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1 Introduction

In this paper, we study third-order nonlinear neutral dynamic equations of the form

(n (@) (0 (x(2) + p(B)x(g(0))) ) ) +£ (t,2(h@®))) = 0 (1)

on a time scale T satisfying inf T = ¢, and sup T = oco.
Throughout this paper we shall assume that:
(C1) 1,19 € Cry(T, (0, 00)) such that

* 1 > 1
/ —— At =00, / —— At =00.
w1t w 12t

(C2) p € C4(T,R) and there exists a constant py with |pg| < 1 such that
lim p(t) = po.
t—00

(C3) g,h € Cy(T, T), g(t) < ¢, limy_, o0 g(£) = lim;_. o h(£) = 00, and

R _
t—00 Rk(t)

m. €(0,1], A=1,2,

where

t 1 t s 1
Rl(t):1+/t0 rz—(s)AS’ Rg(t):1+/t0 /to —rl(u)rz(s)AuAs'

If po € (—1,0], there exists a sequence {cg}x>0 such that limy_, », cx = 00 and g(cxs1) = ck-
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(C4) f € C(T x R,R), f(¢,x) is nondecreasing in x and xf(£,x) > 0 for t € T and x # 0.

Hilger introduced the theory of time scales in his Ph.D. thesis [1] in 1988; see also [2].
More details of time scale calculus can be found in [3—6] and omitted here. In the last few
years, there has been some research achievement as regards the existence of nonoscilla-
tory solutions to neutral dynamic equations on time scales; see the papers [7—11] and the

references therein.

Definition 1.1 By a solution of (1) we mean a continuous function x(¢) which is defined
on T and satisfies (1) for ¢ > ;. A solution x(¢) of (1) is said to be eventually positive (or
eventually negative) if there exists ¢ € T such that x(t) > 0 (or x(¢) < 0) for all £ > ¢ in T.
A solution x of (1) is said to be nonoscillatory if it is either eventually positive or eventually
negative; otherwise, it is oscillatory.

In 1990s, some significative results for existence of nonoscillatory solutions to neutral
functional differential equations were given in [7, 9]. In 2007, Zhu and Wang [11] dis-
cussed the existence of nonoscillatory solutions to first-order nonlinear neutral dynamic

equations

[x(2) + p(6)x(g(£)]* + £ (£, x(h(2))) = O

on a time scale T. In 2013, Gao and Wang [10] considered the second-order nonlinear

neutral dynamic equations

[r(6)(x(®) + p(£)x(g(2))) 1" +£ (£, x(h(@®))) = 0 2)

under the condition ftzo %As < 00, and established the existence of nonoscillatory solu-
tions to (2) on a time scale. In 2014, Deng and Wang [8] studied the same problem of (2)
under the condition ftzo %As = 00.

In this paper, we shall establish the existence of nonoscillatory solutions to (1) by employ-
ing Kranoselskii’s fixed point theorem, and we give three examples to show the versatility
of the results.

For simplicity, throughout this paper, we denote (a,b) N T = (a, b)T, where a,b € R, and
la,b]t, [a,D)t, (a,b] r are denoted similarly.

2 Preliminary results
Let C([To,00)7,R) denote all continuous functions mapping [Ty,00)7 into R, and
Ro(t) =1, t € [Ty, 00) . For A =0,1,2, we define

BC; [Ty, 00) 1 = {x:x € C([To,00)1,R)and  sup

te [To,00) T

If%(t) <°°}' ®

Endowing BC, [To,00) » with the norm [}, = sup,c (7, o0) | 705 1» (BCi. [T0,00) 7,11 - 112)

T ' RE(t
isaBanach space. Let X € BC; [Ty, 00) 1, we say that X is uniformly Cauchy if for any given

€ > 0, there exists a T; € [Ty, 00) 7 such that, for any x € X,

x(t) _ x(t2)
Ri(t) Ri(t)

forall ty,t, € [T1,00) .
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X is said to be equi-continuous on [a, b]y if, for any given € > 0, there exists a § > 0 such
that, for any x € X and 4, t, € [a, b]T with |t — | < 6,

xa) o) |
R(t1) Ri(t)

We have the following lemma, which is an analog of the Arzela-Ascoli theorem on time
scales.

Lemma 2.1 ([11, Lemma 4]) Suppose that X C BC, [Ty, 00) is bounded and uniformly
Cauchy. Further, suppose that X is equi-continuous on [Ty, T1]t for any Ty € [Ty, 00) 1.
Then X is relatively compact.

In this section, our approach to the existence of nonoscillatory solutions to (1) is based
largely on the application of Kranoselskii’s fixed point theorem (see [7]). For the sake of
convenience, we state here this theorem as follows.

Lemma 2.2 (Kranoselskii’s fixed point theorem) Suppose that X is a Banach space and $2
is a bounded, convex, and closed subset of X. Suppose further that there exist two operators
U,S: 2 — X such that
(i) Ux+Sye 2 forallx,y e §2;
(i) U is a contraction mapping;
(iii) S is completely continuous.
Then U + S has a fixed point in 2.

If x(¢) is an eventually negative solution of (1), then y(¢) = —x(¢) will satisfy

(O (r(&)(1(8) + pE)y(e®)) ) ) = £ (£, =y (h(D))) = 0.

We may note that f(¢,u) := —f(t, —u) is nondecreasing in u and uf(t,u) > 0 for t € T and
u # 0. Therefore, we will restrict our attention to eventually positive solutions of (1) in the
following.

In the sequel, we use the notation

2(8) = x(t) + p(t)x(g(0)) (4)
and have the following lemma.

Lemma 2.3 ([8, Lemma 2.3]) Suppose that x(t) is an eventually positive solution of (1) and

lim;_, o 1;(2) =aforr=1,2andi=0,1. Then we have:

(i) If a is finite, then

x(2) a
im —— = —,
t=oo RI(t) 1+ pon;,

x(t)
R (0

(ii) Ifa is infinite, then is unbounded, or
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Let S* denote the set of all eventually positive solutions of (1) and

A, B,y) = {x € 5" lim x(t) =, lim ;;l((tt)) =B lim 132(2) aEd }

Now, we give the first theorem for a classification scheme of eventually positive solutions
to (1).

Theorem 2.4 Ifx(t) is an eventually positive solution of (1), then x(t) belongs to A(0, 0, 0),
A(b,0,0), A(oo,b,0), A(oo, 00, b) for some positive b, or A(oco, 00,0).

Proof Suppose that x(t) is an eventually positive solution of (1). From (C2) and (C3), there
exist t € [£,00) and |po| < p1 < 1 such that x(¢) > 0, x(g(¢)) > 0, x(h(¢)) > 0, and |p(¢)| < p1
for t € [t1,00) 7. By (1) and (C4), it follows that, for ¢ € [t;,00) 1,

(n@ (022 ©)*)* = = (& 2(h()) < 0.
Hence, r1(2)(r2(t)z* (£))? is strictly decreasing on [t;,00) 1. We claim that
n(6)(n@)z20)" >0, te l[t,00)r. (5)

Assume not; then there exists ¢, € [t;,00) 1 such that 71 (£)(r(£)z2 (£))? < 0 for ¢ € [£3,00) 1.
So there exist a constant ¢ < 0 and #3 € [£,,00) 1 such that r,(£)(r(£)z2(£))* < c for t €

[£3,00) 1, which means that

(n®z4(®)* < ﬁ t € [ts,00) . 6)

Integrating (6) from #3 to ¢ € [0 (£3), 00) 1, we obtain

ra(0)2A (1) < ra(t3)22 (85) + ¢ / s

t3 7’1(5)

Letting ¢ — oo, by (C1) we have ry(¢)z2(f) — —oc. Then there exists 4 € [t3,00) 1 such
that ry(£)z2(t) < ry(ta)z?(t4) < 0 for t € [t4,00) 1, which implies that

A0 < ry(t)e l) - ——. @)

ra(t)

Integrating (7) from ¢, to t € [0 (t4), 00) 1, we obtain

28) = 2(t) < ()27 (82) / rj‘—(j)

Letting ¢ — oo, by (C1) we have z(¢) — —oc. From (4), it follows that py € (-1,0], then
there exists £5 € [t4,00) 1 such that z(t) < 0 or

x(t) < -p(Ox(g(0)) < px(g(®), t € [t5,00)7.
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By (C3), we can choose some positive integer ky such that ¢; € [£5,00) 1 for all k > k.

Then for any k > ko + 1, we have

x(c) < pra(gler)) = prx(era) < pix(gler)) = pralea) <+

< 7x(glery 1)) = Py Ox(cr)-

The inequality above implies that lim_, o #(ck) = 0. It follows from (4) that lim_, o z(ck) =
0 and then contradicts lim;_, o, z(¢) = —00. So (5) holds, and

lim ry(6)(ra(0)2*(0)* = L, ®)

where 0 < L, < +00.

From (5), we have (r5(£)z2(£))2 > 0 for ¢ € [t;,00) 1, which means that r,(£)z2(¢) is strictly
increasing on [,00) . Hence, r,(£)z2(¢) is either eventually positive or eventually nega-
tive. When r,(£)z2(¢) is eventually negative, we have lim,_, o, r5(£)z*(t) < 0. Assume that

there exists a constant d < 0 such that

lim r,(£)z2(t) = d,

t—00

which means that

d
Z4(t) < ”2_(75)’ te [t,00)7. 9)

Integrating (9) from # to ¢ € [0 (¢1), 00) 1, we obtain

As

z(t) < z(t1) +d/t —_

t ’"2(5)‘

Letting ¢t — 00, by (C1) we have z(t) — —oco. Similarly, it will cause the contradiction
as before. Hence, lim;_, o, r2(£)z2(t) = 0. When r,(£)z*(¢) is eventually positive, we have

1im;_, o0 72(£)z4(¢) = b for some positive b or lim;_, o, 15 (£)z2(t) = +00. Therefore,
lim I”z(t)ZA (t) = Ll, (10)
t— 00

where 0 < L; < +o0.

When ry(t)z2 () is eventually negative, which means that z2(¢) is eventually negative,
then there exists ¢5 € [¢,00) 1 such that z2(¢) < 0 for ¢ € [t5,00) 1. It follows that z(¢) is
strictly decreasing on [£6,00) 1. Hence, z(t) is either eventually positive or eventually neg-
ative. If z(¢) is eventually negative, we have lim;_, », z(£) = —00 or lim;_, » 2z(£) < 0. Similarly,
it will cause the contradiction as before. Therefore, z(¢) is eventually positive, which means
that lim;_, o, z(¢) = b for some positive b or lim;_, o, z(t) = 0.

When ry(£)z4(¢) is eventually positive, it implies that z4(¢) is eventually positive. If z(t)
is eventually negative, we have lim;_, o z(t) < 0. Assume that lim;_, » 2z(¢) < 0. It will cause
a similar contradiction to the one before. So lim;_, », z(£) = 0. If z(¢) is eventually positive,

we have lim,_, o, z(£) = b for some positive b or lim;_, , z(¢) = +00.
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Therefore,
lim z(£) = Lo,
t—00

where 0 < Ly < +00.
It follows from L'Hépital’s rule (see [5, Theorem 1.120]) and (8), (10) that

tlggo rZ(t)ZA (t) - tlglolo 1‘:1(2) ~h
and
Jim 1 (®) (ra(8)22(8))” = Jim %2) =L

When Ly = 0 or Ly = b for some positive b, we have L; = L, = 0. When Ly = +00, it
implies that z4(¢) is eventually positive, which means that r,(£)z*(¢) is eventually positive.
It follows that L; = b for some positive b or L; = +00. We have L, = 0 if L; = b for some
positive b, and L, = 0 or Ly = b for some positive b if L; = +00. Then by Lemma 2.3, we see
that x(¢) must belong to A(0,0,0), A(b,0,0), A(co, b,0), A(c0, 00, b) for some positive b, or
A(00,00,0). The proof is complete. O

3 Main results
In this section, by employing Kranoselskii’s fixed point theorem, we establish the existence
criteria for each type of eventually positive solutions to (1).

Theorem 3.1 Equation (1) has an eventually positive solution in A(oco, 00, b) for some pos-
itive b if and only if there exists some constant K > 0 such that

/ " F (6 KRy (D)) At < . (1)

]

Proof Suppose that x(¢) is an eventually positive solution of (1) in A(co, 00, b), i.e.,

: x(£) . «x(2)

Jim x(t) =00, lim RS MmMro” b. (12)
Assume that lim,_, o, z(£) < 00 (or lim;_, & % < 00). By Lemma 2.3 we have lim;_, o x(£) <
oo (or lim;_, oo % < 00), which contradicts (12). Then we have

: z(t)

1 t) = oo, =00,

fima0=oo  Jim oS
z(t
Jim (0(2(04(0)” = Jim 20~ (s pone)

and there exists 77 € [ty,00) 1 such that x(f) > 0, x(g(¢)) > 0, x(h(t)) > bRy (h(t)) for t €
[T1,00) p. Integrating (1) from T to s € [0 (T1),00) 1, we obtain

r1(8)(ra(8)22())” = ri(T) (ra(T)ZA(T))* = = | f (s, %(h(w))) Aue.
T
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Letting s — 00, we have

/Toof(u,x(h(u)))Au < 00.

1

In view of (C4), it follows that

f(u, gRg (h(u))) <f(ux(h(w)), ue [T1,00)7,

and

/Toof(u, ng(h(u))>Au < /Toof(u,x(h(u)))Au <00,

1 1

which means that (11) holds. The necessary condition is proved.

Conversely, suppose that there exists some constant K > 0 such that (11) holds. There
will be two cases to be considered: 0 < py <1 and -1 < pg < 0.

Case 1: 0 < pg < 1. Take p; such that py < p; < (1 + 4po)/5 < 1, then pg > (5p; —1)/4.

When pg > 0, since lim;_. p(t) = po and (11) hold, we can choose a sufficiently large
Ty € [to,00) 1 such that p(¢) > 0 for ¢t € [T, 00) 1, and

P pyzp<t p<t>’% =ML, e Ty oo, 13)
/ (o KRy (1)) ar < T2 (14)
To

When py = 0, we can choose 0 < p; <1/13 and the above T} such that
’p(t)’ <p le [TO¢OO)T' (15)
Furthermore, from (C3) there exists T; € (T, 00)T such that g(¢) > T, and h(£) > T, for

te [Tlr OO)T‘
Define the Banach space BC, [T, 00) 1 as in (3) with A = 2, and let

@ - {x(t) € BC, [Ty 00)1: 5 Ro(0) < x(0) < 1<R2(t>}. (16)

It is easy to prove that £2; is a bounded, convex, and closed subset of BC; [T, 00) 1. By
(C4), we have, for any x € §2;,

f(tx(h(0)) <f(t, KRy (h(9))), t€ [T1,00)r.

Now we define two operators U; and S;: §21 — BC, [Ty, 00) 1 as follows

(U)(£) = 2 KpimnaRy(t) - %Rz(t), te [To, T1)r,

2 KpimaRo(t) - p(t)x(g(t)), te [Ty,00) 7,

3KR,(2) te [To, Th)
Sx)(t)=1{% ’ ) ’ ’ 17
(512 !%I(Rz(t)+f;1 Sy [ B AuAsAv,  te [T,00) 7. 17)

Page 7 of 25
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Next, we will prove that U; and S; satisfy the conditions in Lemma 2.2.

(i) We prove that Uyx + S1y € §21 for any x,y € £2;. Note that, for any x,y € §2;, %Rz(t) <
x(t) < KR,(t) and %Rz(t) <y(¢) < KRy(¢). For any x,y € §£2 and t € [T}, 00) T, by (13), (14),
and (16) we obtain

(Uh)(£) + (S19)(0)
_3(1+ pump) * f(u,y(h(w))
) —————KRy(t) — p(t)x g(t /;1 /TI/S 7;"1(3 ) AuAsAv
> Wmm — KRy (£) = _f”“ KRy (t) > ERz(t)-

On the other hand, for ¢ € [T}, 00) 1 and p(t) > 0, we have

(L + (S)(0
< XD 10,0 ploRafe(0) + + P2 R
< S0P - KL o) 4 LR ey

7+T)2

KRy(t) < KRy (t).

For t € [T1,00) T, p(£) < 0, and pg = 0, we have 0 < p; <1/13 and (15), and

(Lhx)(2) + (S1)(2)
< w KR(t) - Kp(H)R, (g(2)) + gmz KRy (2)
< W}(Rz(ﬂ + p1KRy(t) + 1 —51772 KRy(t)
- Mmz(t) <? +;3p “KRy(t) < KRy(0).

Similarly, we can prove that (Uix)(f) + (S19)(£) > KR,(t)/2 for any x,y € 21 and ¢ €
[To, T1]r. Then we prove that (U;x)(¢) + (S1y)(t) < KRy(¢) forany x,y € £2; and t € [Ty, T1].
In fact, for ¢t € [Ty, T1]T and p(£) > 0, we have

(ha)(e) + S0
3L+ pim2) p(T1)x(g(Th))
= ————KRy(t) - 7R2(T1) Ry(2)
<SP gy - KL Rty = SEPIR IR ke ) < KRy(0)

For t € [Ty, T1]T, p(t) < 0, and po = 0, we have 0 < p; <1/13 and (15), and

(Uhix)(@®) + (Swy)(t) <

_3+3pim +4p
4

3(1
%KRZ(I:) + KRy (2)

I(Rz (t) < KRz(t)

Therefore, we obtain Ux + S1y € §2; for any x,y € §2;.
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(ii) We prove that U/ is a contraction mapping. In fact, noting that g(t) < ¢ and Ry(¢) > 1
for t € [Ty, 00) 1, for x,y € §£2; we have

’(um(t) i <u1y><r>‘ ) ’pm)

RY(g(T1)) x(g(Th)) - y(g(T1)) ’
R3(2) R3(2)

Ry(ORAT1)  R5(g(Th))
x()  y()

=P R B

te [To,00) T
for t € [Ty, T1]T, and

(thx)(t)  (Lhy)(2)
R() R3(t)

Ri(g(t)) x(g(t)) - y(g(t))
R3()  R3(g(0)

x(t) () ‘
3(2)

= ’p(t)

RXt) R

<p1 Ssup
te [To,00) T

for t € [T1,00) . It follows that
lthx = Uryll2 < prllx - yll2
for any x,y € £2;. Therefore, U/, is a contraction mapping.

(iii) We prove that S; is a completely continuous mapping.
Firstly, for t € [T, 00) T, we have

S92 SKRA0)> 5 Ra(0)

and

KRy(t) =

KRy (t) < KRy(£).

3 1-
(S12)(8) < TKRo(8) + ’gl’“

7—pim
8

That is, S; maps £2; into £2;.
Secondly, we prove the continuity of S;. For x € §2; and ¢ € [T, 00) , letting x,, € §2

and ||x,, — x|, — 0 as n — 00, we have

If (&xa(R(2))) = f (:x(h(2)))| = O (18)

and

(60 (1(0)) (1, 2(1(0) | = 24 (6, Ko (1(0))

as n — o0. For t € [T}, 00) 1, we have

(S1xn)(8)  (S12)(2) ’
R3(2) R3(t)

1[0 (7 1 () — f (it x(B(0)))]
a0 /T /T i n6)r() Audsdv
< 2 1 (o (1 00))) = (0 ()| A

RZ (t) T1

Page 9 of 25
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For t € [Ty, T1]T, we have (S1x,,)(¢) — (S1x)(¢) = 0. Then we obtain

[e¢]

1S1%, — Sixll2 < sup %(t) . [f(u,xn(h(u))) —f(u,x(h(u)))!Au

te [tg,00) T

Similar to Chen [7], by (18) and employing Lebesgue’s dominated convergence theorem
[5, Chapter 5], we conclude that

IS1x, — Sixll2 — O

as n — oo. That is, S; is continuous.

Thirdly, we prove that S;£2; is relatively compact. According to Lemma 2.1, it suffices
to show that ;62 is bounded, uniformly Cauchy and equi-continuous. It is obvious that
S182; is bounded. Since ftzof(t,I(Rz(h(t)))At < 00 and Ry() — oo as t — oo, for any
given € > 0 there exists a sufficiently large T5 € [T7,00)  such that Ry(73) > 3K/e and

(T Tz le f(t, KRy(h(t))) At < €/4. Then, for any x € £2 and t;,t; € [T, 00) 1, we have

Sw)t)  (Six)(t)

R3(t1) R3(t2)

£, x(h(u)
R /T /T/ Ty ArAsaY

© f(u,x(h(u))) ‘
0) fT /T/ ThEn() A

> f (u, x(h(w)))

T J1nJs ri(s)ra(v)

* f w, x(h(w))) 3.( 1 1 )
IS /T /T/ Thn() ArAsAr 4K<R2(t1) " Ralt)

1 o 3K
)ﬁ f(u x(h( )))Au+R2(T2)/ f(u,x(h(u)))Au+ 2Ro(T)

Ty

1 1
Ry(tr)  Ry(ta)

—————— AuAsAv

€
b=
2

Hence, S;£2; is uniformly Cauchy.
Then, for x € 21, if t1,£5 € T with 771 < t1 < t, < Ty + 1, we have

(Swx)(t)  (S1x)(82)
Ri(n)  R3(t)

© fu, x(h(u)))
‘ /T1 /TI/S ri(s)ra(v) Thn() rAsA
© f(u, x(h(u)))
"R /T /T T On) A

* f(u, KRy (h(u))) 3
RZ(TI)/ /T/ O

1 1
Ry(t) Ro(t2)
1 1
Ry(t) Ro(t)|

3
+ =K
4
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Ift1,50 e Twith g < T; <t < Ty + 1, we have

Page 11 of 25

’(Slx)(tl) B (S1%)(t2)
Rs(t1)  Ri(t)
*f (u x(h(u))) 3 1 1
Rz(tz) le /Tl s TROn() SrAsAv ZK Ry(t)  Ry(t)
°°f(u KRy (h(u)) 3 ‘ 1 ‘
RZ(TI) /T /T/ T henw T N R R@)|

Ift1,t, € [Ty, T1]T, we always have

(Swx)(tr)
Ri(t1)

(S1%)(t2)
R3(t2)

3‘1 1
K

T4 Ry(t) Ra(t)|

Therefore, there exists 0 < § < 1 such that

(S1x)(t)
Ri(t1)

 (S1%)(52)
R3(t2)

whenever t, £, € [Ty, T + 1] and [, — 1| < 8. That is, S;62; is equi-continuous.

It follows from Lemma 2.1 that S;§2; is relatively compact, and then §; is completely

continuous.

By Lemma 2.2, there exists x € £2; such that (U; + S1)x = x, which implies that x(¢) is a

solution of (1). In particular, for ¢ € [T}, 00)  we have
31+ K
x(£) = (1 +pin2)
Since

/Tl /Tl /swf:(f )ra(v)

fort € [T1,00)

% f(u, KRy (h(u)))
Am Ry(2) /Tl /n /S ri(s)ra(v) Thenw

f(u,KRz (h(u)))Au =0,

and

UAsSAv

= lim
t—00 ¢

aussavs /T /T / wf(urfsiz(v)

we have
zZ(t)  3(1+pm)K . ox(t) 31+ pim)K
im = and lim =
t—00 Ry(t) 4 t=oo Ry(t) 41+ pona)
It is obvious that
. x(t)
t1—1>Igo x(t) B t—)oo Rl(t)

The sufficiency holds when 0 < pj < 1.

L RO -pOx(E®) + ]T j / fs e (ux u)))AuAsAv.

u)))

AuAsAv

> 0.
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Case 2: -1 < pg < 0. Take p; so that —pg < p1 < (1 -4py)/5 <1, then py < (1 - 5p,)/4. Since
lim;_, o p(£) = po and (11) hold, we can choose a sufficiently large Ty € [£y, 00) 1 such that

5p1 —
4

1
<-p(t)<p1<l, te[Ty,o0)r. (19)

From (C3) there exists T1 € (T, 00)r such that g(¢) > Ty and h(¢) > T for t € [T1,00) 1.
Similarly, we introduce the Banach space BC; [Ty, 00) 1 and its subset §2; as in (16). Define
the operator S; as in (17) and the operator U] on £2; as follows:

—3KpimR(t) - PRI R, (1), t € [To, Th) 1z,

Uix) () =
O 2 pimka) - plostale),  te [Tinoo)s.

Next, we prove that Ujx + S1y € §2; for any x,y € £21. In fact, for any x,y € £2; and £ €
[T}, 00) 1, by (14) and (19) we obtain

(Ux) (@) + (Sw)(@®)

_30- pmz) (4, y(h(n)))

I(Rz(t) P(t)x g(t) ﬁ ﬁ frl(S)FZ(V)
. M
= 4

AuAsAv

K 5py - 1
KRy (1) + X oP1

]72132(t)
6 - p Ny —n K
2 21(112(t) > 2 132(t)

and

3(1—p1m2)
4

(U0 + S)(©) < KR (8) + prsKRo(6) + -

_7tpm
8

_5 2 kR, (1)

KRy (t) < KRy (2).

That is, Ujx + S1y € §2; for any x,y € §2;.

The remainder of the proof is similar to the case 0 < py <1 and we omit it here. By
Lemma 2.2, there exists x € §2; such that (U] + S1)x = x, which implies that x(¢) is a solution
of (1). In particular, for ¢ € [T, 00) + we have

At = 24 pm) SR Ry(8) - p(e)x(g(0)) + /T/T/wf”x ) AudsAv.

ri(s)ra(v)
Letting ¢ — oo, we have

z(6) 31 -pim)K x(t) 30 -pim)K

lim = and lim =
t=00 Ry(t) 4 t=00 Ro(t)  4(1+ pona)
It is obvious that
t
lim x(¢) = ()
t—00 t—>oo Rl(t)

The sufficiency holds when -1 < pg < 0.
The proof is complete. d
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Theorem 3.2 Equation (1) has an eventually positive solution in A(oo, b, 0) for some pos-
itive b if and only if there exists some constant K > 0 such that

/ / S R O)) o Auds<oo. (20)

ri(s)
Proof Suppose that x(¢) is an eventually positive solution of (1) in A(oco, ,0), i.e.,

x(t) . x(2)

im =b, im =0.
=00 Ry(£) t—00 Ry (t)

lim x(¢) =
t—00

Similarly, we have
lim z(f) = o0
t—00

hm ra(8)z2(8) = hm ﬁ =1+ pon)b,

o Ry(t)
li A A . Z(t)
lim ry(6) (r2()2°(6)) ™ = lim 20 =

and there exists T} € [ty,00) 1 such that x(t) > bR (£)/2, x(g(¢)) > bRy(g(¢))/2, x(h(t)) >
bR (h(2))/2for t € [T, 00) 1. Integrating (1) from s € [T7,00) tov € [0 (s),00) 1, we obtain

R (M2 W) = 1) (r()23(5) / F(wx(h
Letting v — 00, we have
rl(s)(rz(s)zA(s))A :/ f(u,x(h(u)))Au,

or

f f(u, x(h(u)))Au

ri(s)

(ra(s)z® (s)) (21)

Integrating (21) from 77 to ¢ € [0(T}1), 00) 1, we have

rz(t)ZA(t)—rg(Tl)zA(Tl):/Tf WAMAS.

Letting ¢t — 00, we have

 f(u, x(h(u)))
/T1 /S‘ "e) —— L AuAs < o0.

In view of (C4), it follows that

f(u, gRl (h(u))> <f(wx(hw)), wue [T1,00)7,

Page 13 of 25


http://www.advancesindifferenceequations.com/content/2014/1/309

Qiu Advances in Difference Equations 2014, 2014:309
http://www.advancesindifferenceequations.com/content/2014/1/309

and

[ g [ [ LD g,
T N I s

ri(s) ri(s)

which means that (20) holds. The necessary condition is proved.

Conversely, suppose that there exists some constant K > 0 such that (20) holds. There
will be two cases to be considered: 0 < py <1 and -1 < pg < 0.

Case 1: 0 < pg < 1. Take p; such that pg < p; < (1 + 4pg)/5 < 1, then py > (5p; —1)/4.

When po > 0, since lim;_, p(t) = po and (20) hold, we can choose a sufficiently large
To € [t,00) 1 such that p(¢) > 0 for ¢t € [Ty, 00) 1, and

5p1 - Ri(g(2)) - 5p1 —

Ri@) — 4
/ /“f(u,KRl(h(u))) WAs < (1 —pﬂh)K'

To 8

S

<P()<P1<1 p(t) n, te [Tp,00)7,

When py = 0, we can choose 0 < p; <1/13 and the above Tj such that

p(®)| <p1, te[To,00)7.

Furthermore, from (C3) there exists 77 € (T, 00)T such that g(¢) > T, and h(t) > T, for
te [Tlr OO)’]T'
Define the Banach space BC; [Ty, 00) 1 as in (3) with A =1, and let

2= {x(t) € BC, [To,00) I§R1(t) = x(t) = KRi(2) } (22)

It is easy to prove that §2; is a bounded, convex, and closed subset of BC; [Ty, 00) . By
(C4), we have, for any x € §2,,

f(tx(h@®)) <f(t, KR (h(2))), te [T1,00)7.
Now we define two operators U and S, : §2, — BC; [Ty, 00) 1 as follows:

(Ussy(e) - | TR0 - ERER@), £ € [To, T,
’ 2KpimRi(t) - p(£)x(g(2)), te [Ty,00) 7,

(S,)(6) = SKRy(2), te [To, T1)r»
2 = x(h
SKRi@) + [ [ [ fi(r’f{s‘)(r;;?)))AuAsAv, te [Ti,00)7.

(23)
Next, we can prove that U, and S, satisfy the conditions in Lemma 2.2. The proof is
similar to the case 0 < pg <1 of Theorem 3.1 and omitted here.
By Lemma 2.2, there exists x € §2, such that (U, + S2)x = x, which implies that x(¢) is a
solution of (1). In particular, for ¢ € [T}, 00) 1 we have

20 = 20 p”“) 2P Ry(e) - p(e)x(g(8)) + / / /oof”x(h(” AudsAv.

ri(s)ra2(v)

Page 14 of 25
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Since

[T ) g [ [ [R5,

for t € [T1,00) 1 and

£, KRy (1))
Hoo&(t)/ / / TR A

. / /°°f<u,1<Rl(h(u)>> ks,

t—00

we have
. zZ(t) 3L+ pim)K .ox(t) 3L+ pim)K
lim = and lim =
t—00 Ry (%) 4 t—oo Ri(t)  4(1+ pom)

which implies that

tim 20 _
=00 Ry(t)

lim x(¢) = oo,
t—>00

The sufficiency holds when 0 < pj < 1.
Case 2: -1 < pg < 0. We introduce the Banach space BC; [Ty, 00) 1 and its subset £2; as
in (22). Define the operator S, as in (23) and the operator U, on £2; as follows:

(Ll/x)(t) a 1<P1771R1(t) Tlx—(ngRl(t) te [To, Th)T,
? 3 KpmRa(6) - pl)e(g(0), te[T,00)p.
The following proof is similar to the case —1 < pp < 0 in Theorem 3.1 and we omit it
here. By Lemma 2.2, there exists x € §2; such that (U} + Sy)x = x, which implies that x(t) is

a solution of (1). In particular, for ¢ € [T, 00) + we have

3(1 - K h
x(t) = ﬂ&(t) - f / f(u #((w)) —————— AuAsAv.
4 )ra(v)
Similarly, we have
z(t) 31 -pim)K . x(t)  3(1-pim)K
lim and lim = >0,
o0 Ry(8) 4 t=>o Ri(£) 41+ pom)
which implies that
. x(2)
Amri=eo 0 =

The sufficiency holds when —1 < pg < 0.
The proof is complete. g
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Theorem 3.3 Equation (1) has an eventually positive solution in A(b, 0, 0) for some positive
b if and only if there exists some constant K > 0 such that

o0 o0 o0 ’I(
/ / J@EK) L Asav < oo (24)
to v s

ri(s)ra(v)

Proof Suppose that x(¢) is an eventually positive solution of (1) in A(b,0,0), i.e.,

x(t) o I x(t)

. =0.
% Ry(0)

A 0=b I e

Then

lim z(¢) = (1 + po)b,

11m ra(t)z2(t) = 11m R(—g) 0,
hm r(t) (rz(t)zA(t)) li % =0,

and there exists T7 € [ty,00) such that x(¢t) > b/2, x(g(t)) > b/2, x(h(t)) > b/2 for t €
[T}, 00) r. Integrating (1) from s € [T7,00) to v € [0 (s), 00) 1, we obtain

nv)(r@z* )" - 1) (ra()z% () / f(w,x(h(w)) Au

Letting v — 0o, we have

ri(s) (ra()2%(s)) " = / h f(wx(h(w))) Au,

or
(ra)e(e)? = S LoD Ax 25)
7‘1(5)
Integrating (25) from v € [T3,00) to w € [o(v), 00) 1, we have
r(W)z2 (W) — r(V)z2 (v) —/ JM AuAs.
v s Vl(S)
Letting w — oo, we have
Apn = f (u, x(h(w)))
()24 ) = / [REEED A,
or
S (w,x(h(u))) x(h(u)))
/ / ri(s)ra(v) a4 (26)

Integrating (26) from T; to ¢ € [0(T1),00) 1, we have

2(t) ~ 2(Ty) = - /T / / fl rl(s)rz fl X)) \ ps v,

Page 16 of 25
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Letting ¢t — oo, we have

/ / / S, x(h(u))) —————— AuAsAv < 0.
i51

In view of (C4), it follows that

f(u,g) <f(wx(h(w)), wue [T1,00)7,

and

fT/ S f(”’b/z)A AsAv <fT f fmf(”x(z((”:)))AuAsAwoo,

which means that (24) holds. The necessary condition is proved.

Conversely, suppose that there exists some constant K > 0 such that (24) holds. There
will be two cases to be considered: 0 < py <1 and -1 < py < 0.

Case 1: 0 < pg < 1. Take p; such that pg < p; < (1 + 4pg)/5 < 1, then py > (5p; —1)/4.

When po > 0, since lim;_, » p(£) = po and (24) hold, we can choose a sufficiently large
Ty € [£o,00) 1 such that p(¢) > 0 for ¢t € [Ty, 00) 1, and

5
p1 <p(t)<1ﬂ1<1 te [To,00),

f u, K) (1-pK
/TO / () A= Ty

When pg = 0, we can choose 0 < p; <1/13 and the above Tj such that

p(®)| <p1, te [To,00)7.
Furthermore, from (C3) there exists 77 € (T, 00)T such that g(¢) > T, and h(t) > T, for

te [Tl) OO)T'
Define the Banach space BC [Ty, 00) 1 as in (3) with A = 0, and let

2; = {x(t) € BCy [To,00) 7 : g <x(t) 51(}. (27)

It is easy to prove that £2; is a bounded, convex, and closed subset of BCy [T, 00) 1. By
(C4), we have, for any x € §23,

f(tx(h(0) <f(t,K), te [T1,00)r.

Now we define two operators Uz and S3 : £23 — BCy [T, 00) 1 as follows:

3
(Usx)(£) = 1Kp1 - p()x(g(?)), te [Th,00)r,
(Usx)(Th), te [To, Tv)r,
00 f(ux(h(u))
(S2)(0) = S Al Bl M et AudsAv, te [Ty,00), 28)
(53x)(T1); te [To, T1)r-
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Next, we can prove that U3 and Sz satisfy the conditions in Lemma 2.2. The proof is
similar to the case 0 < py <1 of Theorem 3.1 and omitted here.

By Lemma 2.2, there exists x € §23 such that (U5 + S3)x = x, which implies that x(¢) is a
solution of (1). In particular, for t € [T3, 00)  we have

x(t) = a(lj%)K—p(t)x(g(t))+/w/oo T h@)) ) aay

ri(s)ra(v)

Letting ¢t — 00, we have

3(1 K 3(1 K
lim 2(0) = S PIK 4 tim (e = S0 POK
t—00 4 t—00 401 +p0)
which implies that
t t
lim x(2) i x(t)

SRR o Ry

The sufficiency holds when 0 < pj < 1.
Case 2: -1 < pg < 0. We introduce the Banach space BCy [Ty, 00) 1 and its subset £23 as
in (27). Define the operator Ss as in (28) and the operator U3 on £25 as follows:

(Uix)(2) = ~2Kp1 - pt)x(g()), te [T1,00)7,
3 (Uéx)(Tl), te [TO: Tl)T

The following proof is similar to the case —1 < po < 0 in Theorem 3.1 and we omit it
here. By Lemma 2.2, there exists x € §25 such that (U} + S3)x = x, which implies that x(t) is

a solution of (1). In particular, for ¢ € [T}, 00)  we have

——————~ AuAsAv.

2(0) = 3(1 —pl)K / /  fu, x(h(u)))

4 ri(s)ra(v)

Similarly, we have

3(1-p1)K 3(1-p1)K
lim z(t) = & and lim x(¢) = ﬂ
t—00 4 t—00 4-(1 +p0)

which implies that

tim 2O _ iy 20
t—00 Rl( ) t—00 RZ( )

The sufficiency holds when -1 < pg < 0.
The proof is complete. d

Theorem 3.4 Equation (1) has an eventually positive solution in A(oco, 00,0), then

/Oof(u, ZRI (h(u)))Au < 00, /Oo OOJMAMAS = 00. (29)

ri(s)
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Conversely, if there exists a nonnegative constant M such that |p(t)R,(t)| < M and

/ S (4, Ry (h(w))) Au < o0, / foof(u’ (M + 3/4)R1(h(u)))AuAs =00, (30)

r1(s)

then (1) has an eventually positive solution in A(oco, 00, 0).

Proof Suppose that x(¢) is an eventually positive solution of (1) in A(c0,00,0), i.e.,

x(t) . x(t)

tl—lglo x(8) = t_lglo Ri(t) - tl—lglo m =0
Similarly, we have

lim z(f) = o0

t—00

t
Jim 120220 = lim 20~ o,
t
i n0(02'0)" = i 22 -0

and there exists Ty € [£y,00) 1 such that 3R;(£)/4 < x(t) < Ry(¢t) for t € [Ty, 00) . From
(C3) there exists T1 € (T, 00)t such that g(¢£) > Ty and h(t) > T, for ¢t € [T1,00) 1. Inte-
grating (1) from T to s € [0(T1), 00) 1, we obtain

) (r(6)22(6)” = (T (T (1Y) = - Tsf(u,x(h(u)))Au.

Letting s — 00, we have
AT (aTD22(T0)° = [ f((0100) 2 G

T

which implies that

/oof<u, §Rl (h(u)))Au <00
T 4

by the monotonicity of f and 3R; (h(t))/4 < x(h(t)) for t € [T}, 00) . Substituting s for T}
in (31), we have

f f(u, x(h(u)))Au

") (32)

(r2 (s)zA(s))
Integrating (32) from T; to t € [0(T1),00) 1, we have

(022 (&) = ro (T2 (Ty) = /t OOMAMAS.
7 ri(s)

Letting t — oo, we have

/T/ T rl(s) As=oe.
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By the monotonicity of f and x(h(t)) < Ry(h(t)) for t € [T}, 00) 1, it follows that
f(u,x(h(u))) §f(u,R2 (h(u))), ue [T,00)r,

and

ri(s) ri(s)

/DO M'MAMAssz oo'MAuAszoo,
T1 Js I Js

which means that (29) holds. The necessary condition is proved.
Conversely, if there exists a positive constant M such that [p(£)R»(£)| < M and (30) hold,
then lim;_, » p(£) = 0 and we can choose a sufficiently large Ty € [£o, 00) 1 such that

POl <pi<l,  |pORO| <M, (2M+§)Rl(t>sizez(t), t € [To,00) 7,

[ o)) au < 2L
T

0

From (C3) there exists T} € (T, 00)r such that g(¢) > Ty and k() > T, for ¢ € [T}, 00) .
Define the Banach space BC, [T, 00) 1 as in (3) with A =2, and let

24 = {x(t) € BC, [To,00) 7 <M+ Z)Rﬂt) <x(t) §R2(t)}.

It is easy to prove that £24 is a bounded, convex, and closed subset of BC; [Ty, 00) 1. Ac-
cording to (C3) and (C4), we have, for any x € £24,

*(h(0) = (M . z)Rl(h(t)), Flbx(hD)) <f(6RA(HD)), L€ [T100)s.

Now we define two operators Uy and Sy : 24 — BC, [Ty, 00) T as follows:

WU)) =4 " DRi(2) - T}{“;%“Rz( ), te[To,T)r,
! 3)R1(0) - p(D)x(g() e [Th 000,
3
— + Z)Rl(t) te [TOr Tl)'ﬂ'
(Sax)(2) = {(M i () + le le IM%AMASAV, te [T 00)n.

Next, we can prove that Uy and S, satisfy the conditions in Lemma 2.2. The proof is
similar to Theorem 3.1 and omitted here. By Lemma 2.2, there exists x € §2, such that
(Uyg + S4)x = x, which implies that x(¢) is a solution of (1). In particular, for ¢ € [T7, 00) 1 we

have

_ 3 © f(u, x(h(w)))
0= (2M+§)Rl(t) /T1 /Tl s n@en) ThEn() SHAsAr

Since x(h(t)) > (M + 3/4)R;(h(t)) and

/n -/Tl /SOOf:(:rz(v) AMASAV</ /Tlfswf(b:l(lzzrz(v) )AuAsAV

Page 20 of 25


http://www.advancesindifferenceequations.com/content/2014/1/309

Qiu Advances in Difference Equations 2014, 2014:309
http://www.advancesindifferenceequations.com/content/2014/1/309

for t € [T}, 00) 1, we have

R (¢ 1+ As 1
tim SO i Jio 515 r20) = lim =0,
1> Ry(E) o014 fto Jo rmm Auds o fto

7r2(s)
* fu, Ry (h(u)))
A R /T/T/ TG SrAsa
= l1m f(u Rz(h( )))Au 0,
Pl x(h(w))
A R /T /T/ ThEne) SrAsA

=1im/ /Oof”x ) Audss
t=oo Jr Js r1(s)

/ % f (u, (M + 3/4)R1( ()
T Js )

s rlu

> lim AuAs = oo.

t—00

It follows that

im 2) = im 2t)
o Ry(E) T o Ry(f)

lim z(f) = =0.
t—00

Since |p(t)x(g(t))| < |p(£)Rx(2)| < M, by Lemma 2.3 we have

x(t) i x(t)

lim x(¢) = oo, , Jim R0 =

t—00 t—>oo Ry (t)
The proof is complete. d
When p(t) > 0 eventually, we have the following theorem.

Theorem 3.5 If there exist a constant K > 0 and T, € [ty,00) 1 with Ty > 0 such that, for
te [T01 OO) T

0 < p(t) < Kg(t)e™, (33)
00 o0 OO —h(u)
/ / MAMAMV > (K +1)e™* (34)
¢ Jy r($)ra(v)
an
© f(u, 1/h(u)) 1
/ / ThOn) =D (35)

then (1) has an eventually positive solution in A(0, 0, 0).

Proof From (C3) there exists 71 € (Ty,00)r such that g(¢) > Ty and h(¢) > T, for ¢ €
[T}, 00) 1. Define the Banach space BCy [Ty, 00) 1 as in (3) with A = 0, and let

$25 = {x(¢) € BCy [Ty, 00) 1 : (t) € [e7*,1/¢t] for ¢ € [T;,00) 1 and

x(t) € [e™,1/t] for t € [Ty, Th]r}.
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It is easy to prove that £25 is a bounded, convex, and closed subset of BCy [T}, 00) 1. Define
an operator Ss on £25 as follows:

pEx(g(®) + [° [ [ LD Ay Asav,  te [Ty,00)r,

S =
( Sx)(t) {(S59C)(T1) te [TO) Tl)’]I"

We prove that Ssx € §25 for any x € §25. In fact, from (33)-(35), for ¢ € [T1,00)  we have

(Ssx)(2) = t)x g(t) / / / frl(s)rz(v) AuAsAvy

/ / /Oof u,l/h(u)) AuAsAv < %

and

OOf(u e—h(u
(Ss0)(0) = 29 (t) / / / e fane ™) jynsav

>-Ke'+(K+1)e’ =

It follows that e 71 < (S5x)(t) < 1/t for t € [Ty, T1]t. Hence, Ssx € 25 for any x € §25. Simi-
larly, we can prove that the operators Us = 0 and Ss satisfy all the conditions in Lemma 2.2.
The rest of the proof is similar to that of Theorem 3.1 and omitted here. By Lemma 2.2,
there exists x € §25 such that Ssx = x, which implies that x(¢) is a solution of (1). In partic-
ular, for ¢t € [T}, 00) T we have

x(t) = (¢9) / / / S (w,x(h(u)) x(h(u))) AsAv.
r1(s)ra(v)
In view of (C4), for any x € £25 we have
f(&x(h(®)) <f(6,1/nE), te [T,00)r.
Letting ¢ — oo, we obtain
lim z(¢)=0 and lim x(¢) =0,
t—00 t—00
which implies that

tim 2O _ iy 2O _
=0 Ry(f)  t=00 Ry(t)

The proof is complete. d

While p(t) is eventually negative, we have another result. The proof is similar to that of
Theorem 3.5 and hence we omit it here.

Theorem 3.6 Ifthere exists Ty € [ty, 00) 1 with Ty > 0 such that, for t € [Ty, 00) 1,

p(t)e V) < _¢t
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and

f//mf(u’l/h(uAAAv<%+%

then (1) has an eventually positive solution in A(0,0, 0).

4 Examples
In this section, the application of our results will be shown in three examples. The first

example is given to demonstrate Theorems 3.1-3.4.

Example 4.1 Let ¢ >1and T = | J;;[(2n — 1)¢, 2nc]. Consider the equation

t+1 NN Ero@)x)
(t(t(x(t) - Yx(t - ZC)) ) ) + W =0, (36)

where r1(2) = ry(t) = £, p(£) = —(t+1)/2¢, po = —1/2,g(t) = t—2¢, h(t) = £, f(£,%) = D0

£2(0(t))2(1+£2)°
to =c.

It is obvious that the coefficients of (36) satisfy (C1)-(C4), and by (C3) we have

‘1 1 t )
Ri(t)=1+ | -As<1l+-(t-c)=-<1+¢t,
. S c c

t s 1 1 t t2 _C2
Rz(t)=1+//—AuAs§1+—/sAs§1+ <1+£.
¢ Jo u-s 2 J, 2c?
Therefore,
o © (t+0(£))Ry(2) /O" t+o(t) 1
t, Ry (h(t))) At = TR At TP A= = < o0,
/ SR (ne) / Leora+e) ). Pewr T <

/ f f(uRl(h(u)))A As / /"O wro)ri@

r1(s) u?(o(u))2(1 + u?)s

/ / uZ(J:(ILfL;Z AuAS:/COOS%As«m,
/OO/OO SOO L ———AulsAv
2 (:t)+o ()
</ / / #2(0 (1)s - VAMASAV
_AsAv —AvAs < - lAs < 00,
[ s [ v [

% f(u, Ry (h(u))) u+o(u) B ool
/C i ") ————AuAs </ / 200 u))ZSAuAS—/C S3A5<oo.

By Theorems 3.1-3.4, we see that (36) has eventually positive solutions x;(¢) € A(co,
00, b), x3(t) € A(00,b,0), x3(t) € A(b,0,0), but it has no eventually positive solution in
A(00,00,0).

Then we give the second example to demonstrate Theorem 3.4.


http://www.advancesindifferenceequations.com/content/2014/1/309

Qiu Advances in Difference Equations 2014, 2014:309
http://www.advancesindifferenceequations.com/content/2014/1/309

Example 4.2 For any given time scale T, let £, > 1. Consider the equation

(e 7o) ) ) =0 o

where r1(t) = ry(t) = 1, p(t) = 1/£%, po = 0, g(£) = ¢, h(t) = /1, f (£, %) = x/t>.
It is obvious that the coefficients of (37) satisfy (C1)-(C4), and by (C3) we have

t
Rl(t)=1+/ As=1+t—ty <t <t
to

t s t
Rg(t):1+/ / AuAs:1+f (s—t9)As
to Jio to

t
<1+l/ (s+o(s))As=1+l(tz—tg)gtz.
2/, 2

0

Therefore,

p(OR:(2)| <1,

00 00 M2/3 S |
/ f(u,Rz(h(u)))Au < f ?Au = / WAM < 00,
to to

/00 /‘Oof(u, (M + 3/4)R,(h(n)))

ri(s)

> fwu,M +3/4)Auds= M+ — — AuAs
to s 4 to K u2
3 *1
>\M+ - -As =00
4/ )y s

It follows that (37) has an eventually positive solution x() € A(co, 00,0) in terms of The-

AuAs

orem 3.4.
The third example illustrates Theorem 3.5.

Example 4.3 Let T = [1,00). Consider the equation
t
(e‘é (e‘% (%(8) + (£ - De"x(t - 1))A)A)A + e‘tx(g) =0, (38)

where r1(£) = e, ry(t) =73, p(t) = (t = 1)e™*, po = 0, g(t) =t = 1, h(t) = t/3, f(t,x) = e”*x.
It is obvious that the coefficients of (38) satisfy (C1)-(C4), and we have

/ / f S e AuAsAv
ri(s)ra(v
—4u/3
/ / / =" 7V/3dudsdv

:_ee

35

’
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J

/Oof(u’ 1/h(u)) AuAsAv

(8)r2(v)
*© 3lu-e™
/ / e dudsdv
/ / e*S/6 5 dudsdy

%t

I
I
/

Take K =1, and there exists a sufficiently large T, € [1,00) such that, for ¢ € [Ty, 00), the
conditions (33)-(35) hold. By Theorem 3.5, we see that (38) has an eventually positive
solution x(¢) € A(0,0,0).
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