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Abstract
By using the critical point theory, some existence criteria are established which
guarantee that the difference p-Laplacian systems of the form
�(|�u(n – 1)|p–2�u(n – 1)) – a(n)|u(n)|q–pu(n) +∇W(n,u(n)) = 0 have at least one or
infinitely many homoclinic solutions, where 1 < p < (q + 2)/2, q > 2, n ∈ Z, u ∈ R

N ,
a : Z → (0, +∞), andW : Z×R

N → R are not periodic in n.
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1 Introduction
Consider homoclinic solutions of the following p-Laplacian system:

�
(∣∣�u(n – )

∣∣p–�u(n – )
)
– a(n)

∣∣u(n)∣∣q–pu(n) +∇W
(
n,u(n)

)
= , n ∈ Z, (.)

where  < p < (q + )/, q > , n ∈ Z, u ∈ R
N , a : Z → (, +∞), and W : Z × R

N → R are
not periodic in n. � is the forward difference operator defined by �u(n) = u(n + ) – u(n),
�u(n) = �(�u(n)). As usual, we say that a solution u of (.) is homoclinic (to ) if u(n) →
 as n→ ±∞. In addition, if u(n) �≡ , then u(n) is called a nontrivial homoclinic solution.
We may think of (.) being a discrete analogue of the following differential system:

d
dt

(∣∣u̇(t)∣∣p–u̇(t)) – a(t)
∣∣u(t)∣∣q–pu(t) +∇W

(
t,u(t)

)
= , t ∈R. (.)

When p = , (.) can be regarded as a discrete analogue of the following second-order
Hamiltonian system:

ü(t) – a(t)
∣∣u(t)∣∣q–u(t) +∇W

(
t,u(t)

)
= , t ∈R. (.)

Problem (.) has been studied by Shi et al. in [] and problem (.) has been studied in
[–]. It is well known that the existence of homoclinic orbits for Hamiltonian systems is
a classical problem and its importance in the study of the behavior of dynamical systems
has been firstly recognized by Poincaré []. If a system has the transversely intersected
homoclinic orbits, then it must be chaotic. If it has the smoothly connected homoclinic
orbits, then it cannot stand the perturbation and its perturbed system probably produces
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chaotic phenomenon. Therefore, it is of practical importance to investigate the existence
of homoclinic orbits of (.) emanating from .
By applying critical point theory, the authors [–] studied the existence of periodic

solutions and subharmonic solutions for difference equations or differential equations,
which show that the critical point theory is an effective method to study periodic solu-
tions of difference equations or differential equations. In this direction, several authors
[–] used critical point theory to study the existence of homoclinic orbits for differ-
ence equations. Motivated mainly by the ideas of [–, ], we will consider homoclinic
solutions of (.) by the mountain pass theorem and the symmetric mountain pass theo-
rem. More precisely, we obtain the following main results, which seem not to have been
considered in the literature.

Theorem . Suppose that a and W satisfy the following conditions:

(A) Let  < p < (q + )/ and q > , a : Z → (, +∞) is a positive function on Z such that for
all n ∈ Z

a(n)≥ α|n|β , α > ,β > (q – p + )/p.

(W) W (n,x) =W(n,x) –W(n,x), W, W are continuously differentiable in x, and there
is a bounded set J ⊂ Z such that


a(n)

∣∣∇W (n,x)
∣∣ = o

(|x|q–p+) as x→ 

uniformly in n ∈ Z\J .
(W) There is a constant μ > q – p +  such that

 < μW(n,x)≤
(∇W(n,x),x

)
, ∀(n,x) ∈ Z×R

N\{}.

(W) W(n, ) =  and there exists a constant � ∈ (q – p + ,μ) such that

W(n,x)≥ ,
(∇W(n,x),x

) ≤ �W(n,x), ∀(n,x) ∈ Z×R
N .

Then problem (.) has one nontrivial homoclinic solution.

Theorem . Suppose that a and W satisfy (A), (W) and the following conditions:

(W)′ W (n,x) =W(n,x) –W(n,x),W,W are continuously differentiable in x, and


a(n)

∣∣∇W (n,x)
∣∣ = o

(|x|q–p+) as x → 

uniformly in n ∈ Z.
(W)′ W(n, ) =  and there exists a constant � ∈ (q – p + ,μ) such that

(∇W(n,x),x
) ≤ �W(n,x), ∀(n,x) ∈ Z×R

N .

Then problem (.) has one nontrivial homoclinic solution.
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Theorem . Suppose that a and W satisfy (A), (W)-(W) and

(W) W (n, –x) =W (n,x), ∀(n,x) ∈ Z×R
N .

Then problem (.) has an unbounded sequence of homoclinic solutions.

Theorem . Suppose that a andW satisfy (A), (W)′, (W), (W)′ and (W).Then prob-
lem (.) has an unbounded sequence of homoclinic solutions.

The rest of this paper is organized as follows: in Section , some preliminaries are pre-
sented andwe establish an embedding result. In Section ,we give the proofs of our results.
In Section , some examples are given to illustrate our results.

2 Preliminaries
Let

S =
{{
u(n)

}
n∈Z : u(n) ∈R

N ,n ∈ Z
}
,

W =
{
u ∈ S :

∑
n∈Z

[∣∣�u(n – )
∣∣p + ∣∣u(n)∣∣p] < +∞

}
,

and for u ∈W , let

‖u‖ =
{∑
n∈Z

[∣∣�u(n – )
∣∣p + ∣∣u(n)∣∣p]}/p

.

ThenW is a uniform convex Banach space with this norm. As usual, for  ≤ p < +∞, let

lp
(
Z,RN)

=
{
u ∈ S :

∑
n∈Z

∣∣u(n)∣∣p < +∞
}
, l∞

(
Z,RN)

=
{
u ∈ S : sup

n∈Z

∣∣u(n)∣∣ < +∞
}
,

and their norms are given by

‖u‖lp =
(∑

n∈Z

∣∣u(n)∣∣p)/p

, ∀u ∈ lp
(
Z,RN)

,

‖u‖∞ = sup
{∣∣u(n)∣∣ : n ∈ Z

}
, ∀u ∈ l∞

(
Z,RN)

,

respectively.
If σ is a positive function on Z and  < s < +∞, let

lsσ = lsσ
(
Z,RN ;σ

)
=

{
u ∈ lloc

(
Z,RN)∣∣∣∑

n∈Z
σ (n)

∣∣u(n)∣∣s < +∞
}
.

lsσ equipped with the norm

‖u‖s,σ =
(∑

n∈Z
σ (n)

∣∣u(n)∣∣s)/s

is a reflexive Banach space.
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Set E =W ∩ lq–p+a , where a is the function given in condition (A). Then E with its stan-
dard norm ‖ · ‖ is a reflexive Banach space. The functional ϕ corresponding to (.) on E
is given by

ϕ(u) =
∑
n∈Z

[

p
∣∣�u(n – )

∣∣p + a(n)
q – p + 

∣∣u(n)∣∣q–p+ –W
(
n,u(n)

)]
, u ∈ E. (.)

Clearly, it follows from (W) or (W)′ that ϕ : E → R. By Theorem . of [], we can
deduce that the map

u→ a(n)
∣∣u(n)∣∣q–pu(n)

is continuous from lq–p+a in the dual space lpa–/(q–p+) , where p = (q – p + )/(q – p + ). As
the embeddings E ⊂ W ⊂ lγ for all γ ≥ p are continuous, if (A) and (W) or (W)′ hold,
then ϕ ∈ C(E,R) and one can easily check that

〈
ϕ′(u), v

〉
=

∑
n∈Z

[∣∣�u(n – )
∣∣p–(�u(n – ),�v(n – )

)
+ a(n)

∣∣u(n)∣∣q–p(u(n), v(n))]

–
∑
n∈Z

(∇W
(
n,u(n)

)
, v(n)

)
, u ∈ E. (.)

Furthermore, the critical points of ϕ in E are classical solutions of (.) with u(±∞) = .

Lemma . [] For u ∈ E

‖u‖∞ ≤ ‖u‖lp ≤ ‖u‖. (.)

Lemma . If a satisfies assumption (A), then

the embedding lq–p+a ⊂ lp is continuous. (.)

Moreover, there exists a Sobolev space Z such that

the embeddings lq–p+a ⊂ Z ⊂ lp are continuous, (.)

the embedding W ∩ Z ⊂ lp is compact. (.)

Proof Let θ = (q – p + )/(q – p + ), θ ′ = (q – p + )/p, we have

‖u‖plp =
∑
n∈Z

[
a(n)

]–/θ ′[
a(n)

]/θ ′ ∣∣u(n)∣∣p

≤
(∑

n∈Z

[
a(n)

]–θ/θ ′
)/θ(∑

n∈Z
a(n)

∣∣u(n)∣∣pθ ′
)/θ ′

= a
(∑

n∈Z
a(n)

∣∣u(n)∣∣q–p+)p/q–p+

= a‖u‖pq–p+,a,

where a = (
∑

n∈Z[a(n)]–p/(q–p+))(q–p+)/(q–p+) < +∞ from (A). Then (.) holds.
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By (A), there exists a positive function ρ such that ρ(n)→ +∞ as |n| → +∞ and

a =
(∑

n∈Z

[
ρ(n)

]θ [a(n)]–θ/θ ′
)/θ

< +∞.

Since

‖u‖pp,ρ =
∑
n∈Z

ρ(n)
∣∣u(n)∣∣p =∑

n∈Z
ρ(n)

[
a(n)

]–/θ ′[
a(n)

]/θ ′ ∣∣u(n)∣∣p

≤
(∑

n∈Z

[
ρ(n)

]θ [a(n)]–θ/θ ′
)/θ(∑

n∈Z
a(n)

∣∣u(n)∣∣q–p+)/θ ′

= a‖u‖pq–p+,a,

(.) holds by taking Z = lpρ .
Finally, as W ∩ Z is the weighted Sobolev space �,p(Z,ρ, ), it follows from [] that

(.) holds. �

The following two lemmas are themountain pass theorem and the symmetric mountain
pass theorem, which are useful in the proofs of our theorems.

Lemma . [] Let E be a real Banach space and I ∈ C(E,R) satisfying the (PS)-
condition. Suppose I() =  and

(i) There exist constants ρ,α >  such that I∂Bρ () ≥ α.
(ii) There exists an e ∈ E\B̄ρ() such that I(e) ≤ .

Then I possesses a critical value c ≥ α which can be characterized as

c = inf
h∈

max
s∈[,]

I
(
h(s)

)
,

where  = {h ∈ C([, ],E)|h() = ,h() = e}, and Bρ() is an open ball in E of radius ρ

centered at .

Lemma . [] Let E be a real Banach space and I ∈ C(E,R) with I even. Assume that
I() =  and I satisfies (PS)-condition, (i) of Lemma . and the following condition:
(iii) For each finite dimensional subspace E′ ⊂ E, there is r = r(E′) >  such that I(u) ≤ 

for u ∈ E′\Br(), Br() is an open ball in E of radius r centered at .
Then I possesses an unbounded sequence of critical values.

Lemma . Assume that (W) and (W) or (W)′ hold. Then for every (n,x) ∈ Z×R
N ,

(i) s–μW(n, sx) is nondecreasing on (, +∞);
(ii) s–�W(n, sx) is nonincreasing on (, +∞).

The proof of Lemma . is routine andwe omit it. In the following,Ci (i = , , . . .) denote
different positive constants.

3 Proofs of theorems
Proof of Theorem . Firstly, we prove that the functional ϕ satisfies the (PS)-condition.
Let {uk} ⊂ E satisfying ϕ(uk) is bounded and ϕ′(uk) →  as k → ∞. Hence, there exists a
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constant C >  such that

∣∣ϕ(uk)∣∣ ≤ C,
∥∥ϕ′(uk)

∥∥
E∗ ≤ μC. (.)

From (.), (.), (.), (W), and (W), we have

pC + pC‖uk‖ ≥ pϕ(uk) –
p
μ

〈
ϕ′(uk),uk

〉

=
μ – p

μ
‖�uk‖plp + p

∑
n∈Z

[
W

(
n,uk(n)

)
–


μ

(∇W
(
n,uk(n)

)
,uk(n)

)]

– p
∑
n∈Z

[
W

(
n,uk(n)

)
–


μ

(∇W
(
n,uk(n)

)
,uk(n)

)]

+
(

p
q – p + 

–
p
μ

)∑
n∈Z

a(n)
∣∣uk(n)∣∣q–p+

≥ μ – p
μ

‖�uk‖plp +
(

p
q – p + 

–
p
μ

)
‖uk‖q–p+q–p+,a. (.)

It follows from Lemma ., p < (q+)/,μ > q–p+, and (.) that there exists a constant
C >  such that

‖uk‖ ≤ C, k ∈N. (.)

Now we prove that uk → u in E. Passing to a subsequence if necessary, it can be assumed
that uk ⇀ u in E. For any given ε > , by (W), we can choose δ ∈ (, ) such that

∣∣∇W (n,x)
∣∣ ≤ εa(n)|x|q–p+ for n ∈ Z\J and |x| ≤ δ. (.)

Since u ∈ E, we can also choose a positive integer K >max{|k| : k ∈ J} such that

∣∣u(n)∣∣ ≤ δ for |n| ≥ K .

Hence,

∣∣∇W
(
n,u(n)

)∣∣ ≤ εa(n)
∣∣u(n)∣∣q–p+ for n ∈ Z\J and ∣∣u(n)∣∣ ≤ δ. (.)

Furthermore,

∣∣∇W
(
n,uk(n)

)∣∣ ≤ εa(n)
∣∣uk(n)∣∣q–p+ for n ∈ Z\J and ∣∣uk(n)∣∣ ≤ δ. (.)

Hence, from (.) and (.), we have

∣∣∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)∣∣p′

≤ [
εa(n)

(∣∣uk(n)∣∣q–p+ + ∣∣u(n)∣∣q–p+)]p′

≤ [
εq–p+a(n)

∣∣uk(n) – u(n)
∣∣q–p+ + ε

(
 + q–p+

)
a(n)

∣∣u(n)∣∣q–p+]p′

http://www.advancesindifferenceequations.com/content/2014/1/291
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≤ p
′(q–p+)εp

′[
a(n)

]p′ ∣∣uk(n) – u(n)
∣∣p′(q–p+)

+ p
′
εp

′(
 + q–p+

)p′[
a(n)

]p′ ∣∣u(n)∣∣p′(q–p+)

:= gk(n), (.)

where p′ = p/(p – ). Moreover, since a(n) is a positive function on Z, p < q – p + , and
uk(n) → u(n) for almost every n ∈ Z, we have

lim
k→∞

gk(n) = p
′
εp

′(
 + q–p+

)p′[
a(n)

]p′ ∣∣u(n)∣∣p(q–p+) := g(n), for a.e. n ∈ Z, (.)

and

lim
k→∞

∑
n∈Z

gk(n) = lim
k→∞

∑
n∈Z

[
p

′(q–p+)εp
′[
a(n)

]p′ ∣∣uk(n) – u(n)
∣∣p′(q–p+)

+ p′
εp

′( + q–p+
)p′[

a(n)
]p′ ∣∣u(n)∣∣p′(q–p+)]

= p
′(q–p+)εp

′
lim
k→∞

∑
n∈Z

[
a(n)

]p′ ∣∣uk(n) – u(n)
∣∣p′(q–p+)

+ p′
εp

′( + q–p+
)p′ ∑

n∈Z

[
a(n)

]p′ ∣∣u(n)∣∣p′(q–p+)

= p
′
εp

′(
 + q–p+

)p′ ∑
n∈Z

[
a(n)

]p′ ∣∣u(n)∣∣p′(q–p+)

=
∑
n∈Z

g(n) < +∞. (.)

It follows from (.), (.), (.), and the Lebesgue dominated convergence theorem that

lim
k→∞

∑
n∈Z

∣∣∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)∣∣p′
= .

This shows that

∇W (n,uk) → ∇W (n,u) in lp
′(
Z,RN)

. (.)

From (.), we have

〈
ϕ′(uk) – ϕ′(u),uk – u)

〉
=

∑
n∈Z

(∣∣�uk(n – )
∣∣p–�uk(n – ) –

∣∣�u(n – )
∣∣p–�u(n – ),

�uk(n – ) –�u(n – )
)

+
∑
n∈Z

a(n)
(∣∣uk(n)∣∣q–puk(n) – ∣∣u(n)∣∣q–pu(n))(uk(n) – u(n)

)

–
∑
n∈Z

(∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)
,uk(n) – u(n)

)

≥ ‖�uk‖plp + ‖�u‖plp – ‖�u‖lp‖�uk‖p–lp – ‖�uk‖lp‖�u‖p–lp

http://www.advancesindifferenceequations.com/content/2014/1/291
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+
∑
n∈Z

a(n)
(∣∣uk(n)∣∣q–puk(n) – ∣∣u(n)∣∣q–pu(n))(uk(n) – u(n)

)

–
∑
n∈Z

(∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)
,uk(n) – u(n)

)

=
(‖�uk‖p–lp – ‖�u‖p–lp

)(‖�uk‖lp – ‖�u‖lp
)

+
∑
n∈Z

a(n)
(∣∣uk(n)∣∣q–puk(n) – ∣∣u(n)∣∣q–pu(n))(uk(n) – u(n)

)

–
∑
n∈Z

(∇W
(
n,uk(n)

)
–∇W

(
n,u(n)

)
,uk(n) – u(n)

)
. (.)

It is easy to see that for any α >  there exists a constant C >  such that

(|x|α–x – |y|α–y)(x – y) ≥ C|x – y|α+, ∀x, y ∈R. (.)

Hence, we have

(‖�uk‖p–lp – ‖�u‖p–lp
)(‖�uk‖lp – ‖�u‖lp

) ≥ C
∣∣‖�uk‖lp – ‖�u‖lp

∣∣p (.)

and

∑
n∈Z

a(n)
(∣∣uk(n)∣∣q–puk(n) – ∣∣u(n)∣∣q–pu(n))(uk(n) – u(n)

)

≥ C
∑
n∈Z

a(n)
∣∣uk(n) – u(n)

∣∣q–p+. (.)

Since ϕ′(uk) →  as k → +∞, uk ⇀ u in E and the embeddings E ⊂ W ⊂ lγ for all γ ≥ p
are continuous, it follows from Lemma ., (.), (.), (.), and (.) that

‖�uk‖lp → ‖�u‖lp as k → ∞ (.)

and

∑
n∈Z

a(n)
∣∣uk(n)∣∣q–p+ →

∑
n∈Z

a(n)
∣∣u(n)∣∣q–p+ as k → ∞. (.)

Hence, we have uk → u in E by (.) and (.). This shows that ϕ satisfies the (PS)-
condition.
Secondly, we prove that there exist ρ,α >  such that ϕ∂Bρ () ≥ α. From (W), there exists

δ ∈ (, ) such that

∣∣∇W (n,x)
∣∣ ≤ 

p
a(n)|x|q–p+ for |n| ≥ Z\J and |x| ≤ δ. (.)

From (.), we have

∣∣W (n,x)
∣∣ ≤ 

p(q – p + )
a(n)|x|q–p+ for |n| ≥ Z\J and |x| ≤ δ. (.)

http://www.advancesindifferenceequations.com/content/2014/1/291
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Let

C = sup

{
W(n,x)
a(n)

∣∣∣n ∈ J ,x ∈R
N , |x| = 

}
. (.)

Set σ = min{/(p(q – p + )C + )/(μ–q+p–), δ} and ‖u‖ = σ / := ρ , it follows from (.)
that

‖u‖∞ ≤ ‖u‖ ≤ σ ,

which shows that |u(n)| ≤ σ ≤ δ < . From Lemma .(i) and (.), we have

∑
n∈J

W
(
n,u(n)

) ≤
∑

{n∈J :u(n) �=}
W

(
n,

u(n)
|u(n)|

)∣∣u(n)∣∣μ

≤ C
∑
n∈J

a(n)
∣∣u(n)∣∣μ ≤ Cσ

μ–q+p–
∑
n∈J

a(n)
∣∣u(n)∣∣q–p+

≤ 
p(q – p + )

∑
n∈J

a(n)
∣∣u(n)∣∣q–p+. (.)

It follows from (W), (.), and (.) that

ϕ(u) =

p

∑
n∈Z

∣∣�u(n – )
∣∣p +∑

n∈Z

a(n)
q – p + 

∣∣u(n)∣∣q–p+ –∑
n∈Z

W
(
n,u(n)

)

=

p
‖�u‖plp +


q – p + 

‖u‖q–p+q–p+,a –
∑
Z\J

W
(
n,u(n)

)
–

∑
n∈J

W
(
n,u(n)

)

≥ 
p
‖�u‖plp +


q – p + 

‖u‖q–p+q–p+,a –
∑
n∈J

W
(
n,u(n)

)

–
∑
Z\J


p(q – p + )

a(n)
∣∣u(n)∣∣q–p+

≥ 
p
‖�u‖lplp +


q – p + 

‖u‖q–p+q–p+,a –


p(q – p + )
∑
n∈J

a(n)
∣∣u(n)∣∣q–p+

–
∑
Z\J


p(q – p + )

a(n)
∣∣u(n)∣∣q–p+

=

p
‖�u‖plp +

p – 
p(q – p + )

‖u‖q–p+q–p+,a.

Therefore, we can choose a constant α >  depending on ρ such that ϕ(u) ≥ α for any
u ∈ E with ‖u‖ = ρ .
Thirdly, we prove that assumption (ii) of Lemma . holds. From Lemma .(ii) and

(.), we have for any u ∈ E

∑
n∈[–,]

W
(
n,u(n)

)
=

∑
{n∈[–,]:|u(n)|>}

W
(
n,u(n)

)
+

∑
{n∈[–,]:|u(n)|≤}

W
(
n,u(n)

)

≤
∑

{n∈[–,]:|u(n)|>}
W

(
n,

u(n)
|u(n)|

)∣∣u(n)∣∣� + ∑
n∈[–,]

max
|x|≤

W(n,x)
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≤ ‖u‖�
∞

∑
n∈[–,]

max
|x|=

W(n,x) +
∑

n∈[–,]
max
|x|≤

W(n,x)

≤ �‖u‖�
∑

n∈[–,]
max
|x|=

W(n,x) +
∑

n∈[–,]
max
|x|≤

W(n,x)

= C‖u‖� +C, (.)

where C = �
∑

n∈[–,]max|x|=W(n,x), C =
∑

n∈[–,]max|x|≤W(n,x). Take ω ∈ E such
that

∣∣ω(n)∣∣ =
{
, for |n| ≤ ,
, for |n| ≥ ,

(.)

and |ω(n)| ≤  for |n| ∈ (, ]. For s > , from Lemma .(i) and (.), we get

∑
n∈[–,]

W
(
n, sω(n)

) ≥ sμ
∑

n∈[–,]
W

(
n,ω(n)

)
= Csμ, (.)

where C =
∑

n∈[–,]W(n,ω(n)) > . From (W), (.), (.), (.), (.), we have for
s > 

ϕ(sω) =
sp

p
‖�ω‖plp +

sq–p+

q – p + 
‖ω‖q–p+q–p+,a +

∑
n∈Z

[
W

(
n, sω(n)

)
–W

(
n, sω(n)

)]

≤ sp

p
‖�ω‖plp +

sq–p+

q – p + 
‖ω‖q–p+q–p+,a +

∑
n∈[–,]

W
(
n, sω(n)

)
–

∑
n∈[–,]

W
(
n, sω(n)

)

≤ sp

p
‖�ω‖plp +

sq–p+

q – p + 
‖ω‖q–p+q–p+,a +Cs�‖ω‖� +C –Csμ. (.)

Since μ > � > q – p +  and C > , it follows from (.) that there exists s >  such that
‖sω‖ > ρ and ϕ(sω) < . Let e = sω(n), then e ∈ E, ‖e‖ = ‖sω‖ > ρ , and ϕ(e) = ϕ(sω) < .
By Lemma ., ϕ has a critical value c > α given by

c = inf
g∈

max
s∈[,]

ϕ
(
g(s)

)
, (.)

where

 =
{
g ∈ C

(
[, ],E

)
: g() = , g() = e

}
.

Hence, there exists u∗ ∈ E such that

ϕ
(
u∗) = c, ϕ′(u∗) = .

The function u∗ is a desired solution of problem (.). Since c > , u∗ is a nontrivial homo-
clinic solution. The proof is complete. �

Proof of Theorem . In the proof of Theorem ., the condition W(t,x) ≥  in (W) is
only used in the proofs of (.) and assumption (i) of Lemma .. Therefore, we only need

http://www.advancesindifferenceequations.com/content/2014/1/291
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to prove that (.) and assumption (i) of Lemma . still hold if we use (W)′ and (W)′

instead of (W) and (W), respectively. We first prove that (.) holds. From (W), (W)′,
(.), (.), and (.), we have

p(q – p + )C +
p(q – p + )Cμ

�
‖uk‖

≥ p(q – p + )ϕ(uk) –
p(q – p + )

�

〈
ϕ′(uk),uk

〉

=
(� – p)(q – p + )

�
‖�uk‖plp

+ p(q – p + )
∑
n∈Z

[
W

(
n,uk(n)

)
–

�

(∇W
(
n,uk(n)

)
,uk(n)

)]

– p(q – p + )
∑
n∈Z

[
W

(
n,uk(n)

)
–

�

(∇W
(
n,uk(n)

)
,uk(n)

)]

+ p
(
 –

q – p + 
�

)∑
n∈Z

a(n)
∣∣uk(n)∣∣q–p+

≥ (� – p)(q – p + )
�

‖�uk‖plp + p
(
 –

q – p + 
�

)
‖un‖q–p+q–p+,a,

which implies that there exists a constant C >  such that (.) holds. Next, we prove that
assumption (i) of Lemma . still holds. From (W)′, there exists δ ∈ (, ) such that

∣∣∇W (n,x)
∣∣ ≤ 

p
a(n)|x|q–p+ for n ∈ Z and |x| ≤ δ. (.)

By (.), we have

∣∣W (n,x)
∣∣ ≤ 

p(q – p + )
a(n)|x|q–p+ for n ∈ Z and |x| ≤ δ. (.)

Let  < σ ≤ δ and ‖u‖ = σ / := ρ , it follows from (.) that

‖u‖∞ ≤ ‖u‖ ≤ σ ,

which shows that |u(n)| ≤ σ ≤ δ < . It follows from (.) and (.) that

ϕ(u) =

p

∑
n∈Z

∣∣�u(n – )
∣∣p +∑

n∈Z

a(n)
q – p + 

∣∣u(n)∣∣q–p+ –∑
n∈Z

W
(
n,u(n)

)

≥ 
p
‖�u‖plp +


q – p + 

‖u‖q–p+q–p+,a –
∑
n∈Z


p(q – p + )

a(n)
∣∣u(n)∣∣q–p+

=

p
‖�u‖plp +

p – 
p(q – p + )

‖u‖q–p+q–p+,a.

Therefore, we can choose a constant α >  depending on ρ such that ϕ(u) ≥ α for any
u ∈ E with ‖u‖ = ρ . The proof of Theorem . is complete. �
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Proof of Theorem . Condition (W) shows that ϕ is even. In view of the proof of The-
orem ., we know that ϕ ∈ C(E,R) and satisfies (PS)-condition and assumption (i) of
Lemma .. Now, we prove that assumption (iii) of Lemma . holds. Let E′ be a finite
dimensional subspace of E. Since all norms of a finite dimensional space are equivalent,
there exists C >  such that

‖u‖ ≤ C‖u‖∞. (.)

Assume that dimE′ =m and {u,u, . . . ,um} is a base of E′ such that

‖ui‖ = C, i = , , . . . ,m. (.)

For any u ∈ E′, there exists λi ∈R, i = , , . . . ,m such that

u(n) =
m∑
i=

λiui(n) for n ∈ Z. (.)

Let

‖u‖∗ =
m∑
i=

|λi|‖ui‖. (.)

It is easy to see that ‖ · ‖∗ is a norm of E′. Hence, there exists a constant C >  such that
C‖u‖∗ ≤ ‖u‖. Since ui ∈ E, by Lemma ., we can choose K > K such that

∣∣ui(n)∣∣ < Cδ

 +C
, |n| > K, i = , , . . . ,m, (.)

where δ is given in (.). Let

� =

{ m∑
i=

λiui(n) : λi ∈R, i = , , . . . ,m;
m∑
i=

|λi| = 

}
=

{
u ∈ E′ : ‖u‖∗ = C

}
. (.)

Hence, for u ∈ �, let n = n(u) ∈ Z such that

∣∣u(n)∣∣ = ‖u‖∞. (.)

It follows from (.)-(.), (.), and (.) that

CC = CC

m∑
i=

|λi| = C

m∑
i=

|λi|‖ui‖ = C‖u‖∗

≤ ‖u‖ ≤ C‖u‖∞ = C
∣∣u(n)∣∣

≤ C

m∑
i=

|λi|
∣∣ui(n)∣∣, u ∈ �. (.)

This shows that |u(n)| ≥ C and there exists i ∈ {, , . . . ,m} such that |ui (n)| ≥ C,
which together with (.), implies that |n| ≤ K. Let

γ =min
{
W(n,x) : –K ≤ n≤ K, |x| ≤ C

}
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/291
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Since W(n,x) >  for all n ∈ Z and x ∈ R
N\{}, and W(n,x) is continuous in x, it follows

that γ > . For any u ∈ E, from Lemma .(ii) and (.), we have

K∑
n=–K

W
(
n,u(n)

)
=

∑
{n∈[–K,K]:|u(n)|>}

W
(
n,u(n)

)
+

∑
{n∈[–K,K]:|u(n)|≤}

W
(
n,u(n)

)

≤
∑

{n∈[–K,K]:|u(n)|>}
W

(
n,

u(n)
|u(n)|

)∣∣u(n)∣∣� + K∑
n=–K

max
|x|≤

W(n,x)

≤ ‖u‖�
∞

K∑
n=–K

max
|x|=

W(n,x) +
K∑

n=–K

max
|x|≤

W(n,x)

≤ �‖u‖�

K∑
n=–K

max
|x|=

W(n,x) +
K∑

n=–K

max
|x|≤

W(n,x)

= C‖u‖� +C, (.)

where C = �
∑K

n=–K
max|x|=W(n,x), C =

∑K
n=–K

max|x|≤W(n,x). It follows from
Lemma .(i) and (.) that

K∑
n=–K

W
(
n,u(n)

) ≥ W
(
n,u(n)

)

≥ W

(
n,

Cu(n)
|u(n)|

)( |u(n)|
C

)μ

≥ min|x|≤

{
W(n,x)

}
≥ γ for u ∈ �. (.)

By (.), (.), (.), and Lemma ., we have for u ∈ � and r > 

ϕ(ru) =
rp

p
‖�u‖plp +

rq–p+

q – p + 
‖u‖q–p+q–p+,a +

∑
n∈Z

[
W

(
n, ru(n)

)
–W

(
n, ru(n)

)]

≤ rp

p
‖�u‖plp +

rq–p+

q – p + 
‖u‖q–p+q–p+,a + r�

∑
n∈Z

W
(
n,u(n)

)
– rμ

∑
n∈Z

W
(
n,u(n)

)

=
rp

p
‖�u‖plp +

rq–p+

q – p + 
‖u‖q–p+q–p+,a + r�

∑
|n|≥K

W
(
n,u(n)

)

– rμ
∑

|n|≥K

W
(
n,u(n)

)
+ r�

K∑
n=–K

W
(
n,u(n)

)
– rμ

K∑
n=–K

W
(
n,u(n)

)

≤ rp

p
‖�u‖plp +

rq–p+

q – p + 
‖u‖q–p+q–p+,a – r�

∑
|n|≥K

W
(
n,u(n)

)

– rμ
K∑

n=–K

W
(
n,u(n)

)
+ r�

K∑
n=–K

W
(
n,u(n)

)

≤ rp

p
‖�u‖plp +

rq–p+

q – p + 
‖u‖q–p+q–p+,a +

r�

p(q – p + )
∑

|n|≥K

a(n)
∣∣u(n)∣∣q–p+
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+ r�
(
C‖u‖� +C

)
– γ rμ

≤ rp

p
‖�u‖plp +

(
rq–p+

q – p + 
+

r�

p(q – p + )

)
‖u‖q–p+q–p+,a + r�

(
C‖u‖� +C

)
– γ rμ

≤ rp

p
Cp
 +

(
rq–p+

q – p + 
+

r�

p(q – p + )

)
Cq–p+


+C(rC)� +Cr� – γ rμ. (.)

Sinceμ > � > q–p+ > p, we deduce that there exists r = r(C,C,C,C,K ,K, ε,γ ) =
r(E′) >  such that

ϕ(ru) <  for u ∈ � and r ≥ r.

It follows that

ϕ(u) <  for u ∈ E′ and ‖u‖ ≥ Cr,

which shows that assumption (iii) of Lemma . holds. By Lemma ., ϕ possesses an un-
bounded sequence {ck}∞k= of critical values with ck = ϕ(uk), where uk is such that ϕ′(uk) = 
for k = , , . . . . If {‖uk‖} is bounded, then there exists C >  such that

‖uk‖ ≤ C for k ∈N. (.)

In a similar fashion to the proof of (.) and (.), for the given δ in (.), there exists
K >max{|k| : k ∈ J} such that

∣∣uk(n)∣∣ ≤ δ for |n| ≥ K and k ∈N. (.)

Hence, by (.), (.), (.), (.), and (.), we have


p
‖�uk‖plp +


q – p + 

‖uk‖q–p+q–p+,a

= ck +
∑
n∈Z

W
(
n,uk(n)

)

= ck +
∑

|n|≥K

W
(
n,uk(n)

)
+

K∑
n=–K

W
(
n,uk(n)

)

≥ ck –


p(q – p + )
∑

|n|≥K

a(n)
∣∣uk(n)∣∣q–p+ – K∑

n=–K

∣∣W(
n,uk(n)

)∣∣

≥ ck –


p(q – p + )
‖uk‖q–p+q–p+,a –

K∑
n=–K

max
|x|≤C

∣∣W (n,x)
∣∣.

It follows that

ck ≤ 
p
‖�uk‖plp +

p + 
q – p + 

‖uk‖q–p+q–p+,a +
K∑

n=–K

max
|x|≤C

∣∣W (n,x)
∣∣ < +∞.
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This contradicts the fact that {ck}∞k= is unbounded, and so {‖uk‖} is unbounded. The proof
is complete. �

Proof of Theorem . In view of the proofs of Theorem . and Theorem ., the conclu-
sion of Theorem . holds. The proof is complete. �

4 Examples
Example . Consider the following system:

�
(∣∣�u(n – )

∣∣�u(n – )
)
– a(n)

∣∣u(n)∣∣u(n) +∇W
(
n,u(n)

)
= , a.e. n ∈ Z, (.)

where p = , q = , n ∈ Z, u ∈R
N , a : Z → (,∞), and a satisfies (A). Let

W (n,x) = a(n)

( m∑
i=

ai|x|μi –
m∑
j=

bj|x|�j
)
,

where μ > μ > · · · > μm > � > � > · · · > �m > , ai,bj > , i = , . . . ,m, j = , . . . ,m. Let

W(n,x) = a(n)
m∑
i=

ai|x|μi , W(n,x) = a(n)
m∑
j=

bj|x|�j .

Then it is easy to check that all the conditions of Theorem . are satisfied with μ = μm

and � = �. Hence, problem (.) has an unbounded sequence of homoclinic solutions.

Example . Consider the following system:

�
(∣∣�u(n–)

∣∣–/�u(n–)
)
–a(n)

∣∣u(n)∣∣/u(n)+∇W
(
n,u(n)

)
= , a.e. n ∈ Z, (.)

where p = /, q = , n ∈ Z, u ∈ R
N , a : Z→ (,∞) and a satisfies (A). Let

W (n,x) = a(n)
[
a|x|μ + a|x|μ – b(sinn)|x|� – b|x|�

]
,

where μ > μ > � > � > /, a,a > , b,b > . Let

W(n,x) = a(n)
(
a|x|μ + a|x|μ

)
, W(n,x) = a(n)

[
b(sinn)|x|� + b|x|�

]
.

Then it is easy to check that all the conditions of Theorem . are satisfied withμ = μ and
� = �. Hence, by Theorem ., problem (.) has an unbounded sequence of homoclinic
solutions.
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