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1 Introduction

In this paper, we concentrate on the study of existence and uniqueness of solution for
the following nonlinear fractional Caputo-Langevin equation with nonlocal Riemann-
Liouville fractional integral conditions:

DP (D7 + M)x(8) =f (6, %(2)), £€[0,T],

3 wil“x(n) = o1, (L)
i=1
n

Z vilPix(&) = 02,

Jj=1

where 0 < p,q <1,1<p+¢q <2, D? and D” are the Caputo fractional derivatives of order
q and p, respectively, I? is the Riemann-Liouville fractional integral of order ¢, where
¢ =a; B >0, n;,& € (0,T) are given points, 1;,vj,A,01,00 €R,i=1,2,...,m,j=12,...,n,
and f : [0, T] x R — R is a continuous function.

The significance of studying problem (1.1) is that the nonlocal conditions are very gen-
eral and include many conditions as special cases. In particular, if o; = §; = 1, for all
i=12,...,m,j=1,2,...,n, then the nonlocal condition of (1.1) reduces to

pa f xls) ds + pa [P x(s) ds + -+ pm [ () ds = o,

1.2
vy 51 x(s) ds + vy fosz x(s)ds+ -+ + v, [" x(s) ds = 0y, 12)
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andifo; =0y =0, m=n=2, uy, vy #0, then (1.2) is reduced to

1 2 &1 &
81/0,] x(s)cls:/o'7 x(s) ds, 82/0‘ x(s)ds:/o x(s) ds, (1.3)

where & = —(u1/142) and g3 = —(v1/1v). Note that the nonlocal conditions (1.2) and (1.3) do
not contain values of an unknown function x on the left-hand side and the right-hand side
of boundary points ¢ = 0 and ¢ = T, respectively.

Fractional differential equations have been shown to be very useful in the study of mod-
els of many phenomena in various fields of science and engineering, such as physics, chem-
istry, biology, signal and image processing, biophysics, blood flow phenomena, control
theory, economics, aerodynamics and fitting of experimental data. For examples and re-
cent development of the topic, see [1-13] and the references cited therein.

The Langevin equation (first formulated by Langevin in 1908) is found to be an effective
tool to describe the evolution of physical phenomena in fluctuating environments [14]. For
some new developments on the fractional Langevin equation, see, for example, [15-24].

In the present paper several new existence and uniqueness results are proved by using
a variety of fixed point theorems (such as Banach’s contraction principle, Krasnoselskii’s
fixed point theorem, Leray-Schauder’s nonlinear alternative and Leray-Schauder’s degree
theory).

The rest of the paper is organized as follows. In Section 2 we recall some preliminary
facts that we need in the sequel. In Section 3 we present our existence and uniqueness
results. Examples illustrating the obtained results are presented in Section 4.

2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus [2, 3]
and present preliminary results needed in our proofs later.

Definition 2.1 For an at least n-times differentiable function g: [0, 00) — R, the Caputo
derivative of fractional order g is defined as

1 t
CMW”HTE/@ﬂWﬂwwn n-l<q<mn=Iigl+1,
- 0

where [g] denotes the integer part of the real number g.
Definition 2.2 The Riemann-Liouville fractional integral of order g is defined as

qu(t) - L t&

ds, 0,
T Jo t-sa™ 17

provided the integral exists.

Lemma 2.1 For g > 0, the general solution of the fractional differential equation *D7u(t) =
0 is given by

u(t)=co+crt+ -+ ¢yt

wherec; € R,i=1,2,...,n-1(n=[q] +1).
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In view of Lemma 2.1, it follows that
I°DIy(8) = u(t) + co + crt + - - - + Cyg ™"

forsomec;eR,i=1,2,...,n-1(n=[q] +1).

In the following, for the sake of convenience, we set constants

q o

Q=
L Z“‘r(oc,JrqH) Z:“’r( @
n 57“31' n Eﬁl
Q) = V‘]—, v, = v,li,
2 /zzllF(ﬁ,'+q+l) 2 jzzllI‘(ﬂ,+l)
and A = Ql\pz - Qz‘l—’l.

Lemma2.2 Let A#0,0<p,q <L 1<p+q<2,a;p;>0,u;vA 01,00 €R,n;,§ €(0,T),
i=12,...,m,j=12,...,n, and y € C([0, T],R). Then the nonlinear fractional Caputo-
Langevin equation

Dp(Dq + A)x(t) = y(¢), (2.1)

subject to the nonlocal Riemann-Liouville fractional integral conditions

Z wil*x(n;) = o1, Z vilPix(&) = s, (2.2)

i=1 j=1

has a unique solution given by
x(t) = ITPy(t) — M x(¢)

Wyt? — QT (g +1 “ “
+— g +1) (ol = Py () + 1Y ml"”*"x(m))

Ar(q + 1) i=1 i=1
Wit - (g +1) S ~
— W 09 — ; VII 1+q+19y(§-j) + A ; \)]I /+qx(.§/) . (23)
Proof The general solution of equation (2.1) is expressed as the following integral equa-
tion:
11
x(8) = ITPy(t) — AMx(t) + o T+ D +a, (2.4)

where ¢y and ¢; are arbitrary constants. By taking the Riemann-Liouville fractional integral
of order «; > 0 for (2.4), we get

teitd tYi
1% x(E) = I TPy(6) — A% (8) + co | ————— ) + ey [ ——— ).
() ) () cO(F(oei+q+1)> Cl(l—‘(ai+1))
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In particular, for £ = n;, we have

aj+q

L7
I%ix(n;) = I Py(n,) — A% 9x(n;) + ¢ ! +c : .
(m) y(’lz) (771) o(l"(ot,-+q+1)) 1<F(Oli+1))

Repeating the above process for the Riemann-Liouville fractional integral of order g; >
0, substituting ¢ = & and applying the nonlocal condition (2.2), we obtain the following
system of linear equations:

m m
cof2 + 1 W =01 — Z wd“ Py () + A Z wid“*9x(n;),
i1 -1

) ) (2.5)
Co Qz + Cl\IJ2 =09 — Z U/Iﬂ/+q+py(§j) + A Z U]‘]ﬁﬁqx(%‘j).
j=1 j=1
Solving the linear system of equations in (2.5) for constants ¢y, c;, we have
\IJ m m
2 v v
= (Ul =D TPy () + 1Y mlo‘”qx(m))
i=1 i=1
\I/ n n
1 , .
— K (0'2 — Z leﬁlﬂﬁpy(sl') + A Z vjlﬂ/wx(&j)),
j=1 j=1
Q n n
1 , .
Cl = K (02 - Z leﬁ/+q+py(sj) + A Z v,lﬂ/wx(é]))
j=1 j=1
Q m m
2 . .
o ( Yy Zmlal“’x(m))-
i=1 i=1
Substituting ¢y and ¢; into (2.4), we obtain solution (2.3). O

3 Main results
Throughout this paper, for convenience, the expression I*¢(y) means

Fo(y) = L/y(y—s)’c‘ltp(s)ds fory e [0, T]
re) Jo reib ik

Let C = C([0, T], R) denote the Banach space of all continuous functions from [0, T] to
R endowed with the norm defined by ||u|| = sup,c(o 77 [4(¢)|. As in Lemma 2.2, we define
an operator K :C — C by

Kx(t) = [7'Pf (s,x(s))(t) — Mx(t)

\Iv’th - er(q + 1)
AT (g +1)

o1 = Y Wil RS (5,x(5)) () + 1) Mil"‘”qx(m))

i=1 i=1

W — (g +1) s N
- ﬁ (az =S e (s,x(9) (6) + 2.3 ul# qx(g,-)). (3.1)

Jj=1 Jj=1

It should be noticed that problem (1.1) has solutions if and only if the operator K has fixed
points.

Page 4 of 18
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In the following subsections, we prove existence, as well as existence and uniqueness
results, for problem (1.1) by using a variety of fixed point theorems.

3.1 Existence and uniqueness result via Banach’s fixed point theorem
Theorem 3.1 Letf:[0,T] x R — R be a continuous function. Assume that

(Hi) there exists a constant L > 0 such that |f(¢,x) —f(t,y)| < L|x—y| foreach t € [0, T] and
x,y€R.

If
LA+ Ay <1, (3.2)

where constants A1, A, are defined by

T+ Wy |T7 + |20 (g + 1)) — AR
A (I 2| 12, (q )Z leiln;”

F(q+p+1)+ |A|T (g +1) = IMNea;j+g+p+1)
n Bj+q+
W1 |T7 + |1 (g +1) &7
+ > : (3.3)
|AIl(g +1) “T(Bj+q+p+1)

T4 Wy | T + |25 T(g +1) — (nite
Ay =2 + [W,| + [€2] (q+ ) Z y2% |TI
[(g+1) |Al(g +1) — Tlei+q+1)
T+ 12T (g + 1)) o g
+< )Z : (3.4)
|AIT(g +1) S TB+a+1)

then problem (1.1) has a unique solution on [0, T].

Proof Problem (1.1) is equivalent to a fixed point problem by defining the operator K as in
(3.1), which yields x = Kx. Using the Banach contraction mapping principle, we will show
that problem (1.1) has a unique solution. Setting sup,(o 1y [f (£,0)| = M < 0o, we define a set
B ={xeC:lx| =1},

MA1+d)
rz—,
- 1—(LA1+A2)

where

Wy T + 2| (g +1) [W1|T9 + || (g +1)
D := o] + o]

|AIT(g +1) |AIT(g+1) (3.5)

For any x € B,, we have

|le(t)| < 1q+1’[f(s,x(s)) |(t) + |A|1q|x(s)|(t)

[Wa 27 + |92|F(q+1) < j+q+ .
|AIT (g +1) <|<71| + lej | i T2 | (5, %(5)) | (m:)

anyy m,»ua”q\x(s)}(m))

i=1
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[W1 ]t + |21 (g + 1) n e |
|AIT (g +1) (“ﬂ+§ymquV@Mmuw

anyy |v,|1f‘f*q|x(s>|(s,))

j=1
<177 (|f(5,2(5)) = f(5,0)| + |f(5,0)|) (&) + [A11]x(s)|(£)

|Wa |67 + 2| (g +1)
|AIl (g +1)

(I ol + ZIMII“‘““" (5,%(5)) —f(5,0)|

+|f(s,0)]) () + 111 ) IMiII“"*q|x(S)I(m))

i=1

|Wq[¢7 + |€21|T(q + 1) .
AT (' 2l Z'”'Iﬁ’ TP (If (5,%(9) ~f (s, 0)]

+f50))E) + 111y lwllﬂf”\x@)!(sj))

Jj=1

T (1WalT7+ @[ T(g +1) i |l
Fg+p+1) |A|T(g +1) D +g+p+1)

+ (|W1|Tq+ |91|F(Q+1)>Xn: |V1|§ﬂ] i
|AIT(g +1) S TB+a+p+l)

77 W] T+ |20IT(g+ 1)\ o= ialny™
+r|A| + Z
T(g+1) |AIT(g +1) = Nai+q+1)

+("”1|Tq+|szl|r(q+1))i g
ATG@+D )& TE+a+D
Vol T + 19217 (q + ) WAIT? + [T (g + 1)
|ol|( )+|02|( )
AN +1) AN+ 1)

=(Lr+M)A1+rAy+ P <,

< (Lr+M)|:

i=

which implies that KB, C B,. Next, we need to show that [ is a contraction mapping. Let

%,y € C. Then, for ¢ € [0, T], we have

[KCx(2) - KCy(2)|
<IUP|f(s,%(5)) = f (5,5(9)) |(£) + [A117](s) - y(s)| (&)

[Wa 27 + |1 (q +1)
(Sl o) - e )

I Ll 19 x(s) —y(s)\(n»)

i=1

W1 [t? + |21T (g +1) fyva |
AN +1) <Z| TP |f (5,%(5)) = f (s, 9(6)) | (€7)

Page 6 of 18
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I Iyl x(s) —y(s)|(s,-)>

j=1

P+q T4
<|x- 3
=l vara M g

, Wl T7+19|0(g +1) i Llpin ™" ||Z |l
AT (g +1) — Di+p+q+1) F(ai+q+1)

n Bi+q+, n Bi+
T+ (21T (g + ) 5 Livlg”™ "™ i |Z 1&g
AT (g +1) = FBi+g+p+1) CBi+q+1)

< (LA + A)llx =y,

which leads to || Cx — ICy|| < (LA + Ay)|lx — y||. Since (LA; + Ay) <1, K is a contraction
mapping. Therefore /C has only one fixed point, which implies that problem (1.1) has a
unique solution. d

3.2 Existence and uniqueness result via Banach’s fixed point theorem and
Holder’s inequality

Now we give another existence and uniqueness result for problem (1.1) by using Banach’s

fixed point theorem and Hoélder’s inequality. For o € (0,1), we set

1-0 \!'7 190
A3 = ( )
qtp-o/) Tlg+p)
AT ) (85 1= ) T
AT +1) o \ditqgtp—0o C(o; +g+p)

, MAlT7 4 [ (g + 1) i( -0 )1“’ uylg . .6)
A+ \&\grarp-o) TErarn

Theorem 3.2 Letf : [0, T] x R — R be a continuous function. In addition we assume that

(H2) If@t, %) —f(t,y)| <8(t)|x—y| foreacht € [0,T], x,y € R, where § € L° ([0, T],R*), 0 €

(0,1).
Denote |8 = (foTéi%(s) ds)°.
If
Asll8]l + Az <1, (3.7)

where Ay and A5 are defined by (3.4) and (3.6), respectively, then problem (1.1) has a unique
solution.

Proof For x,y € C and each ¢ € [0, T], by Holder’s inequality, we have

|KCx(2) = Ky(t)]

< 1775(5) x(s) = ¥(5)|(6) + 12117 x(5) - ¥(5)|¢)
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| W[t + || (q +1)
|AIl(g +1)

(ZI AP (5) | x(s) — y(s)| (n:)

I Il 14 () —y(S)|(m)>

i=1

Uy |t? + |21 T (g + 1
+| 1| | 1| q ) Z| Iﬂ1+q+p8 |x |
AT (g +1)

A [l x(s) —y(s)|(s,»)>
j=1

q

< w9yl [ /0 (£ — )77 15(s) ds + mﬁ

Wy |t7 + || T (g +1
o 1l + || {g + ) D l|f — )18 (s) ds
|AIT(g +1)

" |Z il ™
Mo +g+1)

W1t + |21 (g +1)
L +||A1|I g+ (Zm/ (=) 1775(s) ds

ki ylg?
1A CBi+qg+1)

t g1 1-o t 1 o tq
sllx—yll[</0 (t-s5)"5 ds> (/o a(swds) e

|\I/2|tq+|§22|r q+1) oz+q+p1 l-o
Mi i~ d
+ AT+ 1) ZI | (n ) T ds

" o)k il
X 8(s)ads) +|r
(/0 © ) | IZ:y(otl+q+1)
|Wpt7 + Q1T (g +1) / ,s+q+p_ 1o
- T I-o
¥ |A|T(g +1) Z' vil & —9)

st d " |,|sﬂ’*q
v A
([ p0tas) ey

= (Asll8 + Az)llx = yll.

Therefore,
1Kx - Kyll < (A3||5|| + Az)llx—yH.

Hence, from (3.7), K is a contraction mapping. Banach’s fixed point theorem implies that
K has a unique fixed point, which is the unique solution of problem (1.1). This completes
the proof. d
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3.3 Existence result via Krasnoselskii’s fixed point theorem

Lemma 3.1 (Krasnoselskii’s fixed point theorem [25]) Let M be a closed, bounded, convex
and nonempty subset of a Banach space X. Let A, B be operators such that (a) Ax + Bx e M
whenever x,y € M; (b) A is compact and continuous; (c) B is a contraction mapping. Then
there exists z € M such that z = Az + Bz.

Theorem 3.3 Letf : [0, T] x R — R be a continuous function. Moreover, we assume that
(Hs) [f(t,x)| <¢(2),VY(t,x) € [0, T] x Rand ¢ € C([0, T],R*).

Then problem (1.1) has at least one solution on [0, T] if
A2 < 11 (3.8)
where A, is defined by (3.4).

Proof We define the operators .A and BB on B, by

Wyt — QT (g +1 “
Ax(t) = 177 (s,x(5)) (£) + % (01 - 21: wl TS (s,x(s))(m))

w - TBita+ )
T AT+ ("2 ) ;"11 f (S'x(s))(%)),

Bitt) = AP ) o D (A 2wl 1509 )

Wit — (g +1) i o '

where the ball B, is defined by B, = {x € C, ||x|| < r} for some suitable r such that

_ Ailigll + @
T 1-A

’

with [|@]l = sup,cjo, 77 1¢(¢)] and Aj, A, and @ are defined by (3.3), (3.4) and (3.5), respec-
tively. To show that Ax + By € B,, we let x,y € B,. Then we have

| Ax(2) + By(2)|

|W|t? + [2|T'(g +1)
|AIl(g +1)

x <|<71| £ Yl |f (s, x(5)) !<m))

< TP [f(s,x(s))|(t) +

i=1
| W17+ Q1|1 (q +1)

- | 7Bi+a+ )
|AIT(g +1) ('“2“/_21'”1'1 ”lf(s’x@)l(%,))

[0 |t7 + 2] (g +1)
|AIl (g +1)

x (w > IMiII“””!y(S)!(m))

i=1

+ AT y(s)| (2) +
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W80+ 120 TG+ D) (| .
AN g+ 1) ('M/levzlf "|y(s)|(s,)>

SMl+P+rAy <.

It follows that Ax + By € B,, and thus condition (a) of Lemma 3.1 is satisfied. For x,y € C,
we have ||Bx — By|| < Az|lx — y||. Since A, <1, the operator B is a contraction mapping.
Therefore, condition (c) of Lemma 3.1 is satisfied.

The continuity of f implies that the operator A is continuous. For x € B,, we obtain
[Axll < Ailigll + .

This means that the operator A is uniformly bounded on B,. Next we show that A is
equicontinuous. We set sup,(o r1.f (£, %(t)) = £, and consequently we get

|A7C(t2) - Ax(t1)|
1

i

[(62 - )77 — (1 — )77 ] (5,x(5)) ds
0

+ /tz (t, — s)q+”_lf(s,x(s)) ds

|\IJ2||t2 o +q+ .
AT D) <| 1|+Z|u|1 2| (s5,x(s )y(nl))

+ AR loa| + Xn: PP If (5,0(5) | (€))
AM@+) "7 & S

< S tq+p_tq+p| f|‘112||tq | oy + Xm: Illnww
“T@+p+n'™ A T qrp+])
" Bj+q+p
L f1wlis -4 ool 4+ Z |vjl§;’
N 0 I P
|AIT(g +1) S TB+qg+p+1)

which is independent of x and tends to zero as t; — t,. Then A is equicontinuous. So
A is relatively compact on B,, and by the Arzeld-Ascoli theorem, A is compact on B,.
Thus condition (b) of Lemma 3.1 is satisfied. Hence the operators A and B satisfy the
hypotheses of Krasnoselskii’s fixed point theorem; and consequently, problem (1.1) has at
least one solution on [0, T7. O

3.4 Existence result via Leray-Schauder’s nonlinear alternative
Theorem 3.4 (Nonlinear alternative for single-valued maps [26]) Let E be a Banach
space, C be a closed, convex subset of E, U be an open subset of C and 0 € U. Suppose
that A: U — C is a continuous, compact (that is, F(U) is a relatively compact subset of
C) map. Then either

(i) A has a fixed point in U, or

(ii) there is x € AU (the boundary of U in C) and i € (0,1) with x = A A(x).

Theorem 3.5 Letf:[0,T] x R — R be a continuous function. Assume that

Page 10 of 18
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(Ha) there exists a continuous nondecreasing function denoted by v : [0, 00) — (0,00) and
a function g € C([0, T1,R*) such that

Ift,w)| <g@w(Ixll) foreach (t,x) € [0,T] x R;

(Hs) there exists a constant M > 0 such that

M
Y(M)Igl Ay +MAy + @

)

where A1, Ay and © are defined by (3.3), (3.4) and (3.5), respectively.

Then problem (1.1) has at least one solution on [0, T1.

Proof Let the operator K be defined by (3.1). Firstly, we shall show that K maps bounded
sets (balls) into bounded sets in C. For a number r > 0, let B, = {x € C: ||x|| < r} be a
bounded ball in C. Then, for ¢ € [0, T], we have

!le(t)‘ < 1q+1’[f(s,x(s)) |(t) + |A|1q’x(s)|(t)

|V 27 +€2|T'(g +1) " s |
VNIV ESY) ("’l“;'ﬂi” T2 £ (s,%(5)) | (m:)

anyy IMiII“”q\x(S)}(m))

i=1

RAESYINCEDY! " o
* AN D ("’2' *;lwllﬂf 7 [f (5,4(6)|(&)

MY |v;|1ﬂf*q|x(s>|<€/>)

j=1
=yIglArL+rAy+ @,
and consequently,

IKxIl < ¥ (r)ligllAr+ 1Ay + P.

Next, we will show that K maps bounded sets into equicontinuous sets of C. Let t1,t, €
[0, T] with # < t, and x € B,. Then we have

[KCx(t2) - Kan)]|

1
< -
_F(

& +p-1 |\I"2||tq a+q+
+/;1 (t, — )P f(s,x(s))ds‘+ AT+ <| 1|+Z|p¢|[ ’“’[fsx(s)‘

5]

[(tz — )Pl _ (4 —5)T*P _l]f(s,x(s)) ds
0

m q
iy |u,~|1““q|x(s)|(m)> Ll — 4| <| ool + Z T2 |f (s, x(5)) | &)

- AIT (g +1)
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MY |v/|1ﬁf*q|x(s>|(€;>)

j=1

v(r)lgl ’thrp _ tq+p|
= 2 1
Fdl+q+p)

|y td — 2] Yy lghlmilni™ TP SNl
+—————||o1| + E + E _
o1 T

|AIT(g +1) — Tli+q+p+1)  “FTlu+q+])
" Bi+a+ n Bi+
LIS |+Zw(r>||g|||v,.|s/” 3 rlv i,
——— | |o + - |-
A+ )\ 7" S T@Brgrp+l) S TE+qr])

As t; — ) — 0, the right-hand side of the above inequality tends to zero independently
of x € B,. Therefore, by the Arzela-Ascoli theorem, the operator K : C — C is completely
continuous.

Let x be a solution. Then, for ¢ € [0, T], and following similar computations as in the

first step, we have
le@)| < v (Ixl)lgl Ay + x| Az + @,

which leads to

&l
1.
YlxDlglAL+ lIxl Az + @~

By (Hs) there is M such that ||x|| # M. Let us set
u-= {xeC: 1]l <M}.

We see that the operator K : I — C is continuous and completely continuous. From the
choice of U, there is no x € U such that x = vCx for some v € (0,1). Consequently, by the
nonlinear alternative of Leray-Schauder type, we deduce that K has a fixed point x € U
which is a solution of problem (1.1). This completes the proof. O

3.5 Existence result via Leray-Schauder’s degree theory
Theorem 3.6 Letf:[0,T] x R — R be a continuous function. Suppose that

(He) there exist constants 0 <y < (1 - Ay) AT and M > 0 such that
[f(t,x)| <vylx|+M forall(t,x)€[0,T] xR,

where A1, Ay are defined by (3.3) and (3.4), respectively.

Then problem (1.1) has at least one solution on [0, T.

Proof We define an operator K : C — C as in (3.1) and consider the fixed point equation
x = Kx.

We shall prove that there exists a fixed point x € C satisfying (1.1).
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Setaball B, cC as

B, = {xeC’: sup ’x(t)’ < r},

t€[0,T]
where a constant radius 7 > 0. Hence, we show that K : B, — C satisfies the condition
x#0Kx, Vxe€ 9B,V e[0,1]. (3.9)
We define
H@®,x)=0Kx, xeC,0¢e][0,1].

As shown in Theorem 3.5, the operator K is continuous, uniformly bounded and equicon-
tinuous. Then, by the Arzeld-Ascoli theorem, a continuous map /4, defined by hy(x) =
x — H(0,x) = x — OKx is completely continuous. If (3.9) holds, then the following Leray-
Schauder degrees are well defined, and by the homotopy invariance of topological degree,
it follows that

deg(hy, B,,0) = deg(I — 6K, B,,0) = deg(h, B,,0)
= deg(ho,B,,0) = deg(l,B,,0)=1#0, 0€B,
where I denotes the unit operator. By the nonzero property of Leray-Schauder degree,
h1(x) = x — Kx = 0 for at least one x € B,. Let us assume that x = 8 Cx for some 6 € [0,1]
and for all £ € [0, T] so that
’x(t)| = |9(1Cx)(t)|
< 177 |f (5,(5)) | (&) + A1 |x(5)| )

|Wa[t? + 25| (g +1) . oj+q+ .
|AIT (g +1) <|Gl| +;Imll P |f(s,%(5)) | (m:)

HMZ]mmMM®Wm)

i=1

[W1t7 + €| (g +1)

L 7Bi+a+
|A|T (g +1) (Wﬂ+zwaqu@ﬂwM@

HME]MWWMM@O

j-1

* m oj+q+p
§<y|x<t>|+M>(F( v (MR

qg+p+1) |AIT(g +1) MNea;j+g+p+1)

Bi+q+,
Cwﬂﬂ+KMFW+D)§i ylg” "
+
AN+ ) & TG

=

~“T(Bi+q+p+1)

) (Wl +|I0(g+ 1) 55 il
[(g+1) |AIT(g +1) — Tl +q+1)
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+<|\p1|ﬂ+|91|r(q+1))2”: ylg"?
|AIl (g +1) T TB+a+1)
[Wo |27 + |2 T'(g +1) [W1t7 + (€4 (q +1)
+ o] +|og| .
|AIl (g +1) |AIT (g +1)

Taking norm sup,(o 71 [%(£)| = [|x[|, we get

il < (y llll + M) A + %] Az + P.

Solving the above inequality for ||x|| yields

MAl + &
*ll < ——
1- ]/AI_AZ

Ifr=; _Myﬁlltiz + 1, then inequality (3.9) holds. This completes the proof. d

4 Examples
Example 4.1 Consider the following fractional Caputo-Langevin equation with Riemann-
Liouville fractional integral conditions:

7 2 —e”
DT (D5 + L)x(t) = 1(;1)‘2 ks +§ te(0,1),

%I%x(%)+%15x( )+1110 (})=5 (4.1)
20x(2) + 215 () + Liox(2) = 2

Here p=7/10,g=2/5,A=1/10, T =1, m=3,n =3, u; =1/2, a1 = 9/10, n; = 1/10, py =
3/10, ay = 4/5, o = 3/20, pu3z =1/5, ag = 7/10, n3 = 1/5, o1 = 5, v = 2/5, B = 3/10, & =
4/5, vy =2/5, By =1/5, & =17/20, v3 = 1/5, B3 =1/10, & = 9/10, 05 = 20 and f(¢,x) = ((1 -
e !)|x|/(4(t + 1)2(2]x| + 3))) + 2/3. Since |[f (¢, %) — f(t,y)| < (1/4)|x - y|, then (H,) is satisfied
with L = 1/4. We can find that

_ T (1T [P (g + 1) i il
IFg+p+1) AT (g +1) - MNoj+g+p+1)

n B
X (|x1n|Tq+|szl|r(q+1)>Z vl
IAIT(7+1) £

~T'(Bj+q+p+1)

Ay = |A| s . |W2|T7 + |2 (g +1) i il
2 T(g+1) |AIT (g +1) T +q+1)

'B,
(|\111|Tq+|szl|r(q+1))i ylg
+
AT+ 1) 2T

~ 2.849024,

~ 0.052040.
Bi+aq+1)

Therefore, we have
LA+ Ay=x0.764296 < 1.

Hence, by Theorem 3.1, problem (4.1) has a unique solution on [0, 1].
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Example 4.2 Consider the following fractional Caputo-Langevin equation with Riemann-
Liouville fractional integral conditions:

1
xe7 108 5in 2 (¢/2)—x 1
DS(D7 + 55 )x(t) = i + @D +5, te(0,m),
4
%I%x(%”)—%I%x(%)—é[ﬁx(a‘”) 215x(2) + LS n(T) =

E (4.2)
5790 3 5.1 6 i3 17 713 378 _
13x(37) — 510x(%) + 2I8x(3) — 317 x(F) + 5 15x(5%) =

3
7’
5
6

Here p=3/5,q=3/7,2=1/50, T =n,m=5,n=5, u1 =7/2, 01 =5/2, n1 =3mw/5, s =
175, &y = 14/11, 1y = 477/15, ps = —3/7, &z = 17/12, 13 = 3718, jua = —2/7, g = 413, N4 =
27019, s = 11/15, as = 4/5, ns = 7/5, 01 = 3/7, v = 5/3, B = 10/3, & = 37/11, vy = —5/2,
By = 19/10, & = 71/5, vs = 6/5, B3 = 13/18, & = /3, v = ~17/13, Ba = 13/7, &4 = 70 /4, vs =
3/17, Bs = 6/5, &5 = /16, 0s = 5/6 and f(t,x) = ((xe ' sin2 (£/2) — x)/(4 — £)) + (1/((4 +
B(lx| + 1))) + 5. Since |f(t,x) — f(t,y)| < e™1% sin? (¢/2)|x — 9|, then (Hy) is satisfied with
8(£) = 1% sinZ (¢/2) such that § € L2([0, 7], R*). We can find that

T4 W, | T + |27 (g +1) — AT
N (Ml 10 1)) §
I'g+1) |AIT (g +1) = IMNo;+g+1)

Bi+q
W T+ |2 T(g+ 1)\ o IVl
+(I 1T+ (q + ))Z (/1 ~0.350711,

|AIT(q +1) r'(Bi+q+1)
-0 \!' Tawp—o
me|(7%)
g+p-o I'(g+p)
|W| T + |2|T(q +1) [ T il
+ >
|AIl(g +1) T \aitq+p-o) Tlai+q+p)

L WIT?+ (g +1) ”( -0 )1“’ uylg/
|AIT (g +1) ‘ST\Bj+ra+tp-o) T(Bi+q+p)

~ 17.417544,

and ||8]] &~ 0.035344. Therefore, we have
A8l + Ay~ 0966321 < 1.

Hence, by Theorem 3.2, problem (4.2) has a unique solution on [0, ].

Example 4.3 Consider the following fractional Caputo-Langevin equation with Riemann-
Liouville fractional integral conditions:

D3 (D% - 2)x(t) = (W)m(tu) te(0,e-1),

é sx(we ) 4 378x(2) + 217 x(¥2¢) = 15, (4.3)

3e— 2) ﬁl x(5656):_

I\J‘m

Herep=2/3,g=3/4,A=-3/35,T=e-1,m=4,n=3, u =3/11, oy = 1/6, n; = 1/10,
Mo = 1/5, 0y = 1/5, Ny = (106— 11)/10, M3 = 3/7, o3 = 3/8, n3 = 26/9, Mg = 4/3, 04 = 1/7, Ng =
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V2el5, 01 =15, v =2/5, B1 =1/2, & = 3/8, v, = —1/5, B3 = 6/25, & = (3e — 2)/4, v5 = 1/10,

B3 =1/4,& = (5 - 6)/5, 05 = =5 and f(t,x) = ((¢£2 + (1 + |x|)¢ + |x|)/(¢ + |x| + 1)) In(¢ + 1).
Since |f(¢,x)] < In(t + 1) + ¢, then (Hj) is satisfied. We can find that

Ay =i +<|%|T‘f+|szz|r(q+1)>i il
)=
[(g+1) |AIT(g +1) — Dlei+q+1)

Bi+q

U T+ 11T+ 1)\ <~ |Vi|E’

+<| T+ |0 (q + )>Z/7/ ~ 0.980502.
|AIT(g +1) — T(Bi+q+1)

This means that A, < 1. By Theorem 3.3 problem (4.3) has as least one solution on [0, e—1].

Example 4.4 Consider the following fractional Caputo-Langevin equation with Riemann-
Liouville fractional integral conditions:

5, 2 —t.2 ; :
D& (D5 — &5)x(t) = Sgpasnt sl(‘;(flt)/j)), te(0,%
IR x(Z) - 200 x(4) + /BIHx(1) - 3(3) = 1, (4.4)

J317(3) =31(3) + 2B - 215 = 0

Here p=5/6,q=2/3, A=-1/50, m=4,n=4, u; = V212, aq = 318, m =m/18, uy = -2,
oy =1/10, 0y = 47 /9, u3 = V3, a3 = 1/4, n3 =1, g =-1, 04 =2/3, 04 =3/4,01=1, v, =
V213, B1=217,& = 7/6, vy = =3, B3 = 3/10, £ = /3, v3 = 2/2/7, B3 = 11/20, & = 5/4, vy =
—2/5, Ba =719, £, =1/2, 05 = 0, and f(£,x) = ((e”*x + 40sint)/(40|x| + 60¢))(sin(2¢/3)/(¢ +
1)2). Then we can find that

T+ Wy [T + |25 |T(g +1) <& Sitqep
A= +(| 2| [2;|T (g ))Z [eiln;

C(g+p+1) |AIT (g +1) 1 m
Bj+q+p
Uy T9 + |4 |T 1 - lvjl&;”
+<| T+ T (g + ))Z 15 ~ 18.473830,
|AIT (g +1) “T(Bj+q+p+1)

T1 Wy |T7 + |25 |T(g + 1) — cird
Ay =1 . [Wy |T? + |2|T (g + 1) Z | il m;
[(g+1) |AIT(g +1) — Tlei+q+1)

+(|%|Tq+|szl|r(q+1>>i (Ivjléf’“’

) ~ 0.531365,

[A|T (g +1) LB+q+1)
Wy | T1 + |2, 1 W | T9 + || 1
d>:|01|(| 2| T7 + 2| (q + ))+|02|(| T+ 14T (g + ))%3.515304.
|AIl(g +1) |AIT(g +1)
Clearly,
e'x?(t) + 40sint (sin(2t/3) 1
t; = — 1 2t/3
(e, 40| + 60¢ ((t+1)2> 20 (1 +1)|sin(2¢/3)].

By choosing ¥ (|#|) = |x| + 1 and g(¢) = | sin(2¢/3)|/40, we can show that

M
>1,
Y(M)|Igll Ay + My + ©
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which implies M > 57.019704. By Theorem 3.5, problem (4.4) has at least one solution on
[0,7/2].

Example 4.5 Consider the following fractional Caputo-Langevin equation with Riemann-

Liouville fractional integral conditions:

g2

D5 (DB + L)x(t) = 2 sin(x + I), € (0,2n),

372,08Y _ L7d () 275 (9 4 173 .(3) =

51596(3)—§Ilox(§)—ﬁ[15x(§)+713x(§)—1, (45)
1 L 2 2 3

2I6x(6) + 310x(3) — $19x(55) — 317 x(3) — 15 x(55) = -1

Herep=4/5,q=3/10,A=1/80,m=4,n="5, 41 =3/2,0¢1 =2/5, 111 = 8/5, o = -1/3, a5 =
3/10, 9y =4/3, nus = -2/11, 3 =2/15, 13 =9/2, ua =1/7, 04 =1/3, 14 = 3/2, 01 =1, v1 =5/2,
Bi1=1/6,& =6,vy=1/2, By =1/20, &) =5/2, v3 = —4/5, B3 = 2/9, &3 = 3/20, v4 = —4/3, B4 =
2/7, €4 =1/2, v5 = =2/17, B5 = 3/5, & = 1/16, 03 = -1, and f(¢,x) = 272 sin(x + 7/3) /4.

By a direct computation, we have

T <|%|Tq +||T (g + 1)) i il

= + _—
! I'g+p+1) |A|T(g +1) =y Mo +g+p+1)
Bj+q+p
WT7+ QT (g+1)\ — g~
+<| 177+ [Sh0(g + )>Z o) ~ 39.248431,
|AIl'(g +1) S TB+a+p+1)
Y +<|\U2|Tq+|Qz|F(q+1)>i il ™
5=
I'g+1) |AIT(g+1) p=y IMNo;j+g+1)

n B+
W1 T4 + |1/ (q + 1) 3 1&g
+
I'(

~ 0.214034.
AT (g +1) Bi+q+1)

j-1

Choosing y = 0.02 < (1 - A3)A7! & 0.020025 and M = 0.016, we can show that

If (£:x(0)| < sin (x + %) ‘

£2 e—zzz £2 e—2t2
< x| +
%4 12

<0.014637|x| + 0.015328

2
t2€_2t

<ylxl+M,

which satisfies (Hg). By Theorem 3.6, problem (4.5) has at least one solution on [0, 27].
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