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Abstract
In this paper, a fractional differential model of HIV infection of CD4+ T-cells is
investigated. We shall consider this model, which includes full logistic growth terms
of both healthy and infected CD4+ T-cells, time delay items, and cure rate items.
A more appropriate method is given to ensure that both equilibria are asymptotically
stable for τ ≥ 0 under some conditions. Furthermore, the dynamic behaviors of the
fractional HIV models are described by applying an Amads-type predictor-corrector
method algorithm.
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1 Introduction
Mathematical models have played an important role in understanding the dynamics of
HIV infection; there are several papers introducing the Human Immunodeficiency Virus
(HIV) [, ]. When HIV infects the body, its target is the CD+ T-cell. In these years,
mathematical models have been proven valuable in the dynamics of HIV infection. Mean-
while, there are only some works for the dynamics of HIV infections of CD+ T-cells
[, ].
The consideration of the cure (or recovery) rate of infected cells is significant in the

modeling for viral dynamics. The covalently closed circular (ccc) DNA of Hepatitis B viral
has been shown to be eliminated from the nucleus of infected cells in the absence of hep-
atocyte injury during transient infections []. In , Wang et al. [] built and studied an
improved HBV model with a standard incidence function and ‘cure’ rate. Inspired by the
HBV dynamic model with cure rate, Zhou et al. [] firstly introduced the cure rate into the
HIV infection model. In recent years, the HIV model with cure rate has received a great
deal of attention (see e.g. [–]).
In , Liu et al. [] considered a new model frame that included full logistic growth

terms of both healthy and infected CD+ T-cells:

⎧⎪⎨
⎪⎩
T ′(t) = s – αT(t) + rT(t)( – T(t)+I(t)

Tmax
) – kT(t)V (t) + ρI(t),

I ′(t) = kT(t)V (t) + rI(t)( – T(t)+I(t)
Tmax

) – (β + ρ)I(t),
V ′(t) =NβI(t) – dV (t).

(.)
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Fractional differential equations have been widely used in various fields, such as physics,
chemical technology, biotechnology, and economics in recent years (see e.g. [–]). As
is well known, the boundary value problem is an important topic, there is a great deal of
attention for this (see [–]).
We introduce the fractional calculus into the HIV model for the memory property of

fractional calculus. Both in mathematics and biology, fractional calculus will be more in
line with the actual situation. It is particularly of significance for us to study the fractional
HIV model.
Recently, Yan and Kou [] have introduced fractional-order derivatives into a model of

HIV infection of CD+ T-cells with time delay:

⎧⎪⎨
⎪⎩
DαT(t) = s –μTT(t) + rT(t)( – T(t)+I(t)

Tmax
) – kT(t)V (t),

DαI(t) = k′
T(t – τ )V (t – τ ) –μI I(t),

DαV (t) =NμbI(t) – kT(t)V (t) –μvV (t),
(.)

with the initial conditions:

T(θ ) = T, I() = , V (θ ) = V, θ ∈ [–τ , ]. (.)

Motivated by the works mentioned above, we shall consider this model, which includes
full logistic growth terms of both healthy and infected CD+ T-cells, time delay items,
and cure rate items; a more appropriate method is given to ensure that both equilibria
are asymptotically stable for τ ≥ . In this paper, we establish the mathematical model as
follows:

⎧⎪⎨
⎪⎩
DαT(t) = s –μTT(t) + rT(t)( – T(t)+I(t)

Tmax
) – kT(t)V (t) + ρI(t),

DαI(t) = k′T(t – τ )V (t – τ ) + rI(t)( – T(t)+I(t)
Tmax

) – (μI + ρ)I(t),
DαV (t) =NμbI(t) –μvV (t),

(.)

with the initial conditions:

T(θ ) = T, I() = , V (θ ) = V, θ ∈ [–τ , ], (.)

where Dα denotes the Caputo fractional derivative of order α with the lower limit zero.
T(t), I(t),V (t) represent the concentration of healthyCD+ T-cell at time t, infectedCD+

T-cells at time t, and free HIV virus particles in the blood at time t, respectively. The posi-
tive constant τ represents the length of the delay in days. A complete list of the parameter
values for the model is given in Table  (see []).
Furthermore, we assume that T(t) > , I(t) ≥  and V (t) ≥  for all t ≥ –τ .
This article is organized in the following way. In the next section, some necessary defi-

nitions and lemmas are presented. In Section , the stability of the equilibria is given. In
Section , we will give the numerical simulation for the fractional HIV model. Finally, the
conclusions are given.

2 Preliminaries
In this section, we introduce some definitions and lemmas, which will be used later.
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Table 1 Parameters and values of model (1.4)

Parameter Description Value

T Uninfected CD4+ T-cell population size 1,000mm–3

I Infected CD4+ T-cell density 0
V Initial density of HIV RNA 10–3 mm–3

T0 CD4+ T-cell population for HIV-negative persons 1,000mm–3

μT Natural death rate of CD4+ T-cell 0.02 day–1

μI Blanket death rate of infected CD4+ T-cell 0.26 day–1

μV Death rate of free virus 2.4 day–1

μb Lytic death rate for infected cells 0.24 day–1

k Rate CD4+ T-cell become infected with virus 2.4× 10–5 mm3 day–1

k′ Rate infected cells become active 2× 10–5 mm3 day–1

ρ Rate of each infected cells reverting to the uninfected state Varies
r Growth rate of CD4+ T-cell population 0.03 day–1

N Number of virions produced by infected CD4+ T-cell Varies
Tmax Maximal population level of CD4+ T-cell 1,500mm–3

s Source term for uninfected CD4+ T-cell 10 day–1 mm–3

Definition . ([, ]) The fractional (arbitrary) order integral of the function f :
[,∞)→ R of order p >  is defined by

Ipf (x) =


�(p)

∫ x


(x – s)p–f (s)ds.

Definition . ([]) Let α ≥ , n = [α] + , n –  < α ≤ n, where [α] denotes the integer
part of numberα. If f ∈ ACn[a,b], theCaputo fractional derivative of orderα of f is defined
by

cDαf (t) =


�(n – α)

∫ t

a

f (n)(s)
(t – s)α+–n

ds, t > ,n –  < α < n.

Lemma . ([, ]) The equilibrium point (xeq, yeq) of the fractional differential system

{
Dαx(t) = f(x, y), Dαy(t) = f(x, y), α ∈ (, ],
x() = x, y() = y

is locally asymptotically stable if all the eigenvalues of the Jacobian matrix

A =

(
∂f
∂x

∂f
∂y

∂f
∂x

∂f
∂y

)

evaluated at the equilibrium point satisfy the following condition:

∣∣arg(eig(A))∣∣ > απ


.

The stable and unstable regions for  < α ≤  are shown in Figure  [, , ].

3 The stability of the equilibria
In this section, we investigate the existence of equilibria of system (.).

http://www.advancesindifferenceequations.com/content/2014/1/298
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Figure 1 Stability region of system (1.4) with order
0 < α ≤ 1.

In order to find the equilibria of system (.), we put

⎧⎪⎨
⎪⎩
s –μTT(t) + rT(t)( – T(t)+I(t)

Tmax
) – kT(t)V (t) + ρI(t) = ,

k′T(t – τ )V (t – τ ) + rI(t)( – T(t)+I(t)
Tmax

) – (μI + ρ)I(t) = ,
NμbI(t) –μvV (t) = .

(.)

Following the analysis in [], we find that system (.) has always the uninfected equi-
librium E = (T, , ), where

T =
Tmax

r

(
r –μT +

√
(r –μT ) +

rs
Tmax

)
.

We define the parameter Ncrit as

Ncrit =
μV

k′μIT

(
s
T

+μI –μT + ρ

)

and we also find that, if N > Ncrit, system (.) has a unique positive equilibrium,
E∗(T∗, I∗,V ∗). IfN = rμV

k′μITmax
, system (.) has a unique positive equilibrium E∗(T∗, I∗,V ∗),

where

T∗ =
Tmax

r

[
(μI + ρ) – r –μT +

√[
r +μT – (μI + ρ)

] + ρ(r –μI – ρ) +
rs
Tmax

]
,

I∗ =
μVV ∗

NμI
, V ∗ =

r –μI – ρ

k
.

Next, we shall discuss the stability for the local asymptotic stability of the viral free equi-
librium E and the infected equilibrium E∗.
To discuss the stability of system (.), let us consider the following coordinate transfor-

mation:

x(t) = T(t) – T , y(t) = I(t) – I, z(t) = V (t) –V ,

http://www.advancesindifferenceequations.com/content/2014/1/298
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where (T , I,V ) denotes any equilibrium of (.). So we see that the corresponding lin-
earized system of (.) is of the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Dαx(t) = x(t)(–μT + r – rT+rI

Tmax
– kV ) + y(t)(ρ – rT

Tmax
) – kTz(t),

Dαy(t) = k′Vx(t – τ ) + k′Tz(t – τ )
+ y(t)(r – rT+rI

Tmax
– (μI + ρ)) – rI

Tmax
x(t),

Dαz(t) =Nμby(t) –μV z(t).

(.)

The characteristic equation of system (.) at (T , I,V ) is given by

∣∣∣∣∣∣∣∣∣∣

λ –
(
–μT + r – rT+rI

Tmax
– kV

)
–ρ + rT

Tmax
kT

–k′Ve–λτ + rI
Tmax

λ –
(
r – (μI + ρ) – rT+rI

Tmax

)
–k′Te–λτ

 –Nμb λ +μV

∣∣∣∣∣∣∣∣∣∣
= .

For the local asymptotic stability of the viral free equilibrium E, we have the following
result.

Theorem . If N <Ncrit, the uninfected state E = (T, , ) is locally asymptotically sta-
ble for τ ≥ .

Proof The associated transcendental characteristic equation at E = (T, , ) = (T , I,V ) is
given by

(
λ +μT – r +

rT

Tmax

)(
(λ +μV )

(
λ – r +μI + ρ +

rT

Tmax

)
–Nμbk′Te–λτ

)
= .

Obviously, the above equation has the characteristic root

λ = r –μT –
rT

Tmax
< ,

where T = Tmax
r (r –μT +

√
(r –μT ) + rs

Tmax
).

Next, we consider the transcendental polynomial

λ + λ

(
μV – r +μI + ρ +

rT

Tmax

)
+μIμV – rμV +μVρ +

rTμV

Tmax
–Nμbk′Te–λτ = .

For τ = , we get

λ + λ

(
μV – r +μI + ρ +

rT

Tmax

)
+μIμV – rμV +μVρ +

rTμV

Tmax
–Nμbk′T = .

Then we note that

μI – r + ρ +
rT

Tmax
=

μb

μI

(
s
T

+ (μI –μT ) + ρ

)
> ,

http://www.advancesindifferenceequations.com/content/2014/1/298
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we easily see that

μV

(
μI – r + ρ +

rT

Tmax

)
=Ncritμbk′T.

We have

λ, =
–(μV – r +μI + ρ + rT

Tmax
)±

√
(μV – r +μI + ρ + rT

Tmax
) – (Ncrit –N)μbk′T


,

if N <Ncrit, the characteristic roots have negative real parts for τ = .
For τ 	= , we get

λ + λ

(
μV – r +μI + ρ +

rT

Tmax

)
+μIμV – rμV +μVρ +

rTμV

Tmax
–Nμbk′Te–λτ = .

Assume that the above equation has roots λ = ω(cos βπ

 ± i sin βπ

 ), for ω >  and τ > ;
we get

ω
(
cos

βπ


± i sin

βπ



)

+ω

(
cos

βπ


± i sin

βπ



)(
μV – r +μI + ρ +

rT

Tmax

)

+μIμV – rμV +μVρ +
rTμV

Tmax
–Nμbk′Te–τω(cos βπ

 ±i sin βπ
 ) = .

Separating the real and imaginary parts gives

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω(cos βπ

 – sin βπ

 ) +ω cos βπ

 (μV – r +μI + ρ + rT
Tmax

)
+μIμV – rμV +μVρ + rTμV

Tmax
–Nμbk′Te–τω cos βπ

 cos(∓τω sin βπ

 ) = ,
±ω sin βπ

 cos βπ

 ± ω sin βπ

 (μV – r +μI + ρ + rT
Tmax

)
– sin(∓τω sin βπ

 )Nμbk′Te–τω cos βπ
 = .

(.)

From the second equation of (.), we have

sin
βπ


= ,

that is βπ

 = kπ , k = , , , . . . .
For βπ

 = kπ , k = , , , . . . , substituting into the first equation of (.), we have

ω +ω

(
μV – r +μI + ρ +

rT

Tmax

)
+μIμV – rμV +μVρ +

rTμV

Tmax

=Nμbk′Te–τω. (.)

For the parameter values given in Table , we take anyN <Ncrit, the infected equilibrium
E = (,,, ), and we find that the above equation is unequal for ω > . Therefore,
β ≥  > α.
According to Lemma ., the uninfected equilibrium E∗ is locally asymptotically stable.

The proof is completed. �

http://www.advancesindifferenceequations.com/content/2014/1/298
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Remark . ([]) The stability region of a system with fractional order α ∈ (, ) is always
larger than that of a corresponding ordinary differential system.Thismeans that a unstable
equilibrium of an ordinary differential system may be stable in a fractional differential
system.

Next, for the sake of convenience, at E∗ = (T∗, I∗,V ∗), we define the following symbols:

M = μT – r +
rT∗ + rI∗

Tmax
+ kV ∗, M = –r +μI + ρ +

rT∗ + rI∗

Tmax
,

A = μV +M +M, B =MμV +MμV +MM –
rI∗T∗

T
max

+
ρrI∗

Tmax
,

C = –Nμbk′T∗ +
rT∗k′V ∗

Tmax
– ρk′V ∗,

D =MMμV –
NμbkT∗rI∗

Tmax
–

μV rT∗rI∗

T
max

+
μVρrI∗

Tmax
,

E = k′V ∗NμbkT∗ –NMμbk′T∗ –μVρk′V ∗ +
k′V ∗μV rT∗

Tmax
.

Then the characteristic equation of the linear system is

λ +Aλ +
(
B +Ce–λτ

)
λ +D + Ee–λτ = . (.)

Using the results in [], we get

D(λ) = λ +Aλ + (B +C)λ +D + E

and

D′(λ) = λ + Aλ + (B +C).

Denote

D(λ) = –

∣∣∣∣∣∣∣∣∣∣∣∣

 A B +C D + E 
  A B +C D + E
 A B +C  
  A B +C 
   A B +C

∣∣∣∣∣∣∣∣∣∣∣∣
= A(B +C)(D + E) – A(D + E) – (D + E) – (B +C) +A(B +C).

Theorem . Let ± Cτ

 > , (± Cτ

 )(B±C –Eτ ) > , D+E ≥  and N >Ncrit, then the
infected equilibrium E∗ is asymptotically stable for any time delay τ ≥  if either

(i) D(λ) > , A > , D + E > , A(B +C) >D + E,

or

(ii) D(λ) < , A≥ , B +C ≥ , . < α < /.

http://www.advancesindifferenceequations.com/content/2014/1/298
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Proof According to (.).
For τ = , we have

λ +Aλ + (B +C)λ +D + E = .

Using the result in [], the infected steady state E∗ is asymptotically stable if the Routh-
Hurwitz condition is satisfied, i.e.

(i) D(λ) > , A > , D + E > , A(B +C) >D + E,

or

(ii) D(λ) < , A≥ , B +C ≥ , . < α < /.

For τ 	= , we get

λ +Aλ +
(
B +Ce–λτ

)
λ +D + Ee–λτ = .

Assume that the above equation has roots λ = ω(cos βπ

 ± i sin βπ

 ), for ω >  and τ > ;
we get

ω
(
cos

βπ


± i sin

βπ



)

+Aω
(
cos

βπ


± i sin

βπ



)

+ω
(
B +Ce–τω(cos βπ

 ±i sin βπ
 ))(cos βπ


± i sin

βπ



)

+D + Ee–τω(cos βπ
 ±i sin βπ

 ) = .

Separating the real and imaginary parts yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω cos βπ

 – ω sin βπ

 cos βπ

 +Aω cos βπ

 –Aω sin βπ



+ωB cos βπ

 ± ωC cos βπ

 e–τω cos βπ
 cos(∓τω sin βπ

 )
∓ sin βπ

 Ce–τω cos βπ
 sin(∓τω sin βπ

 ) +D
+ Ee–τω cos βπ

 cos(∓τω sin βπ

 ) = ,
±ω cos βπ

 sin βπ

 ∓ ω sin βπ

 ± Aω sin βπ

 cos βπ



± ωB sin βπ

 ± ω sin βπ

 Ce–τω cos βπ
 cos(∓τω sin βπ

 )
+ωCe–τω cos βπ

 sin(∓τω sin βπ

 ) cos βπ



+ Ee–τω cos βπ
 sin(∓τω sin βπ

 ) = .

(.)

From the second equation of (.), we have

sin
βπ


= ,

that is, βπ

 = kπ , k = , , , . . . .
For βπ

 = kπ , k = , , , . . . , substituting into the first equation of (.), we have

ω +Aω +ω
(
B±Ce–τω

)
+D + Ee–τω = .

http://www.advancesindifferenceequations.com/content/2014/1/298
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For the parameter values given in Table , we take any N >Ncrit; then we get the specific
value on the infected equilibrium E∗ = (T∗, I∗,V ∗) and we can see that the above equation
is unequal for ω > .
For βπ

 = kπ , k = , , , . . . , substituting into the first equation of (.), we have

–ω +Aω –ω
(
B±Ceτω

)
+D + Eeτω = . (.)

According to the development of Taylor type, we have

eτω ≈  + τω +
(τω)

!
.

We take ω = –θ , and (.) becomes

θ
(
± Cτ 



)
+ θ

(
A∓ τC +

Eτ 



)
+ θ (B±C – Eτ ) +D + E = . (.)

Let

α = ± Cτ 


, β = A∓ τC +

Eτ 


, γ = B±C – Eτ , ρ =D + E,

then (.) becomes

h(θ ) = αθ + βθ + γ θ + ρ. (.)

Notice that

h′(θ ) = αθ + βθ + γ .

Set

αθ + βθ + γ = . (.)

Then the roots of (.) can be expressed as

θ, =
–β ± √

β – αγ

α
.

Due to αγ > , we have
√

β – αγ < β . Hence, neither θ nor θ is positive. Thus, (.)
does not have positive roots. Since α > , h() = ρ ≥ , it follows that (.) has no positive
roots.
Because of ω = –θ , the roots of (.) are positive, that is, ω,, > .
The proof is completed. �

4 Numerical simulations
In this section, we use the Adams-type predictor-corrector method for the numerical so-
lution of the nonlinear system (.) and (.) with time delay.
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Firstly, we shall replace system (.) and (.) by the following equivalent fractional in-
tegral equations:

⎧⎪⎨
⎪⎩
T(t) = T() + Iα[s –μTT(t) + rT(t)( – T(t)+I(t)

Tmax
) – kT(t)V (t) + ρI(t)],

I(t) = I() + Iα[k′T(t – τ )V (t – τ ) + rI(t)( – T(t)+I(t)
Tmax

) – (μI + ρ)I(t)],
V (t) = V () + Iα[NμbI(t) –μvV (t)].

(.)

Next, we apply the PECE (Predict, Evaluate, Correct, Evaluate) method.
The approximate solution is displayed in Figure (A)-(A), Figure (B)-(B), Fig-

ure (C)-(C), Figure (D)-(D), Figure (E)-(E), Figure (F)-(F), Figure (G)-(G),
and Figure (H)-(H). When α = , system (.) is the classical integer-order ODE.
For the parameter values given in Table , we take ρ = ., then Ncrit = ..
We take N = , τ = , then E∗ = (., ., ,.) and

A = ., B = ., C = –., D = ., E = –.,

and

D(λ) = –. < , B +C = .,

A(B +C) = ., D + E = . > ,(
 –

Cτ 



)
(B –C – Eτ ) = . > ,

(
 +

Cτ 



)
(B +C – Eτ ) = . > .

Hence, all the conditions in Theorem . are satisfied and the infection case E∗ is asymp-
totically stable. In addition, when we take N = ,, τ = , all the conditions in Theo-
rem . are also satisfied and the infection case E∗ is asymptotically stable.

Remark . Figures  and  show that, as α increases, the trajectory of the system closes
in to the integer-order ODE.

Remark . Figure  shows that, as τ increases, the fluctuation of the trajectory of the
system is smaller during the previous period of the time.

Remark . If N < Ncrit, Figure  shows that, as α closes in to , the number of steady
states of T approaches the initial value, the numbers of steady states of I and V approach
zero.

Remark . Figures , , and  show that, as p increases, the number of infected T-cells
is decreased, the level of the steady state of T is higher, the fluctuations of the trajectories
of I and V are smaller. For ρ = ., the trajectory of the system is fluctuating during the
previous period of the time. As ρ (> .) is increasing, the fluctuation of the trajectory
of the system is stronger. It is noticeable that, for ρ in a certain range, drugs can resist
the virus. For . < ρ ≤ , the trajectory of the system is fluctuating during the previous
period of the time, and it will tend to the steady state later. For ρ ≥ ., the trajectory of
the system is unstable.
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Figure 2 In (A1)-(A3), α = {0.7, 0.8, 0.9, 1}, N = 800, τ = 0, ρ = 0.1.
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Figure 3 In (B1)-(B3), α = {0.7, 0.8, 0.9, 1}, N = 1,400, τ = 0, ρ = 0.1.
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Figure 4 In (C1)-(C3), α = 0.7, N = 800, τ = {0,1, 2, 3, 4, 5}, ρ = 0.1.
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Figure 5 In (D1)-(D3), α = {0.7, 0.8, 0.9, 1}, N = 100, τ = 3, ρ = 0.1.
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Figure 6 In (E1)-(E3), α = 0.7, N = 800, τ = 2, ρ = {0,0.2, 0.4, 0.6}.
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Figure 7 In (F1)-(F3), α = 0.7, N = 800, τ = 2, ρ = 1.
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Figure 8 In (G1)-(G4), α = 0.7, N = 800, τ = 2, ρ = 1.1.
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Figure 8 Continued.

Figure 9 In (H1)-(H3), α = 0.7, N = {200,250,300,500,800,1,000,1,400}, τ = 2, ρ = 0.1.

Remark . Figure  shows that, as N decreases, the number of steady states of T in-
creases, the numbers of steady states of I and V are decreased and the trajectories of the
system of I and V are also close to stable.

5 Conclusions
In this paper, we modified the ODE model proposed by Liu et al. [] and the fractional
model proposed by Yan and Kou [] into a system of fractional order.We study a fractional
differential model of HIV infection of the CD+ T-cells. We shall consider this model,
which includes full logistic growth terms of both healthy and infected CD+ T-cells, time
delay items, and cure rate items. Moreover, we study α, τ , N , and ρ , and we obtain some
significant conclusions. For example, if the cure rate gets large in a certain range, it will
control theHIV infection efficiently. In our analysis, themore appropriatemethod is given
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Figure 9 Continued.

to ensure that both equilibria are asymptotically stable for τ ≥ . Both in mathematics
and biology, it is particularly important to show stability of the infected and uninfected
equilibrium point. In addition, we describe the dynamic behaviors of the fractional HIV
model by using the Amads-type predictor-corrector method algorithm.
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