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Abstract

Using a monotone iterative method combined with some inequalities associated
with the Green’s function, we investigate the existence of positive solutions for a
fractional differential equation with integral boundary conditions. In addition, two
examples are given to illustrate the results.
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1 Introduction
This paper discusses the existence and iterative method of positive solutions for the fol-
lowing nonlinear fractional differential equations with integral boundary condition:

D u(t) + q()f (t,u(t)) =0, 0<t<l, @)
u(0)=0, 0<j<n-2, u(l) = /Lfol u(s) ds, '
where « € (n—1, n] is areal number and n > 3 is an integer, ; is a parameter and 0 < u < @,
D§. is the standard Riemann-Liouville fractional derivative of order «. A function u is
called a positive solution of the problem (1.1) if u(t) satisfies (1.1) and u(t) > 0 on (0, 1).
Fractional differential equations arise in many engineering and scientific disciplines such
as the mathematical modeling of systems and processes in the fields of physics, chem-
istry, aerodynamics, electro-dynamics of a complex medium, polymer rheology, and so
on. Recently, the subject of fractional differential equations has gained much more im-
portance and attention. Some excellent work in the study of fractional differential equa-
tions can be found in [1-22] and the references cited therein. Integral boundary conditions
have various applications in chemical engineering, thermo-elasticity, population dynam-
ics, and so on. Boundary value problems for fractional differential equations with integral
boundary conditions are very interesting and largely unknown. Recently, by using Guo-
Krasnoselskii’s fixed point theorem, Cabada and Wang in [5] investigated the existence of
positive solutions for the fractional boundary value problem

CDg+ u®) +f(t,ut) =0, 0<t<l],
u(0) =u"(0)=0,  u(l) =1 [y u(s)ds,
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where2 <a <3,0<A <2, CDgC, is the Caputo fractional derivative and f : [0,1] x [0, c0) —
[0, 00) is a continuous function. Karakostas [10] provided sufficient conditions for the non-
existence of solutions of the boundary-value problems with fractional derivative of order
a € (2,3) in the Caputo sense,

CD‘(’j+ u(t) +f(t,ult) =0, 0<t<l],
w(©0)=u'(0)=0,  u(l)=xrf, uls)ds.

Motivated by the works mentioned above, our purpose in this paper is to show the exis-
tence and iteration of positive solutions to the problem (1.1) by using a monotone iterative
method. The method used in this paper is different from that used in [20]. We not only
obtain the existence of positive solutions, but also give two iterative schemes approxi-
mating the solutions, and the iterative scheme starts off with a known simple function or
the zero function, which is interesting because it gives a numerical method to compute
approximate solutions. The monotone iterative method has been successfully applied to
boundary-value problems of integer-order ordinary differential equations (see [23-27]
and the references therein). To our knowledge, there is still little utilization of the mono-
tone iterative method to study the existence of positive solutions for nonlinear fractional
boundary-value problems. So, it is worth investigating the problem (1.1) by using mono-
tone iterative method.

2 Preliminaries
Let us recall some basic definitions on fractional calculus.

Definition 2.1 ([28, 29]) The Riemann-Liouville fractional derivative of order @ > 0 of a
continuous function % : [0, 00) — R is defined to be

@ — # i " _ -l _
D, h(t) = T —a) <dt> /0 (t—s) h(s)ds, n=[a]+1,

where I" denotes the Euler gamma function and [«] denotes the integer part of number «,
provided that the right side is pointwise defined on (0, c0).

Definition 2.2 ([28, 29]) The Riemann-Liouville fractional integral of order « is defined
as

1

.0 = 5

t
/ (t—9)*h(s)ds, t>0,a>0,
0

provided the integral exists.

In [17], the author obtained the Green’s function associated with the problem (1.1). More
precisely, the author proved the following lemma.

Lemma 2.1 ([17]) Let h € C[0,1] be a given function, then the boundary-value problem

D u(t) +h(t)=0, 0<t<],
u0)=0, 0<j<n-2, u(l) = ,ufol u(s) ds,
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has a unique solution,

u(t) = Al G(t,s)h(s) ds,

where
Mta—l a-1
G(t,s) = H(t,s) + ———————s(1-9)*", t,s€][0,1], (2.1)
(@ = )l (e)

1 tot—ll_ a—l_t_ Ot—l, 0< <t<1,
Hitys) = —— & @797 ==9) =PEs (2.2)

F(e) | go1(1 = )21, 0<t<s<l.

Obviously,

71— 9) Mo — o+ ps) — (a — )t —5)* 7,
Gt.9) 1 0<s<t<], (2.3)
)= ———————— .
(o =Wl (@) | 211 - 5)* o — pu + ps),

0<t<s<l,
and G(¢,s) is continuous on the unit square [0,1] x [0,1].
Lemma 2.2 ([16]) The function H(t,s) defined by (2.2) has the following properties:

s(1—s) 1 s(1—s) 1

a-1
t (l_t) Iﬁ(Ol) EH(t!S)S F(C(—l) )

t,s€[0,1]. (2.4)

Lemma 2.3 The Green'’s function G(t,s) defined by (2.1) has the following properties:

tOt—l

a1
0<Gl(ts) < m(l —8)* (o =+ us), tsel0,1], (2.5)
p(t)g(s) < G(t,s) <g(s), tsel0,1], (2.6)
where

_la-D0a-mW+p o

gls) = —((x ~ T @ s(1-9)*", se€]0,1],
a—-1

oty = —% a-1 te[0,1].

(=1 —p)+p’

Proof It is obvious from (2.3) that the right inequality of (2.5) holds. Relation (2.4) implies
that H(¢,s) > 0. Thus by (2.1) we know that the left inequality of (2.5) is correct. Now we
show that (2.6) holds. In fact, by (2.1) and (2.4), we have

Mtrx—l (1 ~ S)o/—l - S(l _ S)oz—l i

G(t,s)=H(t»S)+mS ~ T-1 +(a—u)1"(a)

s(1-s)%t

_lem D= i g e
T (a-wl(@) s(L—s)*" =g(s), ts€[0,1].
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On the other hand, by (2.1) and (2.4), we get

Mt(x—l
(0 —u)(a)

sA-s)*1 e l(1-¢)

G(t,s) = H(t,s) + s(1—s)*!

a—-1 a1
>t (1-1) ) + (ot—,u)F(a)S(l_S)
_os(1- st B
= la—r@® 1-0=g6p@), tselo1.
Then the proof is completed. 0

3 Main results
Now, we consider the problem (1.1). Obviously, u is a solution of the problem (1.1) if and

only if u is a solution of the following nonlinear integral equation:

1
u(t) = / G(t,s)q(s)f(s, u(s)) ds, tel0,1],u € C[0,1],
0

where G(t,s) is the Green’s function defined by (2.3). For the forthcoming analysis, we
need the following assumptions:

(H1) f:[0,1] x [0,00) — [0, 00) is continuous and f(£,0) = 0 on [0,1];

(H2) ¢:(0,1) = [0, 00) is continuous and 0 < fol(l —5)*1g(s)ds < .
The basic space used in this paper is a real Banach space £ = C[0,1] with the norm | ||,

where ||| = maxo<;<1 |#(£)|. Then, define a set IC C £ by
K = {ue Cl0,1]: u(®) > 0,u(t) > p(®)||ul, ¢ € [0,1]]}.

It is obvious that C is a cone. We define the operator 7 : C[0,1] — C[0,1] by

1
(Tu)t) = /0 G(t,s)q(s)f(s,u(s)) ds, te]l0,1],u e C[0,1]. (3.1)

It is clear that the existence of a positive solution for the problem (1.1) is equivalent to the

existence of a nontrivial fixed point of 7 in K.
Lemma 3.1 7 is a completely continuous operator and T (IC) C K.

Proof Applying the Arzela-Ascoli theorem and a standard argument, we can prove that 7
is a completely continuous operator. We conclude that 7 () C K. In fact, for any u € IC,
it follows from (H1), (H2), and (2.6) that

1 1
(Tu)(t) = /0 G(t,5)q(s)f (s, u(s)) ds < /0 2&)q(s)f (s,u(s))ds, te(0,1],

which implies that

1
I Tull < /O g(s)q(s)f (s, u(s)) ds. (3.2)
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On the other hand, by (H1), (H2), and (2.6) we have

(Tu)(t) = fo 1 G(t,9)q(s)f (s, u(s)) ds > p(t) /0 1g(S)q(S)f(s,u(S)) ds, tel0,1],
which together with (3.2) implies
(Tu)@®) = pOITul, tel0,1].
Therefore, T € K. The proof is completed. m

For convenience, we denote

1 1 -
=[———— | Q=9 o= p + us)g(s) ds> . (3.3)
((a—mr(m/o SRR
By (H2) we know that A > 0 is well defined.

Theorem 3.1 Suppose (H1) and (H2) hold. In addition, we assume that there exists a > 0,
such that

flt,x) <f(t,y) <Aa, 0<x<y<a,tel01], (3.4)

where A is given by (3.3). Then the problem (1.1) has two positive solutions v* and w* sat-
isfying 0 < ||[v*|| < |w*|| < a. In addition, the iterative sequences Vi, = T Vi, Wiy = T Wi,
k=0,1,2,..., converge, in C-norm, to positive solutions v* and w*, respectively, where
vo(t) = 0, wo(t) = at*, t € [0,1]. Moreover,

vo(t) <vit) < -+ <wpt) < -+ <VH(E) S wH(E) < -+ S wilE) < -+ < wilt) < wol2),

€[0,1].

Remark 3.1 The iterative schemes in Theorem 3.1 start off with the zero function and a
known simple function, respectively.

Proof The proof will be given in several steps.
Stepl. Let K, = {u e K : |u| <a}, then T(K,) C K,.
In fact, if u € IC,, then

0<u(s) <l|lul <a, sel0,1].

Thus by (2.5) and (3.4), we get
1
0<(Tut)= / G(6,5)q(s)f (s, uls)) ds

S—/(l $)" Mo — p + us)q(s)f (s, a) d.
w)r

(

< o [0 wrwas=a teron,

which implies that || 7 u|| < a, thus T(/C,) €K
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Step 2. The iterative sequence {vi} is increasing, and there exists v* € I, such that
limg_, o0 [|vk — v*|| = 0, and v* is a positive solution of the problem (1.1).

Obviously, vy € K,. Since T : K, — K, we have v € T(K,) € K, k=1,2,.... Since
T is completely continuous, we assert that {v;}72, is a sequentially compact set. Since
vi=Tvy=T0 € K,, we have

a=vi(t) = (Tvo)(®) = (T0)¥) = 0=vo(2), te[0,1].
It follows from (3.4) that 7 is nondecreasing, and then
va(8) = (Tvi)(®) = (Tvo) (&) =vi(t), te€(0,1].
Thus, by the induction, we have
Vi (t) > w(t), te[0,1,k=0,1,2,....

Hence, there exists v* € K, such that limi_, o, ||vk — v*|| = 0. By the continuity of 7 and
equation vgy1 = 7 vk, we get Tv* = v*. Moreover, since the zero function is not a solution
of the problem (1.1), ||[v*|| > 0. It follows from the definition of the cone /C, that we have
vi(t) = p()||lv¥] > 0, t € (0,1), i.e. v¥(¢) is a positive solution of the problem (1.1).

Step 3. The iterative sequence {wy} is decreasing, and there exists w* € I, such that
limg—, o0 ||wk — w*|| = 0, and w* is a positive solution of the problem (1.1).

Obviously, wy € IC,. Since T : K, — K,, we have wy € T(K,) € K4, k=1,2,.... Since
T is completely continuous, we assert that {w;}2, is a sequentially compact set. Since
w1 =T wo € K,, by (2.5) and (3.4), we have

1
(Two)(t) = /0 Glt, () (5 wols)) ds

ta—l 1
= ot J, 9 e e s ds
a-1 1
= % /O (1 _S)a_l(a -—Mut MS)Q(S) ds = ﬂl’a_l = wo(t)’ te [O, 1]

Thus we obtain
Wl(t) < WO(t)y te [0:1]’
which together with (3.4) implies that
1
wa(®) = (Tw)©) = [ Gle.9q6) (s m(5) ds
0
1
< / Gl )q(s)f (5, wols)) ds = (Two)(©) = wi(e), ¢ [0,1].
0
By the induction, we have

Wk+1(t) = Wk(t)) le [07 1])k =0,1,2,....
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Hence, there exists w* € K, such that limg_, o ||wx — w*|| = 0. Applying the continuity of
T and the definition of ', we can concluded that w* is a positive solution of the problem
(1.1).

Step 4. From vy (t) < wy(2), ¢ € [0,1] we get

1
vi(t) = (Tvo)(0) = / G(t,5)q(s)f (s, vo(s)) ds
0
1
< /0 G(,5)q(s)f (s, wo(s)) ds = (Two)(t) = wi(£), ¢ €[0,1].
By the induction, we have
vi(t) <wi(t), t€[0,1,k=0,1,2,....

The proof is complete. d

Remark 3.2 Certainly, w* = v* may happen and then the problem (1.1) has only one solu-

tion in /C,.

Corollary 3.1 Suppose that (H1) and (H2) hold. Suppose further that f (¢, x) is nondecreas-
ingin x foreach t € [0,1] and

t;
lim max AGL)

x—>+000<t<1 X

<A.

Then the problem (1.1) has at least two positive solutions.

4 Examples
To illustrate the usefulness of the results, we give two examples.

Example 4.1 Consider the fractional boundary-value problem

Diu(t) + 3u(t) + 66 +1=0, 0<t<l,

1 (4.1)
WO)=w(©) =u'(0)=0,  u(l)=2 [ u(s)ds.

In this problem,
o =35, w=15, qty=1,  f(t,x)=3x"+6t+1.

It is easy to see that (H1) and (H2) hold. If we let & = 2, by simple computation, we have

= 1 ! a-1 -1 B 45ﬁ
A—(m/(‘) 1-5) (O(—H,+Ms)q(s)ds> _T,

and

flt,x) <f(t,2)<f(1,2)=19< % =Aa, (t,x)€]0,1] x [0,a].

Page 7 of 10
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Then (3.4) is satisfied. Consequently, Theorem 3.1 guarantees that the problem (4.1) has
at least two positive solutions v* and w*, satisfying 0 < ||[v*| < ||[w*| < 2.
Moreover, the two iterative schemes are

vo(t) =0, te]0,1],
512
Vis1(8) = 15\/_/ a- s)5/2(4+35)[3vk(s)+6s+1]d
15{/ (t-3)>?[3vi(s) + 6s +1]ds, te0,1],k=0,12,...,
and

wo(t) =26, tel0,1],

512 pl
1?;;/_ / (1-5)°2(4 + 33)[314/,2((3) + 65+ 1] ds

Wi (£) =

8 t
—ﬁfo(t—s)5’2[3w§(s)+6s+1]ds, te[0,11,k=0,12,....

After direct calculations by Matlab 7.5, the second and third terms of the two schemes are
as follows:

() = 4t (3 4 ¢ 16 —£ t€10,1]
v P ’ ’ ’
o s/m\11 217 63

4552 /3 4 16
va(t) = (———t— 2)

3

6415/ ( 3 28 368 5, 27712

+— == —f- +
5/7\11 21 63 125732\121 363 14,553 305,613
2,816 1,024
- - #), telo,1],
83,349 27,783
and
% (97252 16 64 2 16384
Wl(t) = — - ——l—— ), € [0:1]7
J/m \ 415,701 105 315" 765,765
42 (3 4 16 64¢°2 (591,121,969 20,806,384,636
wo(t) = o)+ - t
507 \11 21 63" 135732\ 19,200,813,489  224,009,490,705
14,431,376 2. 8,246,848 , 2,816 4 1,024 5 199,172,096
509,233,725 79,214,135 77,175 25725  35,369,919,585
1,832,321,024 7 262,144 r 524,288 P 16,777,216 |,
+ + + - +
137,549,687,275 187,612,425 62,537,475  65,155,115,025
67,108,864
—— B3], telo,1].
152,028,601,725
Example 4.2 Consider the fractional boundary value
DYPu(t) + (1 — 1) [ O++1 4 242 (£) + 4¢ +5] =0, 0<t<l, 42)
w(0) =/ (0) = u(0) = u”(0) =0, (1) =2/ uls)ds. '
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In this problem,
a =45, w=2, gt)=(1-072,  ft,x) = +2x% + 4t + 5.

Obviously, g(¢) and f(¢,x) satisfy the conditions (H1) and (H2). In addition, f(¢,x) is in-
creasing in x, and

) 5750w
(mf =)Mo=+ u)q(s)d ) L

Let a = 1, then for any (¢, %) € [0,1] x [0,4], direct computations give

fltx) <f(t,1) <fQ,1)=11+€< % = Aa.

Therefore, all assumptions of Theorem 3.1 are satisfied. Thus Theorem 3.1 ensures that
the problem (4.2) has two positive solutions v* and w*, satisfying 0 < ||[v*|| < ||w*|| <1and
limy, oo [[vk = v*[| = 0, limg— o0 [[wi — w*|| = 0, where

vo(t) =0, tel0,1],
16t7/2
5257
16 t(t—s)7"
1057 Jo (1-s)32
€[0,1,k=0,1,2,....

1
Vi (t) = / (1-5)%(5 + 4s) [e"k(s)”+1 + ZVZ(S) +4s + 5] ds
0

[e""(s)*“1 + 2vi(s) +4s + 5] ds,

and

wo(t) =¢"%, te]0,1],

16t7/2

525/

1
Wi (t) = / (1 - 9)%(5 + 4s)["* 4 2w(s) + 4s + 5] ds
0

(t —s)7"
105f/ —3)3/2
€[0,1],k=0,1,2,....

Wk(s)”*l + 2w,2((s) +4s + 5] ds,
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