p, respectively, Iφ is the Riemann-Liouville fractional integral of order φ, where
φ = αi,βj > , ηi, ξj ∈ (,T) are given points, μi,νj,λ,σ,σ ∈ R, i = , , . . . ,m, j = , , . . . ,n,
and f : [,T]×R →R is a continuous function.
The significance of studying problem (.) is that the nonlocal conditions are very gen-

eral and include many conditions as special cases. In particular, if αi = βj = , for all
i = , , . . . ,m, j = , , . . . ,n, then the nonlocal condition of (.) reduces to

{
μ

∫ η
 x(s)ds +μ

∫ η
 x(s)ds + · · · +μm

∫ ηm
 x(s)ds = σ,

ν
∫ ξ
 x(s)ds + ν

∫ ξ
 x(s)ds + · · · + νn

∫ ξn
 x(s)ds = σ,

(.)
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and if σ = σ = ,m = n = , μ,ν �= , then (.) is reduced to

ε

∫ η


x(s)ds =

∫ η


x(s)ds, ε

∫ ξ


x(s)ds =

∫ ξ


x(s)ds, (.)

where ε = –(μ/μ) and ε = –(ν/ν). Note that the nonlocal conditions (.) and (.) do
not contain values of an unknown function x on the left-hand side and the right-hand side
of boundary points t =  and t = T , respectively.
Fractional differential equations have been shown to be very useful in the study of mod-

els ofmany phenomena in various fields of science and engineering, such as physics, chem-
istry, biology, signal and image processing, biophysics, blood flow phenomena, control
theory, economics, aerodynamics and fitting of experimental data. For examples and re-
cent development of the topic, see [–] and the references cited therein.
The Langevin equation (first formulated by Langevin in ) is found to be an effective

tool to describe the evolution of physical phenomena in fluctuating environments []. For
some new developments on the fractional Langevin equation, see, for example, [–].
In the present paper several new existence and uniqueness results are proved by using

a variety of fixed point theorems (such as Banach’s contraction principle, Krasnoselskii’s
fixed point theorem, Leray-Schauder’s nonlinear alternative and Leray-Schauder’s degree
theory).
The rest of the paper is organized as follows. In Section  we recall some preliminary

facts that we need in the sequel. In Section  we present our existence and uniqueness
results. Examples illustrating the obtained results are presented in Section .

2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus [, ]
and present preliminary results needed in our proofs later.

Definition . For an at least n-times differentiable function g : [,∞) → R, the Caputo
derivative of fractional order q is defined as

cDqg(t) =


�(n – q)

∫ t


(t – s)n–q–g(n)(s)ds, n –  < q < n,n = [q] + ,

where [q] denotes the integer part of the real number q.

Definition . The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =


�(q)

∫ t



g(s)
(t – s)–q

ds, q > ,

provided the integral exists.

Lemma . For q > , the general solution of the fractional differential equation cDqu(t) =
 is given by

u(t) = c + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . ,n –  (n = [q] + ).
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In view of Lemma ., it follows that

IqcDqu(t) = u(t) + c + ct + · · · + cn–tn–

for some ci ∈R, i = , , . . . ,n –  (n = [q] + ).
In the following, for the sake of convenience, we set constants

� =
m∑
i=

μi
η
q+αi
i

�(αi + q + )
,  =

m∑
i=

μi
η

αi
i

�(αi + )
,

� =
n∑
j=

νj
ξ
q+βj
j

�(βj + q + )
,  =

n∑
j=

νj
ξ

βi
j

�(βj + )
,

and � =� –�.

Lemma. Let� �= ,  < p,q ≤ ,  < p+q ≤ , αi,βj > ,μi,νj,λ,σ,σ ∈R, ηi, ξj ∈ (,T),
i = , , . . . ,m, j = , , . . . ,n, and y ∈ C([,T],R). Then the nonlinear fractional Caputo-
Langevin equation

Dp(Dq + λ
)
x(t) = y(t), (.)

subject to the nonlocal Riemann-Liouville fractional integral conditions

m∑
i=

μiIαi x(ηi) = σ,
n∑
j=

νjIβj x(ξj) = σ, (.)

has a unique solution given by

x(t) = Iq+py(t) – λIqx(t)

+
tq –��(q + )

��(q + )

(
σ –

m∑
i=

μiIαi+q+py(ηi) + λ

m∑
i=

μiIαi+qx(ηi)

)

–
tq –��(q + )

��(q + )

(
σ –

n∑
j=

νjIβj+q+py(ξj) + λ

n∑
j=

νjIβj+qx(ξj)

)
. (.)

Proof The general solution of equation (.) is expressed as the following integral equa-
tion:

x(t) = Iq+py(t) – λIqx(t) + c
tq

�(q + )
+ c, (.)

where c and c are arbitrary constants. By taking theRiemann-Liouville fractional integral
of order αi >  for (.), we get

Iαi x(t) = Iαi+q+py(t) – λIαi+qx(t) + c
(

tαi+q

�(αi + q + )

)
+ c

(
tαi

�(αi + )

)
.
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In particular, for t = ηi, we have

Iαi x(ηi) = Iαi+q+py(ηi) – λIαi+qx(ηi) + c
(

η
αi+q
i

�(αi + q + )

)
+ c

(
η

αi
i

�(αi + )

)
.

Repeating the above process for the Riemann-Liouville fractional integral of order βj >
, substituting t = ξj and applying the nonlocal condition (.), we obtain the following
system of linear equations:

c� + c = σ –
m∑
i=

μiIαi+q+py(ηi) + λ

m∑
i=

μiIαi+qx(ηi),

c� + c = σ –
n∑
j=

νjIβj+q+py(ξj) + λ

n∑
j=

νjIβj+qx(ξj).

(.)

Solving the linear system of equations in (.) for constants c, c, we have

c =


�

(
σ –

m∑
i=

μiIαi+q+py(ηi) + λ

m∑
i=

μiIαi+qx(ηi)

)

–


�

(
σ –

n∑
j=

νjIβj+q+py(ξj) + λ

n∑
j=

νjIβj+qx(ξj)

)
,

c =
�

�

(
σ –

n∑
j=

νjIβj+q+py(ξj) + λ

n∑
j=

νjIβj+qx(ξj)

)

–
�

�

(
σ –

m∑
i=

μiIαi+q+py(ηi) + λ

m∑
i=

μiIαi+qx(ηi)

)
.

Substituting c and c into (.), we obtain solution (.). �

3 Main results
Throughout this paper, for convenience, the expression Ixφ(y) means

Ixφ(y) =


�(x)

∫ y


(y – s)x–φ(s)ds for y ∈ [,T].

Let C = C([,T],R) denote the Banach space of all continuous functions from [,T] to
R endowed with the norm defined by ‖u‖ = supt∈[,T] |u(t)|. As in Lemma ., we define
an operator K : C → C by

Kx(t) = Iq+pf
(
s,x(s)

)
(t) – λIqx(t)

+
tq –��(q + )

��(q + )

(
σ –

m∑
i=

μiIαi+q+pf
(
s,x(s)

)
(ηi) + λ

m∑
i=

μiIαi+qx(ηi)

)

–
tq –��(q + )

��(q + )

(
σ –

n∑
j=

νjIβj+q+pf
(
s,x(s)

)
(ξj) + λ

n∑
j=

νjIβj+qx(ξj)

)
. (.)

It should be noticed that problem (.) has solutions if and only if the operatorK has fixed
points.
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In the following subsections, we prove existence, as well as existence and uniqueness
results, for problem (.) by using a variety of fixed point theorems.

3.1 Existence and uniqueness result via Banach’s fixed point theorem
Theorem . Let f : [,T]×R →R be a continuous function. Assume that

(H) there exists a constant L >  such that |f (t,x) – f (t, y)| ≤ L|x– y| for each t ∈ [,T] and
x, y ∈R.

If

L� +� < , (.)

where constants �, � are defined by

� :=
Tq+p

�(q + p + )
+

( ||Tq + |�|�(q + )
|�|�(q + )

) m∑
i=

|μi|ηαi+q+p
i

�(αi + q + p + )

+
( ||Tq + |�|�(q + )

|�|�(q + )

) n∑
j=

|νj|ξβj+q+p
j

�(βj + q + p + )
, (.)

� := |λ|
(

Tq

�(q + )
+

( ||Tq + |�|�(q + )
|�|�(q + )

) m∑
i=

|μi|ηαi+q
i

�(αi + q + )

+
( ||Tq + |�|�(q + )

|�|�(q + )

) n∑
j=

|νj|ξβj+q
j

�(βj + q + )

)
, (.)

then problem (.) has a unique solution on [,T].

Proof Problem (.) is equivalent to a fixed point problem by defining the operatorK as in
(.), which yields x =Kx. Using the Banach contraction mapping principle, we will show
that problem (.) has a unique solution. Setting supt∈[,T] |f (t, )| =M < ∞, we define a set
Br = {x ∈ C : ‖x‖ ≤ r},

r ≥ M� +�

 – (L� +�)
,

where

� := |σ|
( ||Tq + |�|�(q + )

|�|�(q + )

)
+ |σ|

( ||Tq + |�|�(q + )
|�|�(q + )

)
. (.)

For any x ∈ Br , we have

∣∣Kx(t)
∣∣ ≤ Iq+p

∣∣f (s,x(s))∣∣(t) + |λ|Iq∣∣x(s)∣∣(t)
+

||tq + |�|�(q + )
|�|�(q + )

(
|σ| +

m∑
i=

|μi|Iαi+q+p
∣∣f (s,x(s))∣∣(ηi)

+ |λ|
m∑
i=

|μi|Iαi+q
∣∣x(s)∣∣(ηi)

)
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+
||tq + |�|�(q + )

|�|�(q + )

(
|σ| +

n∑
j=

|νj|Iβj+q+p
∣∣f (s,x(s))∣∣(ξj)

+ |λ|
n∑
j=

|νj|Iβj+q
∣∣x(s)∣∣(ξj)

)

≤ Iq+p
(∣∣f (s,x(s)) – f (s, )

∣∣ + ∣∣f (s, )∣∣)(t) + |λ|Iq∣∣x(s)∣∣(t)
+

||tq + |�|�(q + )
|�|�(q + )

(
|σ| +

m∑
i=

|μi|Iαi+q+p
(∣∣f (s,x(s)) – f (s, )

∣∣

+
∣∣f (s, )∣∣)(ηi) + |λ|

m∑
i=

|μi|Iαi+q
∣∣x(s)∣∣(ηi)

)

+
||tq + |�|�(q + )

|�|�(q + )

(
|σ| +

n∑
j=

|νj|Iβj+q+p
(∣∣f (s,x(s)) – f (s, )

∣∣

+
∣∣f (s, )∣∣)(ξj) + |λ|

n∑
j=

|νj|Iβj+q
∣∣x(s)∣∣(ξj)

)

≤ (Lr +M)

[
Tq+p

�(q + p + )
+

( ||Tq + |�|�(q + )
|�|�(q + )

) m∑
i=

|μi|ηαi+q+p
i

�(αi + q + p + )

+
( ||Tq + |�|�(q + )

|�|�(q + )

) n∑
j=

|νj|ξβj+q+p
j

�(βj + q + p + )

]

+ r|λ|
[

Tq

�(q + )
+

( ||Tq + |�|�(q + )
|�|�(q + )

) m∑
i=

|μi|ηαi+q
i

�(αi + q + )

+
( ||Tq + |�|�(q + )

|�|�(q + )

) n∑
j=

|νj|ξβj+q
j

�(βj + q + )

]

+ |σ|
( ||Tq + |�|�(q + )

|�|�(q + )

)
+ |σ|

( ||Tq + |�|�(q + )
|�|�(q + )

)

= (Lr +M)� + r� +� ≤ r,

which implies thatKBr ⊂ Br . Next, we need to show thatK is a contraction mapping. Let
x, y ∈ C . Then, for t ∈ [,T], we have

∣∣Kx(t) –Ky(t)
∣∣

≤ Iq+p
∣∣f (s,x(s)) – f

(
s, y(s)

)∣∣(t) + |λ|Iq∣∣x(s) – y(s)
∣∣(t)

+
||tq + |�|�(q + )

|�|�(q + )

( m∑
i=

|μi|Iαi+q+p
∣∣f (s,x(s)) – f

(
s, y(s)

)∣∣(ηi)

+ |λ|
m∑
i=

|μi|Iαi+q
∣∣x(s) – y(s)

∣∣(ηi)
)

+
||tq + |�|�(q + )

|�|�(q + )

( n∑
j=

|νj|Iβj+q+p
∣∣f (s,x(s)) – f

(
s, y(s)

)∣∣(ξj)
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+ |λ|
n∑
j=

|νj|Iβj+q
∣∣x(s) – y(s)

∣∣(ξj)
)

≤ ‖x – y‖
[

LTp+q

�( + p + q)
+ |λ| Tq

�( + q)

+
||Tq + |�|�(q + )

|�|�(q + )

( m∑
i=

L|μi|ηαi+q+p
i

�(αi + p + q + )
+ |λ|

m∑
i=

|μi|ηαi+q
i

�(αi + q + )

)

+
||Tq + |�|�(q + )

|�|�(q + )

( n∑
j=

L|νj|ξβj+q+p
j

�(βj + q + p + )
+ |λ|

n∑
j=

|νj|ξβj+q
j

�(βj + q + )

)]

≤ (L� +�)‖x – y‖,

which leads to ‖Kx –Ky‖ ≤ (L� + �)‖x – y‖. Since (L� + �) < , K is a contraction
mapping. Therefore K has only one fixed point, which implies that problem (.) has a
unique solution. �

3.2 Existence and uniqueness result via Banach’s fixed point theorem and
Hölder’s inequality

Now we give another existence and uniqueness result for problem (.) by using Banach’s
fixed point theorem and Hölder’s inequality. For σ ∈ (, ), we set

� :=

[(
 – σ

q + p – σ

)–σ Tq+p–σ

�(q + p)

+
||Tq + |�|�(q + )

|�|�(q + )

( m∑
i=

(
 – σ

αi + q + p – σ

)–σ |μi|ηαi+q+p
i

�(αi + q + p)

)

+
||Tq + |�|�(q + )

|�|�(q + )

( n∑
j=

(
 – σ

βj + q + p – σ

)–σ |νj|ξβj+q+p
j

�(βj + q + p)

)]
. (.)

Theorem. Let f : [,T]×R→R be a continuous function. In addition we assume that

(H) |f (t,x) – f (t, y)| ≤ δ(t)|x – y| for each t ∈ [,T], x, y ∈ R, where δ ∈ Lσ ([,T],R+), σ ∈
(, ).

Denote ‖δ‖ = (
∫ T
 δ


σ (s)ds)σ .

If

�‖δ‖ +� < , (.)

where� and� are defined by (.) and (.), respectively, then problem (.) has a unique
solution.

Proof For x, y ∈ C and each t ∈ [,T], by Hölder’s inequality, we have

∣∣Kx(t) –Ky(t)
∣∣

≤ Iq+pδ(s)
∣∣x(s) – y(s)

∣∣(t) + |λ|Iq∣∣x(s) – y(s)
∣∣(t)

http://www.advancesindifferenceequations.com/content/2014/1/315
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+
||tq + |�|�(q + )

|�|�(q + )

( m∑
i=

|μi|Iαi+q+pδ(s)
∣∣x(s) – y(s)

∣∣(ηi)

+ |λ|
m∑
i=

|μi|Iαi+q
∣∣x(s) – y(s)

∣∣(ηi)
)

+
||tq + |�|�(q + )

|�|�(q + )

( n∑
j=

|νj|Iβj+q+pδ(s)
∣∣x(s) – y(s)

∣∣(ξj)

+ |λ|
n∑
j=

|νj|Iβj+q
∣∣x(s) – y(s)

∣∣(ξj)
)

≤ ‖x – y‖
[∫ t


(t – s)q+p–δ(s)ds + |λ| tq

�(q + )

+
||tq + |�|�(q + )

|�|�(q + )

( m∑
i=

|μi|
∫ ηi


(ηi – s)αi+q+p–δ(s)ds

+ |λ|
m∑
i=

|μi|ηαi+q
i

�(αi + q + )

)

+
||tq + |�|�(q + )

|�|

( n∑
j=

|νj|
∫ ξj


(ξj – s)βj+q+p–δ(s)ds

+ |λ|
n∑
j=

|νj|ξβj+q
j

�(βj + q + )

)]

≤ ‖x – y‖
[(∫ t


(t – s)

q+p–
–σ ds

)–σ (∫ t


δ(s)


σ ds

)σ

+ |λ| tq

�(q + )

+
||tq + |�|�(q + )

|�|�(q + )

( m∑
i=

|μi|
(∫ ηi


(ηi – s)

αi+q+p–
–σ ds

)–σ

×
(∫ ηi


δ(s)


σ ds

)σ

+ |λ|
m∑
i=

|μi|ηαi+q
i

γ (αi + q + )

)

+
||tq + |�|�(q + )

|�|�(q + )

( n∑
j=

|νj|
(∫ ξj


(ξj – s)

βj+q+p–
–σ ds

)–σ

×
(∫ ξj


δ(s)


σ ds

)σ

+ |λ|
n∑
j=

|νj|ξβj+q
j

�(βj + q + )

)]

≤ (�‖δ‖ +�)‖x – y‖.

Therefore,

‖Kx –Ky‖ ≤ (
�‖δ‖ +�

)‖x – y‖.

Hence, from (.), K is a contraction mapping. Banach’s fixed point theorem implies that
K has a unique fixed point, which is the unique solution of problem (.). This completes
the proof. �
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3.3 Existence result via Krasnoselskii’s fixed point theorem
Lemma . (Krasnoselskii’s fixed point theorem []) Let M be a closed, bounded, convex
and nonempty subset of a Banach space X. Let A, B be operators such that (a) Ax+Bx ∈M
whenever x, y ∈ M; (b) A is compact and continuous; (c) B is a contraction mapping. Then
there exists z ∈M such that z = Az + Bz.

Theorem . Let f : [,T]×R→R be a continuous function.Moreover, we assume that

(H) |f (t,x)| ≤ φ(t), ∀(t,x) ∈ [,T]×R and φ ∈ C([,T],R+).

Then problem (.) has at least one solution on [,T] if

� < , (.)

where � is defined by (.).

Proof We define the operatorsA and B on Br by

Ax(t) = Iq+pf
(
s,x(s)

)
(t) +

tq –��(q + )
��(q + )

(
σ –

m∑
i=

μiIαi+q+pf
(
s,x(s)

)
(ηi)

)

–
tq –��(q + )

��(q + )

(
σ –

n∑
j=

νjIβj+q+pf
(
s,x(s)

)
(ξj)

)
,

Bx(t) = –λIq+px(s)(t) +
tq –��(q + )

��(q + )

(
λ

m∑
i=

μiIαi+qx(s)(ηi)

)

–
tq –��(q + )

��(q + )

(
λ

n∑
j=

νjIβj+qx(s)(ξj)

)
,

where the ball Br is defined by Br = {x ∈ C,‖x‖ ≤ r} for some suitable r such that

r ≥ �‖φ‖ +�

 –�
,

with ‖φ‖ = supt∈[,T] |φ(t)| and �, � and � are defined by (.), (.) and (.), respec-
tively. To show that Ax +By ∈ Br , we let x, y ∈ Br . Then we have

∣∣Ax(t) +By(t)
∣∣

≤ Iq+p
∣∣f (s,x(s))∣∣(t) + ||tq + |�|�(q + )

|�|�(q + )

×
(

|σ| +
m∑
i=

|μi|Iαi+q+p
∣∣f (s,x(s))∣∣(ηi)

)

+
||tq + |�|�(q + )

|�|�(q + )

(
|σ| +

n∑
j=

|νj|Iβj+q+p
∣∣f (s,x(s))∣∣(ξj)

)

+ |λ|Iq+p∣∣y(s)∣∣(t) + ||tq + |�|�(q + )
|�|�(q + )

×
(

|λ|
m∑
i=

|μi|Iαi+q
∣∣y(s)∣∣(ηi)

)
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+
||tq + |�|�(q + )

|�|�(q + )

(
|λ|

n∑
j=

|νj|Iβj+q
∣∣y(s)∣∣(ξj)

)

≤ �‖φ‖ +� + r� ≤ r.

It follows that Ax +By ∈ Br , and thus condition (a) of Lemma . is satisfied. For x, y ∈ C ,
we have ‖Bx – By‖ ≤ �‖x – y‖. Since � < , the operator B is a contraction mapping.
Therefore, condition (c) of Lemma . is satisfied.
The continuity of f implies that the operator A is continuous. For x ∈ Br , we obtain

‖Ax‖ ≤ �‖φ‖ +�.

This means that the operator A is uniformly bounded on Br . Next we show that A is
equicontinuous. We set supt∈[,T] f (t,x(t)) = f̄ , and consequently we get

∣∣Ax(t) –Ax(t)
∣∣

≤ 
�(q + p + )

∣∣∣∣
∫ t



[
(t – s)q+p– – (t – s)q+p–

]
f
(
s,x(s)

)
ds

+
∫ t

t
(t – s)q+p–f

(
s,x(s)

)
ds

∣∣∣∣
+

|||tq – tq |
|�|�(q + )

(
|σ| +

m∑
i=

|μi|Iαi+q+p
∣∣f (s,x(s))∣∣(ηi)

)

+
|||tq – tq |
|�|�(q + )

(
|σ| +

n∑
j=

|νj
∣∣Iβj+q+p|f (s,x(s))∣∣(ξj)

)

≤ f̄
�(q + p + )

∣∣tq+p – tq+p
∣∣ + f̄ |||tq – tq |

|�|

(
|σ| +

m∑
i=

|μi|ηαi+q+p
i

�(αi + q + p + )

)

+
f̄ |||tq – tq |
|�|�(q + )

(
|σ| +

n∑
j=

|νj|ξβj+q+p
j

�(βj + q + p + )

)
,

which is independent of x and tends to zero as t → t. Then A is equicontinuous. So
A is relatively compact on Br , and by the Arzelá-Ascoli theorem, A is compact on Br .
Thus condition (b) of Lemma . is satisfied. Hence the operators A and B satisfy the
hypotheses of Krasnoselskii’s fixed point theorem; and consequently, problem (.) has at
least one solution on [,T]. �

3.4 Existence result via Leray-Schauder’s nonlinear alternative
Theorem . (Nonlinear alternative for single-valued maps []) Let E be a Banach
space, C be a closed, convex subset of E, U be an open subset of C and  ∈ U . Suppose
that A : U → C is a continuous, compact (that is, F (U) is a relatively compact subset of
C)map. Then either

(i) A has a fixed point in U , or
(ii) there is x ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with x = λA(x).

Theorem . Let f : [,T]×R →R be a continuous function. Assume that

http://www.advancesindifferenceequations.com/content/2014/1/315
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(H) there exists a continuous nondecreasing function denoted by ψ : [,∞) → (,∞) and
a function g ∈ C([,T],R+) such that

∣∣f (t,u)∣∣ ≤ g(t)ψ
(‖x‖) for each (t,x) ∈ [,T]×R;

(H) there exists a constant M >  such that

M
ψ(M)‖g‖� +M� +�

> ,

where �, � and � are defined by (.), (.) and (.), respectively.

Then problem (.) has at least one solution on [,T].

Proof Let the operator K be defined by (.). Firstly, we shall show that K maps bounded
sets (balls) into bounded sets in C . For a number r > , let Br = {x ∈ C : ‖x‖ ≤ r} be a
bounded ball in C . Then, for t ∈ [,T], we have

∣∣Kx(t)
∣∣ ≤ Iq+p

∣∣f (s,x(s))∣∣(t) + |λ|Iq∣∣x(s)∣∣(t)
+

||tq + |�|�(q + )
|�|�(q + )

(
|σ| +

m∑
i=

|μi|Iαi+q+p
∣∣f (s,x(s))∣∣(ηi)

+ |λ|
m∑
i=

|μi|Iαi+q
∣∣x(s)∣∣(ηi)

)

+
||tq + |�|�(q + )

|�|�(q + )

(
|σ| +

n∑
j=

|νj|Iβj+q+p
∣∣f (s,x(s))∣∣(ξj)

+ |λ|
n∑
j=

|νj|Iβj+q
∣∣x(s)∣∣(ξj)

)

≤ ψ(r)‖g‖� + r� +�,

and consequently,

‖Kx‖ ≤ ψ(r)‖g‖� + r� +�.

Next, we will show that K maps bounded sets into equicontinuous sets of C . Let t, t ∈
[,T] with t < t and x ∈ Br . Then we have

∣∣Kx(t) –Kx(t)
∣∣

≤ 
�(q + p + )

∣∣∣∣
∫ t



[
(t – s)q+p– – (t – s)q+p–

]
f
(
s,x(s)

)
ds

+
∫ t

t
(t – s)q+p–f

(
s,x(s)

)
ds

∣∣∣∣ + |||tq – tq |
|�|�(q + )

(
|σ| +

m∑
i=

|μi|Iαi+q+p
∣∣f (s,x(s))∣∣(ηi)

+ |λ|
m∑
i=

|μi|Iαi+q
∣∣x(s)∣∣(ηi)

)
+

|||tq – tq |
|�|�(q + )

(
|σ| +

n∑
j=

|νj|Iβj+q+p
∣∣f (s,x(s))∣∣(ξj)
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+ |λ|
n∑
j=

|νj|Iβj+q
∣∣x(s)∣∣(ξj)

)

≤ ψ(r)‖g‖
�( + q + p)

∣∣tq+p – tq+p
∣∣

+
||tq – tq |
|�|�(q + )

(
|σ| +

m∑
i=

ψ(r)‖g‖|μi|ηαi+q+p
i

�(αi + q + p + )
+

m∑
i=

r|μi|ηαi+q
i

�(αi + q + )

)

+
|||tq – tq |
|�|�(q + )

(
|σ| +

n∑
j=

ψ(r)‖g‖|νj|ξβj+q+p
j

�(βj + q + p + )
+

n∑
j=

r|νj|xiβj+qj

�(βj + q + )

)
.

As t – t → , the right-hand side of the above inequality tends to zero independently
of x ∈ Br . Therefore, by the Arzelá-Ascoli theorem, the operator K : C → C is completely
continuous.
Let x be a solution. Then, for t ∈ [,T], and following similar computations as in the

first step, we have

∣∣x(t)∣∣ ≤ ψ
(‖x‖)‖g‖� + ‖x‖� +�,

which leads to

‖x‖
ψ(‖x‖)‖g‖� + ‖x‖� +�

≤ .

By (H) there isM such that ‖x‖ �=M. Let us set

U =
{
x ∈ C : ‖x‖ <M

}
.

We see that the operator K : U → C is continuous and completely continuous. From the
choice ofU , there is no x ∈ ∂U such that x = νKx for some ν ∈ (, ). Consequently, by the
nonlinear alternative of Leray-Schauder type, we deduce that K has a fixed point x ∈ U
which is a solution of problem (.). This completes the proof. �

3.5 Existence result via Leray-Schauder’s degree theory
Theorem . Let f : [,T]×R →R be a continuous function. Suppose that

(H) there exist constants  ≤ γ < ( –�)�–
 andM >  such that

∣∣f (t,x)∣∣ ≤ γ |x| +M for all (t,x) ∈ [,T]×R,

where �, � are defined by (.) and (.), respectively.

Then problem (.) has at least one solution on [,T].

Proof We define an operator K : C → C as in (.) and consider the fixed point equation

x =Kx.

We shall prove that there exists a fixed point x ∈ C satisfying (.).

http://www.advancesindifferenceequations.com/content/2014/1/315
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Set a ball Br ⊂ C as

Br =
{
x ∈ C : sup

t∈[,T]

∣∣x(t)∣∣ < r
}
,

where a constant radius r > . Hence, we show that K : Br → C satisfies the condition

x �= θKx, ∀x ∈ ∂Br ,∀θ ∈ [, ]. (.)

We define

H(θ ,x) = θKx, x ∈ C, θ ∈ [, ].

As shown in Theorem ., the operatorK is continuous, uniformly bounded and equicon-
tinuous. Then, by the Arzelá-Ascoli theorem, a continuous map hθ defined by hθ (x) =
x – H(θ ,x) = x – θKx is completely continuous. If (.) holds, then the following Leray-
Schauder degrees are well defined, and by the homotopy invariance of topological degree,
it follows that

deg(hθ ,Br , ) = deg(I – θK,Br , ) = deg(h,Br , )

= deg(h,Br , ) = deg(I,Br , ) =  �= ,  ∈ Br ,

where I denotes the unit operator. By the nonzero property of Leray-Schauder degree,
h(x) = x –Kx =  for at least one x ∈ Br . Let us assume that x = θKx for some θ ∈ [, ]
and for all t ∈ [,T] so that

∣∣x(t)∣∣ = ∣∣θ (Kx)(t)
∣∣

≤ Iq+p
∣∣f (s,x(s))∣∣(t) + |λ|Iq∣∣x(s)∣∣(t)

+
||tq + |�|�(q + )

|�|�(q + )

(
|σ| +

m∑
i=

|μi|Iαi+q+p
∣∣f (s,x(s))∣∣(ηi)

+ |λ|
m∑
i=

|μi|Iαi+q
∣∣x(s)∣∣(ηi)

)

+
||tq + |�|�(q + )

|�|�(q + )

(
|σ| +

n∑
j=

|νj|Iβj+q+p
∣∣f (s,x(s))∣∣(ξj)

+ |λ|
n∑
j=

|νj|Iβj+q
∣∣x(s)∣∣(ξj)

)

≤ (
γ
∣∣x(t)∣∣ +M

)( tq+p

�(q + p + )
+

( ||tq + |�|�(q + )
|�|�(q + )

) m∑
i=

|μi|ηαi+q+p
i

�(αi + q + p + )

+
( ||tq + |�|�(q + )

|�|�(q + )

) n∑
j=

|νj|ξβj+q+p
j

�(βj + q + p + )

)

+ |λ|∣∣x(t)∣∣
(

tq

�(q + )
+

( ||tq + |�|�(q + )
|�|�(q + )

) m∑
i=

|μi|ηαi+q
i

�(αi + q + )
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+
( ||tq + |�|�(q + )

|�|�(q + )

) n∑
j=

|νj|ξβj+q
j

�(βj + q + )

)

+ |σ|
( ||tq + |�|�(q + )

|�|�(q + )

)
+ |σ|

( ||tq + |�|�(q + )
|�|�(q + )

)
.

Taking norm supt∈[,T] |x(t)| = ‖x‖, we get

‖x‖ ≤ (
γ ‖x‖ +M

)
� + ‖x‖� +�.

Solving the above inequality for ‖x‖ yields

‖x‖ ≤ M� +�

 – γ� –�
.

If r = M�+�

–γ�–�
+ , then inequality (.) holds. This completes the proof. �

4 Examples
Example. Consider the following fractionalCaputo-Langevin equationwithRiemann-
Liouville fractional integral conditions:

⎧⎪⎪⎨
⎪⎪⎩
D 

 (D

 + 

 )x(t) =
–e–t
(t+)

|x|
|x|+ +


 , t ∈ (, ),


 I


 x( 

 ) +

 I


 x( 

 ) +

 I


 x(  ) = ,


 I


 x(  ) +


 I


 x(  ) +


 I


 x( 

 ) = .

(.)

Here p = /, q = /, λ = /, T = , m = , n = , μ = /, α = /, η = /, μ =
/, α = /, η = /, μ = /, α = /, η = /, σ = , ν = /, β = /, ξ =
/, ν = /, β = /, ξ = /, ν = /, β = /, ξ = /, σ =  and f (t,x) = (( –
e–t)|x|/((t + )(|x| + ))) + /. Since |f (t,x) – f (t, y)| ≤ (/)|x – y|, then (H) is satisfied
with L = /. We can find that

� =
Tq+p

�(q + p + )
+

( ||Tq + |�|�(q + )
|�|�(q + )

) m∑
i=

|μi|ηαi+q+p
i

�(αi + q + p + )

+
( ||Tq + |�|�(q + )

|�|�(q + )

) n∑
j=

|νj|ξβj+q+p
j

�(βj + q + p + )
≈ .,

� = |λ|
(

Tq

�(q + )
+

( ||Tq + |�|�(q + )
|�|�(q + )

) m∑
i=

|μi|ηαi+q
i

�(αi + q + )

+
( ||Tq + |�|�(q + )

|�|�(q + )

) n∑
j=

|νj|ξβj+q
j

�(βj + q + )

)
≈ ..

Therefore, we have

L� +� ≈ . < .

Hence, by Theorem ., problem (.) has a unique solution on [, ].
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Example. Consider the following fractional Caputo-Langevin equationwithRiemann-
Liouville fractional integral conditions:

⎧⎪⎪⎨
⎪⎪⎩
D


 (D 

 + 
 )x(t) =

xe–t sin

 (t/)–x

–t + 
(+t)(|x|+) + , t ∈ (,π ),


 I


 x( π ) – 

 I

 x( π

 ) –

 I


 x( π ) – 

 I

 x( π ) + 

 I

 x(π

 ) =

 ,


 I


 x( π ) –


 I


 x(π

 ) +

 I


 x(π

 ) –

 I


 x(π

 ) +

 I


 x( π

 ) =

 .

(.)

Here p = /, q = /, λ = /, T = π , m = , n = , μ = /, α = /, η = π/, μ =
–/, α = /, η = π/, μ = –/, α = /, η = π/, μ = –/, α = /, η =
π/, μ = /, α = /, η = π/, σ = /, ν = /, β = /, ξ = π/, ν = –/,
β = /, ξ = π/, ν = /, β = /, ξ = π/, ν = –/, β = /, ξ = π/, ν =
/, β = /, ξ = π/, σ = / and f (t,x) = ((xe–t sin


 (t/) – x)/( – t)) + (/(( +

t)(|x| + ))) + . Since |f (t,x) – f (t, y)| ≤ e–t sin

 (t/)|x – y|, then (H) is satisfied with

δ(t) = e–t sin

 (t/) such that δ ∈ L/([,π ],R+). We can find that

� = |λ|
(

Tq

�(q + )
+

( ||Tq + |�|�(q + )
|�|�(q + )

) m∑
i=

|μi|ηαi+q
i

�(αi + q + )

+
( ||Tq + |�|�(q + )

|�|�(q + )

) n∑
j=

|νj|ξβj+q
j

�(βj + q + )

)
≈ .,

� =

[(
 – σ

q + p – σ

)–σ Tq+p–σ

�(q + p)

+
||Tq + |�|�(q + )

|�|�(q + )

( m∑
i=

(
 – σ

αi + q + p – σ

)–σ |μi|ηαi+q+p
i

�(αi + q + p)

)

+
||Tq + |�|�(q + )

|�|�(q + )

( n∑
j=

(
 – σ

βj + q + p – σ

)–σ |νj|ξβj+q+p
j

�(βj + q + p)

)]

≈ .,

and ‖δ‖ ≈ .. Therefore, we have

�‖δ‖ +� ≈  < .

Hence, by Theorem ., problem (.) has a unique solution on [,π ].

Example . Consider the following fractional Caputo-Langevin equationwith Riemann-
Liouville fractional integral conditions:

⎧⎪⎪⎨
⎪⎪⎩
D 

 (D 
 – 

 )x(t) = ( t
+(+|x|)t+|x|

t+|x|+ ) ln(t + ), t ∈ (, e – ),

 I


 x( 

 ) +

 I


 x( e– ) + 

 I

 x( e ) +


 I


 x(

√
e
 ) = ,


 I


 x(  ) –


 I


 x( e– ) + 

 I

 x( e– ) = –.

(.)

Here p = /, q = /, λ = –/, T = e – , m = , n = , μ = /, α = /, η = /,
μ = /, α = /, η = (e – )/, μ = /, α = /, η = e/, μ = /, α = /, η =
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√
e/, σ = , ν = /, β = /, ξ = /, ν = –/, β = /, ξ = (e – )/, ν = /,

β = /, ξ = (e – )/, σ = – and f (t,x) = ((t + ( + |x|)t + |x|)/(t + |x| + )) ln(t + ).
Since |f (t,x)| ≤ ln(t + ) + e, then (H) is satisfied. We can find that

� = |λ|
(

Tq

�(q + )
+

( ||Tq + |�|�(q + )
|�|�(q + )

) m∑
i=

|μi|ηαi+q
i

�(αi + q + )

+
( ||Tq + |�|�(q + )

|�|�(q + )

) n∑
j=

|νj|ξβj+q
j

�(βj + q + )

)
≈ ..

Thismeans that� < . ByTheorem. problem (.) has as least one solution on [, e–].

Example. Consider the following fractional Caputo-Langevin equationwithRiemann-
Liouville fractional integral conditions:

⎧⎪⎪⎨
⎪⎪⎩
D


 (D 

 – 
 )x(t) =

e–tx+ sin t
|x|+t ( sin(t/)(t+) ), t ∈ (, π

 ),√

 I 

 x( π
 ) – I 

 x( π
 ) +

√
I 

 x() – I 
 x(  ) = ,√


 I


 x(π

 ) – I 
 x(π

 ) +

√


 I 
 x(  ) –


 I


 x(  ) = .

(.)

Here p = /, q = /, λ = –/, m = , n = , μ =
√
/, α = /, η = π/, μ = –,

α = /, η = π/, μ =
√
, α = /, η = , μ = –, α = /, η = /, σ = , ν =√

/, β = /, ξ = π/, ν = –, β = /, ξ = π/, ν = 
√
/, β = /, ξ = /, ν =

–/, β = /, ξ = /, σ = , and f (t,x) = ((e–tx +  sin t)/(|x| + t))(sin(t/)/(t +
)). Then we can find that

� =
Tq+p

�(q + p + )
+

( ||Tq + |�|�(q + )
|�|�(q + )

) m∑
i=

|μi|ηαi+q+p
i

�(αi + q + p + )

+
( ||Tq + |�|�(q + )

|�|�(q + )

) n∑
j=

|νj|ξβj+q+p
j

�(βj + q + p + )
≈ .,

� = |λ|
(

Tq

�(q + )
+

( ||Tq + |�|�(q + )
|�|�(q + )

) m∑
i=

|μi|ηαi+q
i

�(αi + q + )

+
( ||Tq + |�|�(q + )

|�|�(q + )

) n∑
j=

|νj|ξβj+q
j

�(βj + q + )

)
≈ .,

� = |σ|
( ||Tq + |�|�(q + )

|�|�(q + )

)
+ |σ|

( ||Tq + |�|�(q + )
|�|�(q + )

)
≈ ..

Clearly,

∣∣f (t,x)∣∣ = ∣∣∣∣e–tx(t) +  sin t
|x| + t

(
sin(t/)
(t + )

)∣∣∣∣ ≤ 


(|x| + 
)∣∣sin(t/)∣∣.

By choosing ψ(|x|) = |x| +  and g(t) = | sin(t/)|/, we can show that

M
ψ(M)‖g‖� +Mλ +�

> ,
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which impliesM > .. By Theorem ., problem (.) has at least one solution on
[,π/].

Example . Consider the following fractional Caputo-Langevin equationwith Riemann-
Liouville fractional integral conditions:

⎧⎪⎪⎨
⎪⎪⎩
D


 (D 

 + 
 )x(t) =

te–t


π
sin(x + π

 ), t ∈ (, π ),

 I


 x(  ) –


 I


 x(  ) –


 I


 x(  ) +


 I


 x(  ) = ,


 I


 x() + 

 I

 x(  ) –


 I


 x( 

 ) –

 I


 x(  ) –


 I


 x( 

 ) = –.

(.)

Here p = /, q = /, λ = /,m = , n = ,μ = /, α = /, η = /,μ = –/, α =
/, η = /, μ = –/, α = /, η = /, μ = /, α = /, η = /, σ = , ν = /,
β = /, ξ = , ν = /, β = /, ξ = /, ν = –/, β = /, ξ = /, ν = –/, β =
/, ξ = /, ν = –/, β = /, ξ = /, σ = –, and f (t,x) = te–t sin(x + π/)/π .
By a direct computation, we have

� =
Tq+p

�(q + p + )
+

( ||Tq + |�|�(q + )
|�|�(q + )

) m∑
i=

|μi|ηαi+q+p
i

�(αi + q + p + )

+
( ||Tq + |�|�(q + )

|�|�(q + )

) n∑
j=

|νj|ξβj+q+p
j

�(βj + q + p + )
≈ .,

� = |λ|
(

Tq

�(q + )
+

( ||Tq + |�|�(q + )
|�|�(q + )

) m∑
i=

|μi|ηαi+q
i

�(αi + q + )

+
( ||Tq + |�|�(q + )

|�|�(q + )

) n∑
j=

|νj|ξβj+q
j

�(βj + q + )

)
≈ ..

Choosing γ = . < ( –�)�–
 ≈ . andM = ., we can show that

∣∣f (t,x(t))∣∣ ≤
∣∣∣∣ te–t



π

∣∣∣∣
∣∣∣∣sin

(
x +

π



)∣∣∣∣
≤

(
te–t

π

)
|x| +

(
te–t



)

≤ .|x| + .

≤ γ |x| +M,

which satisfies (H). By Theorem ., problem (.) has at least one solution on [, π ].
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