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Abstract
The exponential stability of a class of nonlinear systems by means of alternate control
is studied. An exponential stability criterion is given in terms of a set of linear matrix
inequalities. Numerical simulations are presented to verify the correction of the
obtained results.
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1 Introduction
There are many methods to stabilize a nonlinear system. For example, impulsive control
methods [–], switching control methods [–], etc. Intermittent control methods are
special cases of switching control methods and have been studied by many researchers,
e.g., [–]. Within the intermittent control, one adds a continuous control during the
first part of the periodwhile in the other part of the period there is no control. Thismethod
is available for some cases, but it costs time. For other cases in which the time is very
important, this method is not of use. So we advise to add two different controls alternately
to the system. We call this system alternate control system. Figure  and Figure  show
the working principles of intermittent control system and alternate control system, from
which we conclude that alternate control system is a generalization of intermittent one.
In this paper, we first investigate the stability of the alternate control system, then by

using the stability criterion obtained we study the stability of Chua’s oscillator. Also, nu-
merical simulations are illustrated to show the effectiveness of the results.
The rest of the paper is organized as follows. In Section , we formulate the problem of

alternate control system and introduce some notations and lemmas. We then establish, in
Section , an exponential stability criterion. In Section , we discuss the alternate control
of Chua’s oscillator. Lastly, we conclude the paper.

2 Problem formulation and preliminaries
Consider a class of nonlinear systems described by

{
ẋ(t) = Ax(t) + f (x(t)) + u(t),
x(t) = x,

()

where x ∈ Rn presents state vector, f : Rn → Rn is a continuous nonlinear function sat-
isfying f () =  and there exists a diagonal matrix L = diag(l, l, . . . , ln) ≥  such that
‖f (x)‖ ≤ xTLx for any x ∈ Rn,A ∈ Rn×n is constant matrix, u(t) denotes the external input
of system ().
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Figure 1 Intermittent control: in the first part of the period there is a
control Kx(t) and in the other part there is not (Omeans that the input
control is 0).

Figure 2 Alternate control: in the first part of the period there is a
control K1x(t) and in the other part there is a control K2x(t).

For stabilizing the origin of the system () by means of a periodically alternate control,
we assume that the control imposed on the system is of the following form:

u(t) =

{
Kx(t), mT ≤ t <mT + τ ,
Kx(t), mT + τ ≤ t < (m + )T ,

()

where K,K ∈ Rn×n are constant matrices, T >  denotes the control period, τ ∈ (,T) is
a constant.
Our target is to design suitable T , τ , K, and K such that the system () can be stabilized

at the origin.
By the control law (), the system () can be rewritten as follows:

{
ẋ(t) = Ax(t) + f (x(t)) +Kx(t), mT ≤ t <mT + τ ,
ẋ(t) = Ax(t) + f (x(t)) +Kx(t), mT + τ ≤ t < (m + )T .

()

It is obvious that the system () is a classical switched system where the switching rule
only depends on the time.

Remark  When K(t) = , the alternate control system () becomes the classical inter-
mittent control system [].

In the sequel, we will use the following two lemmas.

Lemma  (Sanchez and Perez []) Given any real matrices �, �, � of appropriate
dimensions and a scalar ε ≥  such that  <� =�T

 , the following inequality holds:

�T
 � +�T

 � ≤ ε�T
 �� + ε–�T

 �–
 �. ()

Lemma  (Boyd et al. []) The LMI

[
Q(x) S(x)
ST (x) R(x)

]
> ,

where Q(x) =QT (x), R(x) = RT (x), and S(x) depend affinely on x, is equivalent to

R(x) > , Q(x) – S(x)R–(x)ST (x) > .

Throughout this paper, we use PT , λM(P), and λm(P) to denote the transpose, the maxi-
mum eigenvalue and the minimum eigenvalue of a square matrix P, respectively. ‖x‖ is

http://www.advancesindifferenceequations.com/content/2014/1/305


Feng et al. Advances in Difference Equations 2014, 2014:305 Page 3 of 9
http://www.advancesindifferenceequations.com/content/2014/1/305

used to denote the Euclidean norm of the vector x. The matrix norm ‖ · ‖ is also re-
ferred to the Euclidean norm. We use P >  (< , ≤ , ≥ ) to denote a symmetrical
positive (negative, semi-negative, semi-positive) definite matrix P. f (x(t– )) is defined by
f (x(t– )) = limt→t– f (x(t)).

3 Main results
Theorem  If there exist a symmetric and positive definite matrix P ∈ Rn×n, positive scalar
constants g > , ε > , ε > , and scalar constant g ∈ R such that the following hold:
() PA +ATP + PK +KT

 P + εP + ε– L + gP ≤ ,
() PA +ATP + PK +KT

 P + εP + ε– L – gP ≤ ,
() gτ – g(T – τ ) > ,

then the origin of the system () is exponentially stable, and

∥∥x(t)∥∥ <

√
λM(P)
λm(P)

‖x‖ exp
[
–γ (t – T)

]
,

where γ = gτ–g(T–τ )
T , for any t > .

Proof Let us construct the following Lyapunov function:

V
(
x(t)

)
= xT (x)Px(t), ()

from which we obtain

λm(P)
∥∥x(t)∥∥ ≤ V

(
x(t)

) ≤ λM(P)
∥∥x(t)∥∥. ()

IfmT ≤ t <mT + τ , then by (), (), and () we have

V̇ (x) = xTPẋ

= xTP
[
Ax + f (x) +Kx

]
= xTPAx + xTPf (x) + xTPKx

= xT
[
PA +ATP + PK +KT

 P
]
x + xTPf (x)

≤ xT
[
PA +ATP + PK +KT

 P
]
x

+ εxTPx + ε– xTLx

= –gV (x) + xT
[
PA +ATP + PK +KT

 P

+ εP + ε– L + gP
]
x

≤ –gV (x),

which implies that

V
(
x(t)

) ≤ V
(
x
(
(mT)–

))
exp

(
–g(t –mT)

)
. ()

http://www.advancesindifferenceequations.com/content/2014/1/305


Feng et al. Advances in Difference Equations 2014, 2014:305 Page 4 of 9
http://www.advancesindifferenceequations.com/content/2014/1/305

Similarly, ifmT + τ ≤ t < (m + )T , then we have

V̇ (x) = xTPẋ

≤ gV (x) + xT
[
PA +ATP + PK +KT

 P + εP + ε– L – gP
]
x

≤ gV (x),

which implies that

V
(
x(t)

) ≤ V
(
x
(
(mT + τ )–

))
exp

(
g(t –mT – τ )

)
. ()

It follows from () and () that:
() If  ≤ t < τ , then we have

V
(
x(t)

) ≤ V (x) exp(–gt).

So

V
(
x
(
τ–)) ≤ V (x) exp(–gτ ).

() If τ ≤ t < T , then we have

V
(
x(t)

) ≤ V
(
x
(
τ–)) exp(g(t – τ )

)
≤ V (x) exp

(
–gτ + g(t – τ )

)
.

So

V
(
x
(
T–)) ≤ V (x) exp

(
–gτ + g(T – τ )

)
.

() If T ≤ t < T + τ , then we have

V
(
x(t)

) ≤ V
(
x
(
T–)) exp(–g(t – T)

)
≤ V (x) exp

(
–gτ – g(t – T) + g(T – τ )

)
.

So

V
(
x
(
(T + τ )–

)) ≤ V (x) exp
(
–gτ + g(T – τ )

)
.

() If T + τ ≤ t < T , then we have

V
(
x(t)

) ≤ V
(
x
(
(T + τ )–

))
exp

(
g(t – T – τ )

)
≤ V (x) exp

(
–gτ + g(T – τ ) + g(t – T – τ )

)
.

So

V
(
x
(
(T)–

)) ≤ V (x) exp
(
–gτ + g(T – τ )

)
.
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() If T ≤ t < T + τ , then we have

V
(
x(t)

) ≤ V
(
x
(
(T)–

))
exp

(
–g(t – T)

)
≤ V (x) exp

(
–gτ – g(t – T) + g(T – τ )

)
.

So

V
(
x
(
(T + τ )–

)) ≤ V (x) exp
(
–gτ + g(T – τ )

)
.

() If T + τ ≤ t < T , then we have

V
(
x(t)

) ≤ V
(
x
(
(T + τ )–

))
exp

(
g(t – T – τ )

)
≤ V (x) exp

(
–gτ + g(T – τ ) + g(t – T – τ )

)
.

So

V
(
x
(
(T)–

)) ≤ V (x) exp
(
–gτ + g(T – τ )

)
.

By induction, we have:
() IfmT ≤ t <mT + τ , i.e., t–τ

T <m ≤ t
T , then we have

V
(
x(t)

) ≤ V (x) exp
(
–mgτ – g(t –mT) +mg(T – τ )

)
. ()

So

V
(
x
(
(mT + τ )–

)) ≤ V (x) exp
(
–(m + )gτ +mg(T – τ )

)
.

() If mT + τ ≤ t < (m + )T , i.e., t
T <m +  ≤ t+T–τ

T , then we have that

V
(
x(t)

) ≤ V
(
x
(
(mT + τ )–

))
exp

(
g(t –mT – τ )

)
≤ V (x) exp

(
–(m + )gτ +mg(T – τ )

+ g(t –mT – τ )
)
. ()

From () we know that

V
(
x(t)

) ≤ V (x) exp
(
–mgτ +mg(T – τ )

)
= V (x) exp

(
–
(
gτ – g(T – τ )

)
m

)
< V (x) exp

(
–
(
gτ – g(T – τ )

) t – τ

T

)

< V (x) exp
(
–
(
gτ – g(T – τ )

) t – T
T

)
, ()

wheremT ≤ t <mT + τ .
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From () we know that
Case . If g > , then

V
(
x(t)

) ≤ V (x) exp
(
–(m + )gτ + (m + )g(T – τ )

)
< V (x) exp

(
–
(
gτ – g(T – τ )

) t
T

)

≤ V (x) exp
(
–
(
gτ – g(T – τ )

) t – τ

T

)

< V (x) exp
(
–
(
gτ – g(T – τ )

) t – T
T

)
.

Case . If g ≤ , then

V
(
x(t)

) ≤ V (x) exp
(
–(m + )gτ +mg(T – τ )

)
≤ V (x) exp

(
–mgτ +mg(T – τ )

)
= V (x) exp

(
–
(
gτ – g(T – τ )

)
m

)
< V (x) exp

(
–
(
gτ – g(T – τ )

) t – T
T

)
.

So, for any g ∈ R, we have

V
(
x(t)

)
< V (x) exp

(
–
(
gτ – g(T – τ )

) t – T
T

)
, ()

wheremT + τ ≤ t < (m + )T .
It follows from () and () that, for any t > ,

V
(
x(t)

)
< V (x) exp

(
–
(
gτ – g(T – τ )

) t – T
T

)
. ()

By (), (), and (), we conclude that

∥∥x(t)∥∥ <

√
λM(P)
λm(P)

‖x‖ exp
[
–γ (t – T)

]
,

where γ = gτ–g(T–τ )
T , for any t > .

So we finish the proof. �

From Lemma , we know that the two conditions of Theorem  are equivalent to the
following two LMIs, respectively:

[
PA +ATP + PK +KT

 P + ε– L + gP –P
–P –ε– I

]
≤ , ()

[
PA +ATP + PK +KT

 P + ε– L – gP –P
–P –ε– I

]
≤ . ()
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4 Numerical example
The original and dimensionless form of a Chua’s oscillator [] is given by

⎧⎪⎨
⎪⎩
ẋ = α(x – x – g(x)),
ẋ = x – x + x,
ẋ = –βx,

()

where α and β are parameters and g(x) is the piecewise linear characteristics of Chua’s
diode, which is defined by

g(x) = bx + .(a – b)
(|x + | – |x – |), ()

where a < b <  are two constants.
In this section, we set the system parameters as α = ., β = ., a = –.,

and b = –., which make Chua’s circuit () chaotic []. Figure  shows the chaotic
phenomenon of Chua’s oscillator with the initial condition x() = (, , –)′.
We rewrite the system () as follows:

ẋ = Ax + f (x), ()

where

A =

⎡
⎢⎣
–α – αb α 

 – 
 –β 

⎤
⎥⎦ ,

f (x) =

⎡
⎢⎣
–.α(a – b)(|x + | – |x – |)




⎤
⎥⎦ .

So
∥∥f (x)∥∥ = .α(a – b)

[
(x + ) + (x – ) – 

∣∣(x + )(x – )
∣∣]

= .α(a – b)
(
x +  –

∣∣x – 
∣∣)

=

{
α(a – b), x > ,
α(a – b)x , x ≤ 

≤ α(a – b)x .

Figure 3 The chaotic phenomenon of Chua’s
oscillator with the initial condition x(0) = (5, 1,
–3)′ .
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Figure 4 Time response curves of Chua’s
oscillator with alternate control.

Thus we can choose L = diag(α(a – b), , ).
Choosing

K = diag(–,–,–),

K = diag(–,–,–).

With T =  and τ = , solving LMIs (), () and inequality gτ – g(T – τ ) > , we obtain
a feasible solution:

ε = ε = ., g = , g = ,

and

P =

⎡
⎢⎣
. . .
. . –.
. –. .

⎤
⎥⎦ .

Thus by the previous theorem we see that the origin of the system () is exponentially
stable. The time response corves of Chua’s oscillator with alternate control is shown in
Figure .

5 Conclusions
This paper gives a newmodel of control system, namely alternate control system. A stabil-
ity criterion is given in terms of linear matrix inequalities. By the newmethod, the chaotic
Chua circuit is controlled.
Obviously, there is no rest time in an alternate control system. By comparing our model

with the traditional intermittent control system, we know that our model is a generaliza-
tion of intermittent control system. The proposed method can be applied to linear and
nonlinear systems.
This paper considers systems without delay. For delayed systems [–], we know that

the methods used to deal with them are different from ones of the systems without delay.
We are ready to focus on this aspect in future papers.

Competing interests
The authors declare that they have no competing interests.

http://www.advancesindifferenceequations.com/content/2014/1/305


Feng et al. Advances in Difference Equations 2014, 2014:305 Page 9 of 9
http://www.advancesindifferenceequations.com/content/2014/1/305

Authors’ contributions
CL has proposed the ideal of alternate control. YF has proved the main theory and prepared the paper with latex. TH has
provided all the figures of the paper. WZ has given some advice to improve the paper. All authors have read and
approved the final manuscript.

Author details
1School of Electronic Information Engineering, Southwest University, Chongqing, 400715, P.R. China. 2School of
Mathematics and Statistics, Chongqing Three Gorges University, Wanzhou, Chongqing, 404100, P.R. China. 3Department
of Mathematics, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar. 4College of Air Traffic Management, Civil
Aviation University of China, Tianjin, 300300, P.R. China.

Authors’ information
The second author is a Senior Member, IEEE.

Acknowledgements
This research is supported by the Natural Science Foundation of China (grant No. 61374078), NPRP grant # NPRP
4-1162-1-181 from the Qatar National Research Fund (a member of Qatar Foundation), Scientific & Technological
Research Foundation of Chongqing Municipal Education Commission (grant Nos. KJ1401006, KJ1401019), the
Fundamental Research Funds for the Central Universities (grant No. XDJK2015D004) and Key Program of Chongqing
Three Gorges University (grant No. 14ZD18).

Received: 9 August 2014 Accepted: 19 November 2014 Published: 03 Dec 2014

References
1. Yang, T: Impulsive Control Theory. Springer, Berlin (2001)
2. Yang, T: Impulsive control. IEEE Trans. Autom. Control 44(5), 1081-1083 (1999)
3. Yang, T, Chua, LO: Impulsive stabilization for control and synchronization of chaotic systems: theory and application

to secure communication. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 44(10), 976-988 (1997)
4. Yang, Z, Xu, D: Stability analysis and design of impulsive control systems with time delay. IEEE Trans. Autom. Control

52(8), 1448-1454 (2007)
5. Allerhand, LI, Shaked, U: Robust state-dependent switching of linear systems with dwell time. IEEE Trans. Autom.

Control 58(4), 994-1001 (2013)
6. Geromel, JC, Deaecto, GS, Daafouz, J: Suboptimal switching control consistency analysis for switched linear systems.

IEEE Trans. Autom. Control 58(7), 1857-1861 (2013)
7. Heertjes, MF, Sahin, IH, van de Wouw, N, Heemels, WPMH: Switching control in vibration isolation systems. IEEE Trans.

Control Syst. Technol. 21(3), 626-635 (2013)
8. Tanwani, A, Shim, H, Liberzon, D: Observability for switched linear systems: characterization and observer design. IEEE

Trans. Autom. Control 58(4), 891-904 (2013)
9. Li, C, Huang, T, Chen, G: Exponential stability of time-controlled switching systems with time delay. J. Franklin Inst.

349(1), 216-233 (2012)
10. Li, C, Feng, G, Liao, X: Stabilization of nonlinear systems via periodically intermittent control. IEEE Trans. Circuits Syst. II,

Express Briefs 54(11), 1019-1023 (2007)
11. Zochowski, M: Intermittent dynamical control. Physica D 145, 181-190 (2000)
12. Li, N, Cao, J: Periodically intermittent control on robust exponential synchronization for switched interval coupled

networks. Neurocomputing 131, 52-58 (2014)
13. Huang, J, Li, C, He, X: Stabilization of a memristor-based chaotic system by intermittent control and fuzzy processing.

Int. J. Control. Autom. Syst. 11(3), 643-647 (2013)
14. Huang, J, Li, C, Han, Q: Quasi-synchronization of chaotic neural networks with parameter mismatch by periodically

intermittent control. In: Proceeding of CSIE 2009, March 31 - April 2, Los Angeles, California, USA, 7 volumes (2009)
15. Huang, T, Li, C, Liu, X: Synchronization of chaotic systems with delay using intermittent linear state feedback. Chaos

18, 033122 (2008)
16. Sanchez, EN, Perez, JP: Input-to-state stability (ISS) analysis for dynamic NN. IEEE Trans. Circuits Syst. I, Regul. Pap.

46(11), 1395-1398 (1999)
17. Boyd, S, Ghaoui, L, Feron, EEI, Balakrishnan, V: Linear Matrix Inequalities in System and Control Theory. SIAM,

Philadephia (1994)
18. Shilnikov, L: Chau’s circuit: rigorous results and future problems. Int. J. Bifurc. Chaos 4(3), 489-519 (1994)
19. Xia, W, Cao, J: Pinning synchronization of delayed dynamical networks via periodically intermittent control. Chaos

19(1), 013120 (2009). doi:10.1063/1.3071933
20. Yang, X, Cao, J: Stochastic synchronization of coupled neural networks with intermittent control. Phys. Lett. A 373(36),

3259-3272 (2009)
21. Zheng, G, Cao, J: Robust synchronization of coupled neural networks with mixed delays and uncertain parameters by

intermittent pinning control. Neurocomputing 141, 153-159 (2014)

10.1186/1687-1847-2014-305
Cite this article as: Feng et al.: Alternate control systems. Advances in Difference Equations 2014, 2014:305

http://www.advancesindifferenceequations.com/content/2014/1/305
http://dx.doi.org/10.1063/1.3071933

	Alternate control systems
	Abstract
	Keywords

	Introduction
	Problem formulation and preliminaries
	Main results
	Numerical example
	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Authors' information
	Acknowledgements
	References


