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Abstract
In this paper, we investigate a boundary value problem for singular fractional
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1 Introduction
Differential equations of fractional order have recently been addressed by many re-
searchers of various fields of science and engineering such as physics, chemistry, biology,
economics, control theory, and biophysics; see [, ]. On the other hand, fractional differ-
ential equations also serve as an excellent tool for the description of memory and hered-
itary properties of various materials and processes. With these advantages, the model of
fractional order become more and more practical and realistic than the classical of inte-
ger order, such effects in the latter are not taken into account. As a result, the subject of
fractional differential equations is gaining much attention and importance.
Recently, much attention has been focused on the study of the existence and unique-

ness of solutions for boundary value problem of fractional differential equations with
nonlocal boundary conditions by the use of techniques of nonlinear analysis (fixed
point theorems, Leray-Schauder theory, the upper and lower solution method, etc.); see
[–].
In [], Agarwal et al. investigated the existence of solutions for the singular fractional

boundary value problems

⎧⎨
⎩
Dαu(t) + f (t,u(t),Dμu(t)) = ,  < t < ,

u() = u() = ,

where  < α < ,  < μ ≤ α –  are real numbers, Dα is the standard Riemann-Liouville
fractional derivative, f satisfies the Caratheodory conditions on [, ] × (,∞) × R, f is
positive, and f (t,x, y) is singular at x = .
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In [], Yan et al. studied the existence and uniqueness of solutions for a class of frac-
tional differential equations with integral boundary conditions

⎧⎪⎪⎨
⎪⎪⎩

CDα
+x(t) + f (t,x(t),CDβ

+x(t)) = , t ∈ [, ],

x() + x′() = y(x),
∫ 
 x(t)dt =m,

x′′() = x′′′() = · · · = x(n–)() = ,

where CDα
+ , CD

β

+ are the Caputo fractional derivatives, f : [, ] × R × R → R is a con-
tinuous function, y : [, ] → R is a continuous function, and m ∈ R, n –  < α < n (n ≥ ),
 < β <  is a real number.
In [], Guezane-Lakoud and Bensebaa discussed the existence and uniqueness of so-

lutions for a fractional boundary value problem with a fractional derivative condition,
⎧⎨
⎩

CDq
+u(t) + f (t,u(t), CDσ

+u(t)) = ,  < t < ,

u() = u′′() = , u′() = CDσ
+u(),

where f : [, ] × R × R → R is a given function,  < q < ,  < σ < , and CDq
+ represents

the standard Caputo fractional derivative of order q.
Motivated by all the works above, this paper deals with the existence and uniqueness of

solutions for the singular fractional boundary value problem with a fractional derivative
condition,

⎧⎨
⎩

CDq
+u(t) + f (t,u(t), CDσ

+u(t)) = ,  < t < ,

u() = u′() = , u′() = CDσ
+u(),

(.)

where  < q < ,  < σ < , f : (, ]× R× R → R is continuous, f (t,x, y) may be singular at
t = , CDq

+ is the standard Caputo derivative.
The paper is organized as follows. In Section , we shall introduce some definitions

and lemmas to prove our main results. In Section , we establish some criteria for the
existence for the boundary value problem (.) by using the Banach fixed point theorem
and the Schauder fixed point theorem. Finally, we present two examples to illustrate our
main results.

2 Preliminaries and lemmas
In this section, we present definitions and some fundamental facts from fractional calculus
which can be found in [].
Let E = {x : x ∈ C[, ],CDσ

+x ∈ C[, ]},  < σ < , endowed with the norm

‖x‖ =max
{
max
t∈[,]

∣∣x(t)∣∣, max
t∈[,]

∣∣CDσ
+x(t)

∣∣},

then (E,‖ · ‖) is a Banach space.

Definition . [] If g ∈ C[a,b] and α > , then the Riemann-Liouville fractional integral
is defined as

Iαa+g(t) =


�(α)

∫ t

a
(t – s)α–g(s)ds.
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Definition . [] Let α > , n = [α] + . If g ∈ ACn([a,b]), then the Caputo fractional
derivative of order α defined by

CDα
a+g(t) =


�(n – α)

∫ t

a
(t – s)n–α–g(n)(s)ds

exists almost everywhere on [a,b] ([α] denotes the integer part of the real number α).

Lemma . [] Let α,β >  and n = [α] + . Then the following relations hold:

CDα
a+ t

β– =
�(β)

�(β – α)
tβ–α–, β > n

and

CDα
a+ t

k = , k = , , , . . . ,n – .

Lemma . [] For α > , g(t) ∈ C[a,b], the homogeneous fractional differential equation
CDα

a+g(t) =  has a solution

g(t) = C +Ct +Ct + · · · +Cntn–,

where Ci, i = , , . . . ,n, and n = [α] + .

Lemma . [] Let p,q ≥ , and f ∈ L([a,b]). Then

Ipa+ I
q
a+ f (t) = Ip+qa+ f (t) = Iqa+ I

p
a+ f (t),

CDq
a+ I

q
a+ f (t) = f (t), ∀t ∈ [a,b].

Lemma . [] Let β > α > , and f ∈ L([a,b]). Then for all t ∈ [a,b] we have

CDα
a+ I

β

a+ f (t) = Iβ–α

a+ f (t).

Lemma . (Schauder fixed point theorem) Let (E,d) be a complete metric space, let U be
a closed convex subset of E, and let A :U → U be a mapping such that the set {Au : u ∈U}
is relatively compact in E. Then A has at least one fixed point.

Lemma . For y ∈ C[, ] and  < q < ,  < σ < , the unique solution of

⎧⎨
⎩

CDq
+u(t) = y(t),  < t < ,

u() = u′() = , u′() = CDσ
+u(),

is given by

u(t) =
∫ 


G(t, s)y(s)ds,
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where

G(t, s) =

⎧⎨
⎩

(t–s)q–
�(q) + �(–σ )t(–s)q–

�(–σ )–�() ( (–s)
–σ

�(q–σ ) –


�(q–) ),  ≤ s≤ t ≤ ,
�(–σ )t(–s)q–
�(–σ )–�() ( (–s)

–σ

�(q–σ ) –


�(q–) ), ≤ t ≤ s≤ .
(.)

Proof By Lemma ., we get

u(t) = Iq+y(t) +C +Ct +Ct,

for some Ci ∈ R, i = , , . So, we have

u′(t) = Iq–+ y(t) +C + Ct.

From the conditions u() = u′() = , we obtain C = C = . Hence,

CDσ
+u(t) = Iq–σ

+ y(t) +C
CDσ

+ t
 = Iq–σ

+ y(t) +C
�()

�( – σ )
t–σ .

The condition u′() = CDσ
+u() implies that

C =
�( – σ )

�( – σ ) – �()

∫ 



(
( – s)q–σ–

�(q – σ )
–
( – s)q–

�(q – )

)
y(s)ds.

Therefore, u(t) can be written as

u(t) = Iq+y(t) +
�( – σ )t

�( – σ ) – �()

∫ 



(
( – s)q–σ–

�(q – σ )
–
( – s)q–

�(q – )

)
y(s)ds

=
∫ 


G(t, s)y(s)ds,

where G(t, s) is defined by (.). The proof is complete. �

3 Existence and uniqueness results
Define the operator T : E → E by

Tu(t) =
∫ 


G(t, s)f

(
s,u(s),CDσ

+u(s)
)
ds, ∀t ∈ [, ].

Denote

B =
B(q,  – δ)

�(q)
+

�( – σ )
�( – σ ) – �()

(
B(q – σ ,  – δ)

�(q – σ )
+
B(q – ,  – δ)

�(q – )

)
,

B =
B(q – σ ,  – δ)

�(q – σ )
+

�()
�( – σ ) – �()

(
B(q – σ ,  – δ)

�(q – σ )
+
B(q – ,  – δ)

�(q – )

)
.

Lemma . Let  < q < ,  < δ < , F : (, ] → R is continuous, and limt→+ F(t) = ∞.
Suppose that tδF(t) is continuous on [, ]. Then the function u(t) =

∫ 
 G(t, s)F(s)ds is con-

tinuous on [, ].
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Proof By the continuity of tδF(t) and u(t) =
∫ 
 G(t, s)s

–δsδF(s)ds. It is easy to know that
u(t) = . Now we separate the process into three cases.
Case . For t =  and ∀t ∈ (, ]. Because of the continuity of tδF(t), there exists a con-

stantM >  such that |tδF(t)| ≤M, t ∈ [, ], then

∣∣u(t) – u()
∣∣ =

∣∣∣∣
∫ t



(t – s)q–

�(q)
s–δsδF(s)ds +

�( – σ )t

�( – σ ) – �()

×
∫ 



(
( – s)q–σ–

�(q – σ )
–
( – s)q–

�(q – )

)
s–δsδF(s)ds

∣∣∣∣
≤ M

∫ t



(t – s)q–s–δ

�(q)
ds +

�( – σ )tM
�( – σ ) – �()

×
∫ 



(
( – s)q–σ–s–δ

�(q – σ )
+
( – s)q–s–δ

�(q – )

)
ds

=
Mtq–δ

�(q)

∫ 


( –w)q–w–δ dw +

�( – σ )tM
�( – σ ) – �()

×
(
B(q – σ ,  – δ)

�(q – σ )
+
B(q – ,  – δ)

�(q – )

)

=
Mtq–δ

�(q)
B(q,  – δ) +

�( – σ )tM
�( – σ ) – �()

×
(
B(q – σ ,  – δ)

�(q – σ )
+
B(q – ,  – δ)

�(q – )

)

→ , as t → ,

where B denotes the beta function.
Case . For t ∈ (, ) and ∀t ∈ (t, ], then

∣∣u(t) – u(t)
∣∣ =

∣∣∣∣
∫ t



(t – s)q–

�(q)
s–δsδF(s)ds –

∫ t



(t – s)q–

�(q)
s–δsδF(s)ds

+
�( – σ )t

�( – σ ) – �()

∫ 



(
( – s)q–σ–

�(q – σ )
–
( – s)q–

�(q – )

)
s–δsδF(s)ds

–
�( – σ )t

�( – σ ) – �()

∫ 



(
( – s)q–σ–

�(q – σ )
–
( – s)q–

�(q – )

)
s–δsδF(s)ds

∣∣∣∣
≤

∣∣∣∣
∫ t



(t – s)q– – (t – s)q–

�(q)
s–δsδF(s)ds +

∫ t

t

(t – s)q–

�(q)
s–δsδF(s)ds

∣∣∣∣
+

�( – σ )(t – t)
�( – σ ) – �()

∫ 



∣∣∣∣
(
( – s)q–σ–

�(q – σ )
–
( – s)q–

�(q – )

)
s–δsδF(s)

∣∣∣∣ds

≤ M
�(q)

(∫ t



[
(t – s)q– – (t – s)q–

]
s–δ ds +

∫ t

t
(t – s)q–s–δ ds

)

+
�( – σ )(t – t)M
�( – σ ) – �()

(
B(q – σ ,  – δ)

�(q – σ )
+
B(q – ,  – δ)

�(q – )

)

≤ M(tq–δ – tq–δ

 )B(q,  – δ)
�(q)

+
�( – σ )(t – t)M
�( – σ ) – �()

×
(
B(q – σ ,  – δ)

�(q – σ )
+
B(q – ,  – δ)

�(q – )

)

→ , as t → t.
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Case . For t ∈ (, ] and ∀t ∈ [, t]. The proof is similar to Case , here we just leave it
out. This completes the proof. �

Lemma . Let  < q < ,  < δ < , f : (, ] × R × R → R is continuous, and limt→+ f (t,
·, ·) =∞. Suppose that tδf (t, ·, ·) is continuous on [, ]× R× R. Then

CDσ
+Tu(t) =

CDσ
+

(∫ 


G(t, s)f

(
s,u(s),CDσ

+u(s)
)
ds

)

is continuous on [, ].

Proof From u ∈ E we obtain u(t) ∈ C[, ] and CDσ
+u(t) ∈ C[, ]. Hence, there exist two

constants L >  and L >  such that |u(t)| ≤ L, |CDσ
+u(t)| ≤ L, for t ∈ [, ]. Since

tδf (t, ·, ·) is continuous on [, ]× R× R, we have

M = max
t∈[,]

∣∣tδf (t,u, v)∣∣, for – L ≤ u ≤ L, –L ≤ v ≤ L,

∣∣CDσ
+Tu(t)

∣∣ =
∣∣∣∣CDσ

+
(
Iq+ f

(
t,u(t), CDσ

+u(t)
))

+
�( – σ )t

�( – σ ) – �()

×
∫ 



(
( – s)q–σ–

�(q – σ )
–
( – s)q–

�(q – )

)
f
(
s,u(s),CDσ

+u(s)
)
ds

∣∣∣∣
=

∣∣∣∣Iq–σ

+ f
(
t,u(t), CDσ

+u(t)
)
+

�()t–σ

�( – σ ) – �()

×
∫ 



(
( – s)q–σ–

�(q – σ )
–
( – s)q–

�(q – )

)
f
(
s,u(s),CDσ

+u(s)
)
ds

∣∣∣∣
≤M

∫ t



(t – s)q–σ–t–σ

�(q – σ )
ds +

M�()t–σ

�( – σ ) – �()

×
∫ 



(
( – s)q–σ–s–δ

�(q – σ )
ds +

( – s)q–s–δ

�(q – )

)
ds

=
Mtq–σ–δB(q – σ ,  – δ)

�(q – σ )
+

M�()t–σ

�( – σ ) – �()

×
(
B(q – σ ,  – δ)

�(q – σ )
+
B(q – ,  – δ)

�(q – )

)
. (.)

Observing that tq–σ–δ , t–σ are continuous on [, ], we can show CDσ
+Tu(t) is continuous

on [, ] by using the same method as in Lemma .. The proof is completed. �

Lemma . Let  < q < ,  < δ < , f : (, ] × R × R → R is continuous, and limt→+ f (t,
·, ·) =∞.Assume that tδf (t, ·, ·) is continuous on [, ]×R×R.Then the operator T : E → E
is completely continuous.

Proof For ∀u ∈ E, Tu(t) =
∫ 
 G(t, s)f (s,u(s),

CDσ
+u(s))ds, by Lemma . and Lemma .,

we have T : E → E. Now we separate the proof into three steps.
Step . Proof of T : E → E is continuous.
Let u ∈ E and ‖u‖ = C. If u ∈ E and ‖u – u‖ < , then ‖u‖ <  + C = C. By the con-

tinuity of tδf (t,u(t),CDσ
+u(t)), we know that tδf (t,u(t),CDσ

+u(t)) is uniformly continuous

http://www.advancesindifferenceequations.com/content/2014/1/292
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on [, ]× [–C,C]× [–C,C]. Thus for ∀ε > , there exists η >  (η < ), such that

∣∣tδf (t,u(t), CDσ
+u(t)

)
– tδf

(
t,u(t),CDσ

+u(t)
)∣∣ < ε, for all t ∈ [, ], (.)

u ∈ E, with ‖u – u‖ < η.
It follows from (.) that

∣∣Tu(t) – Tu(t)
∣∣

≤
∫ 



∣∣G(t, s)s–δ
∣∣∣∣sδf (s,u(s),CDσ

+u(s)
)
– sδf

(
s,u(s),CDσ

+u(s)
)∣∣ds

< ε

∫ 



∣∣G(t, s)s–δ
∣∣ds

≤ ε

(∫ t



(t – s)q–s–δ

�(q)
ds +

�( – σ )t

�( – σ ) – �()

∫ 



∣∣∣∣
(
( – s)q–σ–

�(q – σ )
–
( – s)q–

�(q – )

)
s–δ

∣∣∣∣ds
)

≤ ε

[
tq–δB(q,  – δ)

�(q)
+

�( – σ )t

�( – σ ) – �()

(
B(q – σ ,  – δ)

�(q – σ )
+
B(q – ,  – δ)

�(q – )

)]

≤ εB. (.)

On the other hand, by (.), we get

∣∣CDσ
+Tu(t) –

CDσ
+Tu(t)

∣∣
=

∣∣CDσ
+

(
Tu(t) – Tu(t)

)∣∣
=

∣∣∣∣Iq–σ

+
(
f
(
t,u(t),CDσ

+u(t)
)
– f

(
t,u(t),CDσ

+u(t)
))

+
�()t–σ

�( – σ ) – �()

∫ 



(
( – s)q–σ–

�(q – σ )
–
( – s)q–

�(q – )

)

× (
f
(
s,u(s),CDσ

+u(s)
)
– f

(
t,u(t),CDσ

+u(t)
))
ds

∣∣∣∣
≤ ε

[
B(q – σ ,  – δ)

�(q – σ )
+

�()
�( – σ ) – �()

(
B(q – σ ,  – δ)

�(q – σ )
+
B(q – ,  – δ)

�(q – )

)]

= εB. (.)

Therefore, ‖Tu – Tu‖ →  as ‖u – u‖ → , i.e., T : E → E is continuous.
Step . Let 	 ⊂ E be bounded, then there exists a positive constant b such that ‖u‖ ≤ b,

∀u ∈ 	. Since tδf (t,u(t), CDσ
+u(t)) is continuous on [, ] × [–b,b] × [–b,b], we see that

there exists a positive constant L such that

∣∣tδf (t,u(t), CDσ
+u(t)

)∣∣ ≤ L, ∀t ∈ [, ],∀u ∈ 	.

Thus, by (.) and (.), we have

∣∣Tu(t)∣∣ ≤
∫ 



∣∣G(t, s)s–δ
∣∣∣∣sδf (s,u(s),CDσ

+u(s)
)∣∣ds≤ L

∫ 



∣∣G(t, s)s–δ
∣∣ds≤ LB,

∣∣CDσ
+Tu(t)

∣∣ =
∣∣∣∣Iq–σ

+ f
(
t,u(t), CDσ

+u(t)
)
+

�()t–σ

�( – σ ) – �()

http://www.advancesindifferenceequations.com/content/2014/1/292
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×
∫ 



(
( – s)q–σ–

�(q – σ )
–
( – s)q–

�(q – )

)
f
(
s,u(s),CDσ

+u(s)
)
ds

∣∣∣∣
≤ LB.

So, T(	) is bounded.
Step . We will prove that T(	) is equicontinuous.
For all t, t ∈ [, ], t < t and u ∈ 	 we have

∣∣Tu(t) – Tu(t)
∣∣

=
∣∣∣∣ 
�(q)

∫ t



[
(t – s)q– – (t – s)q–

]
s–δsδf

(
s,u(s),CDσ

+u(s)
)
ds

+


�(q)

∫ t

t
(t – s)q–s–δsδf

(
s,u(s),CDσ

+u(s)
)
ds

+
�( – σ )(t – t )
�( – σ ) – �()

∫ 



(
( – s)q–σ–

�(q – σ )
–
( – s)q–

�(q – )

)
s–δsδf

(
s,u(s),CDσ

+u(s)
)
ds

∣∣∣∣
≤ L

�(q)

∫ t



[
(t – s)q– – (t – s)q–

]
s–δ ds +

L
�(q)

∫ t

t
(t – s)q–sδ ds

+
L�( – σ )(t – t )
�( – σ ) – �()

(
B(q – σ ,  – δ)

�(q – σ )
+
B(q – ,  – δ)

�(q – )

)

=
L(tq–δ

 – tq–δ

 )B(q,  – δ)
�(q)

+
L�( – σ )(t – t )
�( – σ ) – �()

(
B(q – σ ,  – δ)

�(q – σ )
+
B(q – ,  – δ)

�(q – )

)
, (.)

∣∣CDσ
+Tu(t) –

CDσ
+Tu(t)

∣∣
=

∣∣∣∣ 
�(q – σ )

∫ t



[
(t – s)q–σ– – (t – s)q–σ–]s–δsδf

(
s,u(s),CDσ

+u(s)
)
ds

+


�(q – σ )

∫ t

t
(t – s)q–σ–s–δsδf

(
s,u(s),CDσ

+u(s)
)
ds

+
�()(t–σ

 – t–σ
 )

�( – σ ) – �()

∫ 



(
( – s)q–σ–

�(q – σ )
–
( – s)q–

�(q – )

)
s–δsδf

(
s,u(s),CDσ

+u(s)
)
ds

∣∣∣∣
≤ L

�(q – σ )

∫ t



[
(t – s)q–σ– – (t – s)q–σ–]s–δ ds

+
L

�(q – σ )

∫ t

t
(t – s)q–σ–sδ ds

+
L�()(t–σ

 – t–σ
 )

�( – σ ) – �()

(
B(q – σ ,  – δ)

�(q – σ )
+
B(q – ,  – δ)

�(q – )

)

=
L(tq–σ–δ

 – tq–σ–δ

 )B(q – σ ,  – δ)
�(q – σ )

+
L�()(t–σ

 – t–σ
 )

�( – σ ) – �()

(
B(q – σ ,  – δ)

�(q – σ )
+
B(q – ,  – δ)

�(q – )

)
. (.)

As t → t, the right-hand sides of the inequalities (.) and (.) tend to , consequently
‖Tu(t) – Tu(t)‖ → , i.e., T(	) is equicontinuous.
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By means of the Arzela-Ascoli theorem, we conclude that T is completely continuous.
�

Now we are in the position to establish the main results.

Theorem . Assume that:

(H) There exist two constants l >  and  < σ <  such that

tδ
∣∣f (t,x, z) – f (t,x, z)

∣∣ ≤ l
(|x – x| + |z – z|

)
,

for each t ∈ [, ] and all x,x, z, z ∈ R.
(H) θ =max{lB, lB} < .

Then the BVP (.) has a unique solution.

Proof We shall use the Banach fixed point theorem. For this, we need to verify that T is a
contraction. Let u, v ∈ E, then from (H) and (.)-(.) we obtain

∣∣Tu(t) – Tv(t)
∣∣

=
∣∣∣∣
∫ 


G(t, s)

(
f
(
s,u(s),CDσ

+u(s)
)
– f

(
s, v(s),CDσ

+v(s)
))∣∣∣∣

≤
∫ 



∣∣G(t, s)s–δ
∣∣∣∣sδ(f (s,u(s),CDσ

+u(s)
)
– f

(
s, v(s),CDσ

+v(s)
))∣∣ds

≤ l
∫ 



∣∣G(t, s)s–δ
∣∣∣∣u(s) – v(s)

∣∣ds + l
∫ 



∣∣G(t, s)s–δ
∣∣∣∣CDσ

+u(s) –
CDσ

+v(s)
∣∣ds

≤ l‖u – v‖
∫ 



∣∣G(t, s)s–δ
∣∣ds

≤ lB‖u – v‖, (.)∣∣CDσ
+Tu(t) –

CDσ
+Tv(t)

∣∣
=

∣∣∣∣
∫ t



(t – s)q–σ–s–δ

�(q – σ )
[
sδ

(
f
(
s,u(s),CDσ

+u(s)
)
– f

(
s, v(s),CDσ

+v(s)
))]

ds

+
�()t–σ

�( – σ ) – �()

∫ 



(
( – s)q–σ–s–δ

�(q – σ )
–
( – s)q–s–δ

�(q – )

)

× sδ
(
f
(
s,u(s),CDσ

+u(s)
)
– f

(
s, v(s),CDσ

+v(s)
))
ds

∣∣∣∣
≤ l‖u – v‖B. (.)

Taking (.) and (.) into account, we acquire ‖Tu–Tv‖ ≤ θ‖u–v‖; then it is a contrac-
tion. As a consequence of the Banach fixed point theorem, we deduce that T has a fixed
point which is the unique solution of the BVP (.). The proof is complete. �

Next, we will use the Schauder fixed point theorem to prove our result.
For the sake of convenience, we set

L = max
t∈[,]

tδ
∣∣f (t,u(t),CDσ

+u(t)
)∣∣, r =max{LB,LB}.
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Theorem . Assume that  < q < ,  < δ < , f : (, ] × R × R → R is continuous, and
limt→+ f (t, ·, ·) = ∞, tδf (t, ·, ·) is continuous on [, ] × R × R. Then the BVP (.) has a
solution.

Proof Let U = {u : u ∈ E : ‖u‖ ≤ r}. First, we prove that T :U →U .
In fact, for each t ∈ [, ], we have

∣∣Tu(t)∣∣ ≤ 
�(q)

∫ t


(t – s)q–s–δ

∣∣s–δf
(
s,u(s),CDσ

+u(s)
)∣∣ds

+
�( – σ )t

�( – σ ) – �()

∫ 



∣∣∣∣
(
( – s)q–σ–s–δ

�(q – σ )
–
( – s)q–s–δ

�(q – )

)∣∣∣∣
× ∣∣sδf (s,u(s),CDσ

+u(s)
)∣∣ds

≤ LB,

∣∣CDσ
+Tu(t)

∣∣ ≤ 
�(q – σ )

∫ t


(t – s)q–σ–s–δ

∣∣s–δf
(
s,u(s),CDσ

+u(s)
)∣∣ds

+
�()t–σ

�( – σ ) – �()

∫ 



∣∣∣∣
(
( – s)q–σ–s–δ

�(q – σ )
–
( – s)q–s–δ

�(q – )

)∣∣∣∣
× ∣∣sδf (s,u(s),CDσ

+u(s)
)∣∣ds

≤ LB.

Hence, we can conclude that

‖Tu‖ =max
{
max
t∈[,]

∣∣Tu(t)∣∣, max
t∈[,]

∣∣CDσ
+Tu(t)

∣∣} ≤ r.

From Lemma . and Lemma ., we know that Tu(t) ∈ C[, ], CDσ
+Tu(t) ∈ C[, ]. Con-

sequently, T : U → U . From Lemma ., we find that T : U → U is completely continu-
ous. By Lemma ., we deduce that the problem (.) has a solution. This completes the
proof. �

4 Examples
We illustrate our work with two examples.

Example . Consider the following fractional boundary value problem:

⎧⎨
⎩

CD


+u = t– 

 (.u + .CD


+u + cos t),  < t < ,

u() = u′() = , u′() = CD


+u().

(.)

We have

f (t,x, y) = .x + .y + cos t,  < q =



< , σ =


< 

and

t


∣∣f (t,x, z) – f (t,x, z)

∣∣ < .
(|x – x| + |z – z|

)
,
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where δ = 
 < , l = .. Simple calculus gives

B =
B(q,  – δ)

�(q)
+

�( – σ )
�( – σ ) – �()

(
B(q – σ ,  – δ)

�(q – σ )
+
B(q – ,  – δ)

�(q – )

)

= .,

B =
B(q – σ ,  – δ)

�(q – σ )
+

�()
�( – σ ) – �()

(
B(q – σ ,  – δ)

�(q – σ )
+
B(q – ,  – δ)

�(q – )

)

= ..

So, θ =max{lB, lB} = . < , then by Theorem ., the problem (.) has a unique
solution.

Remark . If l > ., then θ > . However, by Theorem ., the problem (.) still has a
solution.

Example . Let us consider the fractional boundary value problem

⎧⎨
⎩

CD


+u = t– 

 (e–tu + (CD


+u) + ( – t)),  < t < ,

u() = u′() = , u′() = CD


+u().

(.)

Let σ = 
 , then all conditions in Theorem . are satisfied. Then the problem (.) has

a solution.
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