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1 Introduction and main results
A function f(z) is called meromorphic if it is analytic in the complex plane C except at
isolate poles. In what follows, we assume that the reader is familiar with the basic notion
of Nevanlinna’s value distribution theory, see [1] and [2].

Let us consider the g-difference polynomial case. Let d; € C for j=1,...,n, and let I, be
a finite set of multi-indexes y = (yo,...,¥s). A g-difference polynomial of a meromorphic
function w(z) is defined as follows:

P(z,w) = P(z,w(qz), w(2), ..., w(q"2))

= Z a, (2)w(@)"°w(g2)" - - w(q"z)"", (1.1)
vE€ly

where g € C{0}, and the coefficients a, (z) are small meromorphic functions with respect
to w(z) such that T'(r,a,) = o(T(r, w)) on a logarithmic density 1, denoted by S,(r, w). The
total degree of P(z, w) in w(z) and the g-shifts of w(z) is denoted by deg? (P), and the order
of zero of P(z,x0,%1,...,%,), as a function of xq at xy = 0, is denoted as ord? (P), which can
be found, e.g., in [3]. Moreover, the weight of difference polynomial (1.1) is defined by

n
K, (P) = %;(:2; y}-},
Jj=

where y and I, are the same as in (1.1) above. The g-difference polynomial P(z, w) is said
to be homogeneous with respect to w(z) if the degree d, = y + - - - + y,, of each term in the
sum (1.1) is non-zero and the same for all y € 1.

We recall the following result of Zhang et al. [4, Theorem 1].
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Theorem A Let w(z) be a zero-order meromorphic solution of
H(z,w)P(z,w) = Q(z, w),

where P(z,w) is a homogeneous q-difference polynomial with polynomial coefficients, and
H(z, w) and Q(z, w) are polynomials in w(z) with polynomial coefficients having no common
factors. If

max{deg? (H), deg?(Q) — deg? (P)} > min{deg? (P), ord}(Q)} — ord{(P),

then N(r,w) # Sy(r,w), where ordg(P) denotes the order of zero of P(z,x0,%1,...,%,), as a
function of xy at xy = 0.

Now let us introduce some notation. Let g; € C\ {0,} forj=1,...,n,and let / and / be a
finite set of multi-indexes I = (iy, ..., i,) and J = (jo,...,j,). Two g-difference polynomials
of a meromorphic function w(z) are defined as follows:

Q1(z, w1, wa) = Q1 (2, w1(2), w2(2), wi(q12), wa @12), . .., W1(gn2), W2 (q12))
2
= Y a@ [ [m@ o wi(@2)n - wilgu2)

iel k=1

and
Qo (z, w1, wa) = Qo (Z, wi(2), w2 (2), wi(q12), wa(q12), ..., w1(gu2), W2(6Inz))

2
=3 @ [T wef 0wl - wilg,2)n,

jeJ k=1

where the coefficients a;(z) and b;(z) are small with respect to w(z) and w,(2) in the sense
that T(r,a;) = o(T (r, wx)) and T'(r, b)) = o(T (r,wx)), k = 1,2, on a set of logarithmic density
1, as r tends to infinity outside of an exceptional set E of finite logarithmic measure

lim — < 0Q.
=00 JEnp, L

The weights of Q;(z, w1, wy) and Qa(z, wi, wa) in wy(2), wa(z) are denoted by

n n
)‘-llzmax{zill}: )»12=m€ix{zi21}
B "o
and

n n
)»21=maX:Zi1l>, )»22=mde=Zi21}-
j

7 Uiz 1=0

The purpose of this paper is to study the problem of the properties of Nevanlinna count-
ing functions and proximity functions of meromorphic solutions of a type of systems of
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q-difference equations of the following form:

QI(Z; w1, WZ) = RI(Z, Wl)t (1 2)
Q9 (z, w1, wa) = Ra(z, W),

where
Pi(z, g i
Ri(z,wy) = 1(z,w1) _ Z;:lo“ (Z)W,l
Qi(z, 1) Zj:o bj(Z)M/l
and
Ry(z,wy) = Pyzwy) _ 3% cila)wy

Qlaw) X2 dw,

the coefficients {a;(z)}, {b;(2)}, {ci(2)}, {di(z)} are meromorphic functions and small func-
tions. The order of zero of Q;(z,%o,...,%,), as a function of xy at xo = 0, is denoted by
ordy(£2;). The g-difference polynomial Q(z, w1, ws), k = 1,2, is said to be homogeneous
with respect to wi(z) if the degree dy = ixo + - - - + ixn Of each term in the sum is non-zero

and the same for all i € /. Finally, the order of growth of a meromorphic solution (w;, wy)
is defined by

p(wi, ws) = max{ p(wi), pa(w)),

where

log T'(r, wx)

o(wg) = lim sup k=1,2.

r—00 logr

In this paper, the main results are as follows.
Theorem 1 Let (w1, wy) be a zero-order meromorphic solution of system (1.2), where
Qi (z, w1, ws) (k = 1,2) are homogeneous q-difference polynomials in wy and w,, respectively,

with meromorphic coefficients, and Pr(z, wr) and Q(z, wi), k = 1,2, are polynomials in wi(z)
with meromorphic coefficients having no common factors. If

max{qy, p1 — A1} > min{Ayy, ord,, (P1)} — ord,, (1) + A1 (1.3)
and
max{ga, p2 — Az} > min{)»zz, ord,,, (Pz)} —ordy, (22) + Ao, (L4)

then N(r,w1) = Sy(r, w1) and N (r, wy) = S,(r, wy) cannot hold both at the same time, possibly
outside of an exceptional set of finite logarithmic measure.

Theorem 2 Let (wy,w,) be a zero-order meromorphic solution of system (1.2), where
Qi (z, w1, wy) (k = 1,2) are homogeneous q-difference polynomials in wy and w,, respectively,
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with meromorphic coefficients, and Pr(z, wi) and Q(z, wi), k = 1,2, are polynomials in wi(z)
with meromorphic coefficients having no common factors,

A= 2)\‘11 — (max{pl, q1+ )\11} — mil’l{)\.n, ordwl (Ql)})
and
B= 2)\22 — (max{pz,qz + )»22} - min{kzz,ordm(ﬂz)}).

IfA <0,B<0andAB>9\yh, then m(r,wy) = S;(r, wi) (k = 1,2), where r runs to infinity
outside of an exceptional set of finite logarithmic measure.

2 Some lemmas
Lemma 1 ([5], Theorem 1.2) Let f(z) be a non-constant zero-order meromorphic function,
and q € C\ {0}. Then

flg2)\ _
m(r, f(—z)) =S,r,f).

Lemma 2 ([6], Lemma 4) If T : R* — R" is a piecewise continuous increasing function

such that
log T
lim 0g T(r) =0,
r—oo  logr

then the set
E:= {r: T(Cyr) > C2T(r)}
has logarithmic density O for all C; > 1 and C, > 1.

3 Proof of Theorem 1
Since Q(z, w1, w,) are homogeneous in w; and wy, respectively, it follows by Lemma 1 that

Q ) b
m(r, W) < Aam(r, wa) + Sq(r, wi) (3.1)
wi
and
Q el )
i BED ) < ) 45,00 (3:2)
Wy

for all r outside of an exceptional set of finite logarithmic measure. Moreover, from (1.2),

we have

T<r Ql(Z,WbWz)) _ T<r Py(z,w1) >
, Wiu ’ Qi(z, W1)Wi11

= (max{pqul +An)— min{ku,ordwl (Pl)})T(V, wr)

+S,(r, wi) (3.3)
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and

T(r QZ(Z:WI;W2)> _ T(r Py (z, w») )
’ W;n ’ Qa(z, Wz)W;\22
= (max{p, g2 + Aaz} — min{Az, ordy, (P2)}) T(r, ws)
+8,(r, wa), (3.4)

where r approaches infinity outside of an exceptional set of finite logarithmic measure. By
combining (3.1) and (3.3), (3.2) and (3.4), respectively, it follows that

Q ) b
N(F, Stz i, wa) 1:/111 W2)> > (1+ Az + A — ordy, (1)) T(r, w1)
w

— hom(r, wa) + Sy (r, wi) (3.5)

and

A22

Q ) )
N(r, 2(z, wi, wa)
Wy

) > (1+ Aar + Agg — ordy, () T(r, wy)

= Am(r,wr) + Sy(r, wa). (3.6)

From Lemma 2, we have

N(r, Q1(z, wi, wy) )

ordy, (Q1(z,w1,w2))
w

< (A1 — ordy, (1)) N(gr, w1) + AaN(gqr, wa) + Sq(r, w1)

(A1 — ordy, (1)) N(r, wi) + AaN(r, wa) + Sg(r, wr) + Sg(r, wa)

and

Q bl ’
N(r, 2(z, w1, wo) )

ordy, (Q2(z,w1,w2))
W

< (ha2 — ordy, (22))N(gr, wa) + AN (gr, wi) + Sy(r, w»)

= (A2 — ordy, (R2))N(r, w2) + AN (r, wy) + Sg(r, wi) + Sg(r, wa).

Therefore,

Q1(z, w1, wy) Q1 (z, wi, wa) 1
N (r’ Wi =N{r ordy, (Q1(z,w1,w2)) tN| T, A1-ordy, (€21)
1 wy w1
< (A1 — ordy, (R0))N(r, w1) + 12N (r, w)

1
+ T(}", W) + Sq(r, Wl) + Sq(r, W2)
1

< (A1 — ordy, (0))N(r, wy) + 12N (r, wy)

+ (A1 — ordy, (1)) T(r, w1) + Sy(r, wa) + Sg(r, wa) (3.7)
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and

Qa(z, w1, wy) Qa(z, w1, o) 1
N(r, A22 =N{nr ordyy, (Q2(z,w1,w2)) +N{ 7 Apg—ordy, (22)
W2 W Wy

< (ka2 — ordy, (Q2))N(r, wa) + AN (r, wy)

1
+T V,W +Sq(V,W1)+Sq(V,W2)
2

< (ka2 — ordy, (Q2))N(r, w2) + AN (r, wy)

+ (A2 — 0rdy, (22)) T(r, wa) + Sq(r, wa) + Sy(r, wa).

Combining (3.5) and (3.7), (3.6) and (3.8), respectively, we have

(1 + )\.12 + )uu — OI'dW1 (Ql)) T(r, W1)
< (A1 — ordy, (R0))N(r, w1) + A2 T (r, wo)

+ (A1 — ordy, (1)) T(r, w1) + Sg(r, w1) + Sy(r, wa)
and

(1 + )\21 + )»22 - OrdWZ(Qz)) T(V, W2)
< (Aa2 — ordy, (22))N(r, wa) + Ay T (r, w1)

+ (Aaa = 0rdy, (R22)) T (r, ) + Sy(r, wr) + Sy(r, wa).

(3.8)

(3.9)

(3.10)

Suppose that N(r,w1) = S,(r,w1) and N(r, wy) = S,(r, w»), according to (3.9) and (3.10), we

have

L+ 22)T(r,w1) < A2 T (1, wa) + Sg(r, wr) + Sy(r, wa)
and

(L + X)) T (r, wa) < A1 T(r, wn) + Sy(r, wr) + Sg(r, wa).
That is,

(1 + A+ 0(1)) T(r,w) < ()Lu + 0(1)) T (r, wy)
and

(14221 +0()) T(r, wa) < (A12 + 0(1)) T(r, wy).
By (3.11) and (3.12), we conclude that

1+ Ap +1+ A1 +0(1) < Agg + Aoq,

which is impossible, we prove the assertion.

(3.11)

(3.12)

Page 6 of 9
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4 Proof of Theorem 2
It follows by Lemma 1 that

Q i )
Wl(f, W) < Aam(r, wa) + Sq(r, wi) (4.1)
w

and

A22

( Qa(z, wi, W)
m|r, —————
Wy

) < Aoym(r, wr) + Sy(r, wo) (4.2)

for all r outside of an exceptional set of finite logarithmic measure.
Suppose now that (w;(z), wa(z)) is a finite-order meromorphic solution of (1.2). Denoting

,,,,,

Qi(z, wi, 1
N(r, W) =An <N(|q|r, wi) +N(r, —>)
2 w1

+ Mz (N(Iqlr’ wa) + N(r’ w%))

+ AN (r,wy) + S4(r, wi) + S, (r, wy)
1 1
= )\11<N(7‘,W1) +N<r, —)) +)L12(N(V,W2) +N<I", —))
w1 wa

+ AN (r, wo) + S4(r, wr) + Sy(r, wa) (4.3)

for all r outside of a set E of finite logarithmic measure. By (4.1) and (4.3), we have

Q1(z, w1, 1
N(V,M)S)\.11<N(V,W1)+N<r,—)>
wlll wi

1
+ A2 (N(r, wy) + N(r, —)) +Sq(r,wi) + Sy(r, wo)
wa
< A2 (2T (r,w1) — m(r,w1)) + A2 (3T (r, w2) — 2m(r, wa))
+84(r,wr) + Sy(r, wa) (4.4)
for all r ¢ E. On the other hand, by (4.1) and (4.3),

Q i )
N(r, 1(z, wi, wo)

A1
wi

ZT(V, Pl(r;wl) )

A1
wp Qli", w1

) + hom(r, wo)

= (max{pl, q1 + )\.11} - I'I'lin{)\.u, ordwl (Ql) }) T(V, W1) + Sq(r, Wl), (4.5)

where r lies outside of a set F of finite logarithmic measure. Combining inequalities (4.4)
and (4.5) with the assumption in Theorem 2, we have

— 1 3 Wl y
(max{py,q1 + A1} — min{Ayy, ordy, (Q1)}) T(r, wy)

— dam(r, wa) + Sq(r, wi) + Sy(r, wa)

Page 7 of 9
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<M1 (2T(r, w1) — m(r,w1)) + A2 (BT (r, wa) — 2m(r, w,))

+Sq(7"; wi) +Sq(r»w2)~ (4.6)
Similarly, we obtain

(max{ps, qa + Aoa} — min{ Ay, 0rdy, () }) T(r, wa)
— Agm(r, wi) + Sq(r, wi) + Sy(r, wo)
< a2 (2T (r, wo) — m(r, wa)) + Aoy (3T (r, 1) — 2m(r, wi))

+84(r,wr) + Sy(r, wa). (4.7)
By (4.6) and (4.7), we obtain

Aum(r, wi)
< (2)»11 - (max{pl,ql +An} - min{kll,ordwl(ﬂl)}) + 0(1)) T(r,wr)
+ (3212 + 0(1)) T(r, w) (4.8)

and

((max{p2, g2 + Aa2} — min{Az, ordy, (22)}) — 2222 + 0(1)) T(r, w,)
< (S)m + 0(1)) T(r,wy) — 2Aq m(r, wy). (4.9)

Combining (4.8) and (4.9), we have

Anm(r, wy)
< (2)\‘11 — (max{pl, q1 + )\.11} - min{kll,ordwl(Ql)}) + 0(1)) T(V, W])

3X12(3A21 + 0(1)) T'(r, w1) — 6 X121 m(r, wi)
(max{pa, g2 + Az} — min{Ay, ordy, (22)}) — 2422

that is,

619 IO A 1
<k11— 1;, 21)1’”(7‘, wy) < < - %)T(H w), (4.10)

whereA = 2)\11 - (max{pl, q1 + )\.11} —mil’l{)\u, OI'dW1 (Ql)}) and B= 2)\.22 - (max{pz, q> + )\22} —
min{Ay», ord,, (22)}). Combining the assumption and (4.10), we have

m(r, wi) = Sg(r, w1)

for all r outside of E U F, a set of finite logarithmic measure.
Similarly, we obtain

m(r, wa) = S,(r, ws)

for all r outside of E U F, we have proved the assertion.
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