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Abstract
In this paper, we consider uniqueness problems on entire functions that share a small
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1 Introduction andmain results
Throughout this paper, a meromorphic function alwaysmeansmeromorphic in the whole
complex plane, and c always means a nonzero constant. We use the basic notations of the
Nevanlinna theory of meromorphic functions such as T(r, f ), m(r, f ), N(r, f ) and N(r, f )
as explained in [–]. In addition, we say that a meromorphic function a(z) is a small
function of f (z) if T(r,a) = S(r, f ), where S(r, f ) = o(T(r, f )), as r → ∞ outside of a possible
exceptional set of finite logarithmic measure.
For a meromorphic function f (z), we define its shift by f (z + c), and define its difference

operators by

�cf (z) = f (z + c) – f (z) and �n
c f (z) = �n–

c
(
�cf (z)

)
, n ∈ N,n≥ .

In particular, �n
c f (z) = �nf (z) for the case c = .

Let f (z) and g(z) be two meromorphic functions, and let a(z) be a small function of f (z)
and g(z). We say that f (z) and g(z) share a(z) IM, provided that f (z) – a(z) and g(z) – a(z)
have the same zeros ignoring multiplicities. Similarly, we say that f (z) and g(z) share a(z)
CM, provided that f (z) – a(z) and g(z) – a(z) have the same zeros counting multiplicities.
The problem on meromorphic functions sharing small functions with their derivatives

is an important topic of uniqueness of meromorphic functions.
In , Jank, Mues and Volkmann [] proved the following result.

Theorem A ([]) Let f be a nonconstant meromorphic function, and let a �≡  be a finite
constant. If f , f ′, and f ′′ share the value a CM, then f ≡ f ′.
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Many authors have been considering about some related cases, and got some interesting
results (see, e.g., [, ]). In , Li and Yang [] obtained the following result for a special
case that f (z) is an entire function, and f , f ′, and f (n) share one value.

Theorem B ([]) Let f (z) be an entire function, let a be a finite nonzero constant, and let
n (≥ ) be a positive integer. If f , f ′, and f (n) share the value a CM, then f assumes the form

f (z) = becz –
a( – c)

c
,

where b, c are nonzero constants and cn– = .

Recently, a number of papers (including [–]) have focused on difference analogues of
Nevanlinna theory. In addition, many papers have been devoted to the investigation of the
uniqueness problems related tomeromorphic functions and their shifts or their difference
operators and got a lot of results (see, e.g., [–]).
Our aim in this paper is to investigate uniqueness problems on entire functions that

share a small periodic entire function with their two difference operators and provide a
difference analogue of Theorem B.We now state the following theorem, which is themain
result of this paper.

Theorem . Let f (z) be a nonconstant entire function of finite order, and let a(z)(�≡ ) ∈
S(f ) be a periodic entire function with period c. If f (z),�cf , and�n

c f (n≥ ) share a(z) CM,
then �n

c f ≡ �cf .

Examples
() Let f (z) = e( π

 i+ln
√
)z +  + i, then �f ≡ �f = ie( π

 i+ln
√
)z , and hence f (z), �f , and

�f share  CM, but f (z) �≡ �f . This example shows that the conclusion �n
c f ≡ �cf

in Theorem . cannot be extended to f (z) ≡ �cf in general.
() Let f (z) = ez ln, then �f ≡ f (z), �nf ≡ nf (z), and hence f (z), �f and �nf share 

CM, but �nf ≡ n–�f �≡ �f (n≥ ). This example shows that the restriction
a(z) �≡  in Theorem . is necessary.

Remark In the above example (), f (z) = e( π
 i+ln

√
)z +  + i can be changed to f (z) =

g(z)e( π
 i+ln

√
)z +  + i, where g(z) is a periodic entire function with period , and the result

still holds. This shows that the order of the function f (z) in Theorem . is not always one.

As a continuation of Theorem . and example () above, we prove the following result.

Theorem . Let f (z) be a nonconstant entire function of finite order. If f (z), �cf , and �n
c f

(n≥ ) share  CM, then �n
c f ≡ C�cf , where C is a nonzero constant.

2 Proof of Theorem 1.1
Firstly, we present some lemmas which will be needed in the proof of Theorem ..

Lemma . ([]) Let c ∈ C, n ∈ N, and let f (z) be a meromorphic function of finite order.
Then for any small periodic function a(z) with period c, with respect to f (z),

http://www.advancesindifferenceequations.com/content/2014/1/311
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m
(
r,

�n
c f

f – a

)
= S(r, f ),

where the exceptional set associated with S(r, f ) is of at most finite logarithmic measure.

Lemma. ([]) Suppose that fj(z) (j = , , . . . ,n) and gj(z) (j = , , . . . ,n) (n≥ ) are entire
functions satisfying

(i)
∑n

j= fj(z)e
gj(z) ≡ ;

(ii) the orders of fj are less than that of egh(z)–gk (z) for ≤ j ≤ n, ≤ h < k ≤ n,
then fj(z) ≡  (j = , , . . . ,n).

Proof of Theorem . Suppose on the contrary to the assertion that �n
c f �≡ �cf . Note that

f (z) is a nonconstant entire function of finite order. By Lemma ., for n≥ , we have

T
(
r,�n

c f
)
=m

(
r,�n

c f
) ≤m

(
r,

�n
c f

f (z)

)
+m

(
r, f (z)

) ≤ T
(
r, f (z)

)
+ S(r, f ).

Similarly,

T(r,�cf ) ≤ T
(
r, f (z)

)
+ S(r, f ).

Since f (z), �cf , and �n
c f share a(z) CM, we have

�n
c f – a(z)

f (z) – a(z)
= eα(z),

�cf – a(z)
f (z) – a(z)

= eβ(z), (.)

where α(z) and β(z) are polynomials.
Set

ϕ(z) =
�n

c f –�cf
f (z) – a(z)

. (.)

From (.) and (.), we get ϕ(z) = eα(z) – eβ(z). Then by supposition and (.), we see that
ϕ(z) �≡ . By Lemma ., we deduce that

T(r,ϕ) =m(r,ϕ)

≤m
(
r,

�n
c f

f (z) – a(z)

)
+m

(
r,

�cf
f (z) – a(z)

)
+ S(r, f ) = S(r, f ). (.)

Note that eα
ϕ
– eβ

ϕ
= . By using the second main theorem and (.), we have

T
(
r,
eα

ϕ

)
≤N

(
r,
eα

ϕ

)
+N

(
r,

ϕ

eα

)
+N

(
r,


eα/ϕ – 

)
+ S

(
r,
eα

ϕ

)

=N
(
r,
eα

ϕ

)
+N

(
r,

ϕ

eα

)
+N

(
r,

ϕ

eβ

)
+ S

(
r,
eα

ϕ

)

= S(r, f ) + S
(
r,
eα

ϕ

)
. (.)

Thus, by (.) and (.), we have T(r, eα) = S(r, f ). Similarly, T(r, eβ ) = S(r, f ).
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Now we divide this proof into the following two steps.
Step . Suppose that β(z) is not a constant. Now we rewrite the second equation in (.)

as

�cf = a(z)f (z) + b(z), (.)

and

f (z + c) = a(z)f (z) + b(z), (.)

where a(z) = eβ(z) + , a(z) = eβ(z), b(z) = b(z) = a(z)( – eβ(z)).
We deduce that

�
c f =�cf (z + c) –�cf (z)

= a(z + c)f (z + c) + b(z + c) – a(z)f (z) – b(z)

= eβ(z+c)f (z + c) + a(z + c)
(
 – eβ(z+c)) – eβ(z)f (z) – a(z)

(
 – eβ(z))

= eβ(z+c)[(eβ(z) + 
)
f (z) + a(z)

(
 – eβ(z))] + a(z)

(
 – eβ(z+c))

– eβ(z)f (z) – a(z)
(
 – eβ(z))

=
(
eβ(z+c)+β(z) + eβ(z+c) – eβ(z))f (z) + a(z)

(
eβ(z) – eβ(z+c)+β(z)),

�
c f =�

c f (z + c) –�
c f (z)

=
(
eβ(z+c)+β(z+c) + eβ(z+c) – eβ(z+c))f (z + c) + a(z + c)

(
eβ(z+c) – eβ(z+c)+β(z+c))

–
(
eβ(z+c)+β(z) + eβ(z+c) – eβ(z))f (z) – a(z)

(
eβ(z) – eβ(z+c)+β(z))

=
(
eβ(z+c)+β(z+c) + eβ(z+c) – eβ(z+c))[(eβ(z) + 

)
f (z) + a(z)

(
 – eβ(z))]

+ a(z)
(
eβ(z+c) – eβ(z+c)+β(z+c)) – (

eβ(z+c)+β(z) + eβ(z+c) – eβ(z))f (z)
– a(z)

(
eβ(z) – eβ(z+c)+β(z))

=
(
eβ(z+c)+β(z+c)+β(z) + eβ(z+c)+β(z+c) + eβ(z+c)+β(z) – eβ(z+c)+β(z)

+ eβ(z+c) – eβ(z+c) + eβ(z))f (z) + a(z)
(
–eβ(z+c)+β(z+c)+β(z)

– eβ(z+c)+β(z) + eβ(z+c)+β(z) + eβ(z+c) – eβ(z)).
That is,

�
c f = a(z)f (z) + b(z), �

c f = a(z)f (z) + b(z), (.)

where

a(z) = eβ(z+c)+β(z) + eβ(z+c) – eβ(z),

a(z) = eβ(z+c)+β(z+c)+β(z) + eβ(z+c)+β(z+c) + eβ(z+c)+β(z)

– eβ(z+c)+β(z) + eβ(z+c) – eβ(z+c) + eβ(z),

b(z) = a(z)
(
eβ(z) – eβ(z+c)+β(z)),

b(z) = a(z)
(
–eβ(z+c)+β(z+c)+β(z) – eβ(z+c)+β(z) + eβ(z+c)+β(z) + eβ(z+c) – eβ(z)).

http://www.advancesindifferenceequations.com/content/2014/1/311
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Let� = {, , . . . ,n–} be a finite set of n elements, and denote P(�) = {∅, {}, {}, . . . , {n–
}, {, }, {, }, . . . ,�}, where∅ is an empty set. Then by an argument similar to the above,
we deduce that

�n
c f = an(z)f (z) + bn(z), (.)

with

an(z) =
∑

A∈P(�)\{∅}
λA

∏
j∈A

eβ(z+jc)

= λn,

n–∏
j=

eβ(z+jc) +
n–∑
t=

λn–,t

n–∏
j=,j �=t

eβ(z+jc) + · · · +
n–∑
t=

λ,teβ(z+tc), (.)

bn(z) = a(z)Qn
(
eβ(z)),

whereA is any element of P(�), λA, and λs,t , for s = ,  . . . ,n, t = , , . . . ,Cs
n– (Cs

n =
n!

s!(n–s)! )
are nonzero constants. In particular, λn, = , and

n–∑
t=

λ,teβ(z+tc) =�n–
c eβ(z). (.)

Moreover, Qn(eβ(z)) is a polynomial of eβ(z) and its shifts eβ(z+c), eβ(z+c), . . . , eβ(z+(n–)c).
Now set β(z) = lmzm + lm–zm– + · · · + l, where lm, . . . , l are constants satisfying lm �= 

andm ≥ . Obviously, for j = , , . . . ,n – , we have

β(z + jc) = lmzm + (lm– +mlmjc)zm– + · · · +
m∑
k=

lkjkck .

By the above equation and (.), we obtain

an(z) = enlmzm+Pn,(z) + λn–,e(n–)lmzm+Pn–,(z) + · · ·
+ λn–,n–e(n–)lmzm+Pn–,n–(z) + · · · + λ,elmzm+P,(z) + · · ·
+ λ,n–elmzm+P,n–(z). (.)

Here Ps,t(z), for s = , , . . . ,n, t = , , . . . ,Cs
n – , are polynomials with degree less thanm.

Rewrite the first equation in (.) as

�n
c f – eα(z)f (z) = a(z)

(
 – eα(z)).

This together with (.) gives

(
an(z) – eα(z))f (z) = a(z)

(
 – eα(z)) – bn(z). (.)

http://www.advancesindifferenceequations.com/content/2014/1/311


Chen and Li Advances in Difference Equations 2014, 2014:311 Page 6 of 11
http://www.advancesindifferenceequations.com/content/2014/1/311

Notice that a(z) ∈ S(f ), T(r, eα) = S(r, f ), and T(r, eβ ) = S(r, f ). If an(z) – eα(z) �≡ , (.)
yields

T(r, f ) + S(r, f ) = T
(
r,

(
an(z) – eα(z))f (z))

= T
(
r,a(z)

(
 – eα(z)) – bn(z)

)
= S(r, f ).

That is impossible.
Hence an(z) – eα(z) ≡ . This together with (.) gives

ePn,(z)enlmzm +
(
λn–,ePn–,(z) + · · · + λn–,n–ePn–,n–(z)

)
· e(n–)lmzm + · · · + (

λ,eP,(z) + · · · + λ,n–eP,n–(z)
)
elmzm

– eα(z) ≡ . (.)

Now we distinguish three cases as follows:
Case (i). Suppose that degα(z) >m. Then, for any ≤ j ≤ n, we see that

ρ
(
eα(z)–jlmzm)

= ρ
(
eα(z)) = degα(z) >m,

and for ≤ h < k ≤ n, we have

ρ
(
ehlmzm–klmzm)

=m. (.)

Since Ps,t(z), for s = ,  . . . ,n, t = , , . . . ,Cs
n –, are polynomials with degree less thanm,

it is easy to see that, for s = , , . . . ,n – ,

ρ

(Cs
n–∑
t=

λs,tePs,t (z)
)

≤m – , ρ
(
ePn,(z)

) ≤m – . (.)

By Lemma ., we have ePn,(z) ≡ , which is impossible.
Case (ii). Suppose that degα(z) <m. Then, by a similar argument to above, we can also

get a contradiction.
Case (iii). Now suppose that degα(z) = m. Set α(z) = dzm + P∗(z), with d �=  and

degP∗(z) <m. Rewrite (.) as

ePn,(z)enlmzm +
(
λn–,ePn–,(z) + · · · + λn–,n–ePn–,n–(z)

)
· e(n–)lmzm + · · · + (

λ,eP,(z) + · · · + λ,n–eP,n–(z)
)
elmzm

– eP
∗(z)edz

m ≡ . (.)

Subcase (i). If d �= jlm, for any j = , , . . . ,n, then we have

ρ
(
edz

m–jlmzm)
= ρ

(
e(d–jlm)zm)

=m, ρ
(
eP

∗(z)) ≤m – .

By this together with (.), (.), (.), and Lemma ., we can get a contradiction.

http://www.advancesindifferenceequations.com/content/2014/1/311
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Subcase (ii). If d = jlm, for some j = , , . . . ,n – . Without loss of generality, we assume
that j = n – . Then we rewrite (.) as

ePn,(z)enlmzm +
(
λn–,ePn–,(z) + · · · + λn–,n–ePn–,n–(z) – eP

∗(z))
· e(n–)lmzm + · · · + (

λ,eP,(z) + · · · + λ,n–eP,n–(z)
)
elmzm ≡ . (.)

By a similar method as the above, we can also get ePn,(z) ≡ . That is impossible.
Subcase (iii). If d = nlm, then we rewrite (.) as

(
ePn,(z) – eP

∗(z))enlmzm +
(
λn–,ePn–,(z) + · · · + λn–,n–ePn–,n–(z)

)
· e(n–)lmzm + · · · + (

λ,eP,(z) + · · · + λ,n–eP,n–(z)
)
elmzm ≡ . (.)

By a similar argument to the above and Lemma ., we can get

λ,eP,(z) + · · · + λ,n–eP,n–(z) ≡ ,

which implies

(
λ,eP,(z) + · · · + λ,n–eP,n–(z)

)
elmzm ≡ .

By (.) and (.), we get

�n–
c eβ(z) =

n–∑
j=

(
n – 
j

)
(–)n––jeβ(z+jc) ≡ . (.)

Suppose thatm > . Note that for j = , , . . . ,n – , we have

β(z + jc) = lmzm + (lm– +mlmjc)zm– +Qj(z),

where Qj(z) are polynomials with degree less thanm – .
Rewrite (.) as

eQn–(z)elmzm+(lm–+mlm(n–)c)zm–
– (n – )eQn–(z)

· elmzm+(lm–+mlm(n–)c)zm– + · · · + (–)n–eQ(z)elmzm+lm–zm– ≡ . (.)

For any ≤ h < k ≤ n – , we have

ρ
(
elmzm+(lm–+mlmhc)zm––(lmzm+(lm–+mlmkc)zm–)) = ρ

(
emlm(h–k)czm–)

=m – ,

and for j = , , . . . ,n – , we see that

ρ
(
eQj(z)

) ≤m – .

By this, together with (.) and Lemma ., we obtain eQn–(z) ≡ , which is impossible.

http://www.advancesindifferenceequations.com/content/2014/1/311
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Suppose thatm = , then β(z) = lz + l, with l �= . It is easy to see that

�ceβ(z) = eβ(z+c) – eβ(z) = elz+lc+l – elz+l =
(
elc – 

)
eβ(z),

�
c e

β(z) =
(
elc – 

)
�ceβ(z) =

(
elc – 

)eβ(z).

By induction,

�n–
c eβ(z) =

(
elc – 

)n–eβ(z).

This together with (.) gives

(
elc – 

)n– ≡ ,

which yields elc ≡ . Therefore, for any j ∈ Z,

eβ(z+jc) = elz+jlc+l = elz+l
(
elc

)j = eβ(z). (.)

By the second equation in (.) and (.), we have

�cf = eβ(z)f (z) +
(
 – eβ(z))a(z),

�
c f = eβ(z+c)f (z + c) +

(
 – eβ(z+c))a(z + c) –

(
eβ(z)f (z) +

(
 – eβ(z))a(z))

= eβ(z)f (z + c) +
(
 – eβ(z))a(z) – eβ(z)f (z) –

(
 – eβ(z))a(z)

= eβ(z)�cf ,

�
c f = eβ(z+c)�cf (z + c) – eβ(z)�cf = eβ(z)�

c f = eβ(z)�cf .

By induction,

�n
c f = e(n–)β(z)�cf . (.)

Rewriting (.), and combining it with the second equation in (.), we obtain

�n
c f – a(z) = e(n–)β(z)�cf – a(z)

= e(n–)β(z)
(
eβ(z)(f (z) – a(z)

)
+ a(z)

)
– a(z)

= enβ(z)(f (z) – a(z)
)
+ a(z)

(
e(n–)β(z) – 

)
. (.)

Substituting the first equation in (.) into (.), we get

(
eα(z) – enβ(z))(f (z) – a(z)

)
= a(z)

(
e(n–)β(z) – 

)
. (.)

If eα(z) – enβ(z) �≡ , (.) yields

T(r, f ) + S(r, f ) = T
(
r,

(
eα(z) – enβ(z))(f (z) – a(z)

))
= T

(
r,a(z)

(
e(n–)β(z) – 

))
= S(r, f ).

We get a contradiction again.
Hence, eα(z) – enβ(z) ≡ . By (.), we see that a(z)(e(n–)β(z) – ) ≡ , which implies

e(n–)β(z) ≡ . That is impossible.

http://www.advancesindifferenceequations.com/content/2014/1/311
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Step . Suppose that β(z) is a constant. Now we rewrite the second equation in (.) as

�cf = eβ f (z) +
(
 – eβ

)
a(z).

Since a(z) is a periodic function with period c, we have

�
c f = eβ�cf .

By induction,

�n
c f = e(n–)β�cf . (.)

Then

�n
c f – a(z) – e(n–)β

(
�cf – a(z)

)
= a(z)

(
e(n–)β – 

)
. (.)

By Lemma . and the first equation in (.), we deduce that

a(z)
f (z) – a(z)

=
�n

c f
f (z) – a(z)

– eα(z)

and

m
(
r,


f (z) – a(z)

)
=m

(
r,


a(z)

(
�n

c f
f (z) – a(z)

– eα(z)
))

≤m
(
r,

�n
c f

f (z) – a(z)

)
+m

(
r, eα(z)) + S(r, f )

= S(r, f ). (.)

From (.), we have

N
(
r,


f (z) – a(z)

)
= T

(
r,


f (z) – a(z)

)
–m

(
r,


f (z) – a(z)

)

= T
(
r, f (z)

)
+ S(r, f ). (.)

According to our assumption that �n
c f �≡ �cf and (.), it is easy to see that e(n–)β �≡ .

Now suppose that z is a zero of f (z) – a(z) with multiplicity μ. Since f (z), �cf , and �n
c f

share a(z) CM, z is a zero of �cf – a(z) and �n
c f – a(z) with multiplicity μ. Therefore, z

is a zero of �n
c f – a(z) – e(n–)β (�cf – a(z)) with multiplicity at least μ. Then by (.) and

(.), we see that

N
(
r,


a(z)(e(n–)β – )

)
=N

(
r,


�n

c f – a(z) – e(n–)β (�cf – a(z))

)

≥N
(
r,


f (z) – a(z)

)

= T
(
r, f (z)

)
+ S(r, f ),

which implies T(r, f (z)) ≤ S(r, f ). That is impossible.
Hence, we must have �n

c f ≡ �cf , and Theorem . is proved. �

http://www.advancesindifferenceequations.com/content/2014/1/311
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3 Proof of Theorem 1.2
Note that f (z) is a nonconstant entire function of finite order. Since f (z), �cf , and �n

c f
(n≥ ) share  CM, we have

�n
c f

f (z)
= eα(z),

�cf
f (z)

= eβ(z), (.)

where α(z) and β(z) are polynomials.
If β(z) is a constant, then we can easily get from (.)

�n
c f = e(n–)β�cf := C�cf .

This completes our proof.
If β(z) is not a constant, by assuming that �n

c f
�cf is not a constant, with a similar arguing

as in the proof of Theorem ., we can deduce that the case degβ(z) >  is impossible.
For the case degβ(z) = , from (.), we can obtain that

f (z + c) =
(
eβ(z) + 

)
f (z). (.)

Let z be a zero of eβ(z) + . Now we can find that (.) still holds here. Then from (.),
we have eβ(z+kc) +  = , for all k ∈ Z. Therefore, from (.), we see that zk = z +kc is a zero
of f (z + c), then zk+ = z + (k + )c is a zero of f (z), for all k ∈ Z. Suppose that z = z + c is
a zero of f (z) of order k, then we get from (.) and (.)

f (z) =
(
eβ(z–c) + 

)
f (z – c) =

(
eβ(z) + 

)f (z – c) = · · ·
=

(
eβ(z) + 

)k+f (z – (k + )c
)
.

This indicates that z is a zero of f (z) of order at least k + , which is impossible. Theo-
rem . is thus proved.
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