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Abstract
We define some finite sums which are associated with the Dedekind type sums and
Hardy-Berndt type sums. The aim of this paper is to prove a reciprocity law for one of
these sums. Therefore, we define a new function which is related to partial derivatives
of the three-term polynomial relations. We give a partial differential equation (PDE) for
this function. For some special values, this PDE reduces the three-term relations for
Hardy-Berndt sums (cf. Apostol and Vu in Pac. J. Math. 98:17-23, 1982; Berndt and
Dieter in J. Reine Angew. Math. 337:208-220, 1982; Simsek in Ukr. Math. J. 56(10):
1434-1440, 2004; Simsek in Turk. J. Math. 22:153-162, 1998; Simsek in Bull. Calcutta
Math. Soc. 85:567-572, 1993; Pettet and Sitaramachandraro in J. Number Theory
25:328-339, 1989), to the generalized Carlitz polynomials, which are defined by Beck
(Diophantine Analysis and Related Fields, pp. 11-18, 2006), to the Gauss law of
quadratic reciprocity (cf. Beck in Diophantine Analysis and Related Fields, pp. 11-18,
2006; Berndt and Dieter in J. Reine Angew. Math. 337:208-220, 1982; Simsek in Turk.
J. Math. 22:153-162, 1998), and also to the well-known identity on the greatest integer
function which was proved by Berndt and Dieter (J. Reine Angew. Math. 337:208-220,
1982), p.212, Corollary 3.5. Finally, we prove the reciprocity law for an n-variable new
sum which is related to the Dedekind type and Hardy-Berndt type sums. We also raise
some open questions on the reciprocity laws of our new finite sums.
MSC: Primary 11F20; secondary 11C08
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1 Introduction
TheDedekind sums are very useful in analytic number theory, in combinatorial theory and
also in other branches of mathematics. That is, these sums arise in many areas of mathe-
matics and also mathematical physics. Recently, there are many papers on the Dedekind
sums which are related to elliptic modular functions, geometry (lattice point enumeration
in polytopes, topology (signature defects of manifolds), algorithmic complexity (pseudo
random number generators), character theory, the family of zeta functions, the Bernoulli
functions, and other special functions. In , Dedekind gave, under the modular trans-
formation, an elegant functional equation for the Dedekind eta function, which contains
the Dedekind sums.
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On the other hand, Berndt [], Goldberg [] and also Simsek [] gave, under themodular
transformation, other elegant functional equations for the theta functions, which contain
six different arithmetic sums (Hardy-Berndt sums). These sums are also related to the
Dedekind sums and other special functionswhich have beenmentioned before.Motivated
largely by a number of recent investigations of the Dedekind sums and the Hardy-Berndt
sums, we introduce and investigate various properties of a certain new family of finite
arithmetic sums. We are ready to summarize our results in detail as follows.
In this section, some elementary properties and definitions on the Dedekind sums, the

Hardy-Berndt sums, and the Simsek sum are given. In Section , we define some new
finite arithmetic sums which are associated with the Dedekind sums, the Hardy-Berndt
sums, and Simsek’s sum.We gave reciprocity laws for one of these sums.We also raise two
open questions for the reciprocity laws. In the last section, we give a PDE for three-term
polynomial relations. We give many applications for this PDE, which are related to the
Dedekind-Rademacher sums, the Hardy-Berndt sums, and other finite arithmetic sums.
Finally, by using this equation we give a proof of the reciprocity law of our new sums.
In the customary notation, we have

(
(x)

)
=

{
x – [x] – 

 , if x is not an integer,
, otherwise,

where [x] denotes the largest integer ≤ x (cf. [–], and the references cited in each of
these earlier works). Let n be a positive natural number and α be a real number, then

(α)n =

{∏n
k=(α + k – ), if n≥ ,

, if n = ,

and

[α]n =

{∏n
k=([α] + k – ), if n ≥ ,

, if n = .

The Dedekind sum s(h,k), arising in the theory of the Dedekind eta function, is defined
by

s(h,k) =
k–∑
j=

((
j
k

))((
hj
k

))
,

where h is an integer and k is a positive integer (cf. [–], and the references cited in each
of these earlier works). The most important property of Dedekind sums is the following
reciprocity theorem: If h and k are coprime positive integers, then

s(h,k) + s(k,h) = –


+




(
h
k
+
k
h
+


hk

)
. ()

A proof of () was given by Apostol [] and the references cited in each of these earlier
works.

http://www.advancesindifferenceequations.com/content/2014/1/283


Cetin et al. Advances in Difference Equations 2014, 2014:283 Page 3 of 18
http://www.advancesindifferenceequations.com/content/2014/1/283

If h and k are integers with k > , the Hardy-Berndt sums are defined by

S(h,k) =
k–∑
j=

(–)j++[
jh
k ],

s(h,k) =
k–∑
j=

(–)[
jh
k ]

((
j
k

))
,

s(h,k) =
k–∑
j=

(–)j
((

j
k

))((
jh
k

))
,

s(h,k) =
k–∑
j=

(–)j
((

jh
k

))
,

s(h,k) =
k–∑
j=

(–)[
jh
k ],

s(h,k) =
k–∑
j=

(–)j+[
hj
k ]

((
j
k

))
.

()

For s(h,k), the equality below also holds true:

s(h,k) =

k

k–∑
j=

j(–)j+[
hj
k ] ()

when h and k are odd []. Besides, the following equations will be very useful for the
remaining sections []:

b–∑
j=

(–)j+[
cj
b ]

(
j
b

)
= s(c,b) –



S(c,b),

c–∑
j=

(–)j+[
bj
c ]

(
j
c

)
= s(b, c) –



S(b, c).

()

The reciprocity law for the s(h,k) is given by the following theorem.

Theorem  Let h and k be coprime positive integers. If h and k are odd, then

s(h,k) + s(k,h) =


–


hk

()

(cf. [, , , , , ] and the references cited in each of these earlier works). In the follow-
ing theorem, Sitaramachandraro [] showed that the Hardy-Berndt sum s(h,k) can be
expressed explicitly in terms of Dedekind sums.

Theorem  Let h and k be coprime positive integers. If h + k is even, then

s(h,k) = –s(h,k) + s(h,k) + s(h, k), ()
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and if h + k is odd, then

s(h,k) = . ()

The next theorem will be useful for the further sections.

Theorem  If both h and k are odd and (h,k) = , then

S(h,k) = S(k,h) = .

A proof of this theorem was given by Apostol in []. In [], Simsek defined a new sum
related to the sums s(h,k) as follows:
Let h and k be integers with (h,k) = 

Y (h,k) = k
k–∑
j=

(–)j+[
hj
k ]

((
j
k

))
.

The reciprocity law for the Simsek sum Y (h,k) is given by (cf. [, p., Theorem ])

hY (h,k) + kY (k,h) = hk – .

1.1 Three-term polynomial relations for the Hardy sums
Here, two and three-term polynomial relations, which were studied thoroughly in [] and
[], are recalled. In [, , ], and [] some new theorems on three-term relations for
the Hardy sums were found by applying derivative operator to the three-term polynomial
relation. Throughout this section, we assume that a, b, and c are pairwise coprime positive
integers and a′, b′, and c′ satisfy

aa′ ≡  (mod b), bb′ ≡  (mod c), and cc′ ≡  (mod a).

The following corollary was given by Pettet and Sitaramachandrarao [].

Corollary  (Three and two-termpolynomial relations) If a, b, and c are pairwise coprime
positive integers, then

(u – )
a–∑
x=

ux–v[
bx
a ]w[ cxa ] + (v – )

b–∑
y=

vy–w[ cyb ]u[
ay
b ] + (w – )

c–∑
z=

wz–u[
az
c ]v[

bz
c ]

= ua–vb–wc– – , ()

(u – )
a–∑
x=

ux–v[
bx
a ] + (v – )

b–∑
y=

vy–u[
ay
b ] = ua–vb– – . ()
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The identity () is originally due to Berndt and Dieter []. The next corollary, which is
equivalent to (), was first established by Carlitz [].

Corollary  [] If a and b are coprime positive integers, then

(u – )
b–∑
x=

ub–x–v[
ax
b ] – (v – )

a–∑
y=

va–y–u[
by
a ] = ub– – va–.

We need the following relations, which were proved by Pettet and Sitaramachandrarao
[]:

s
(
ca′,b

)
=

b–∑
y=

(–)y+[
cy
b ]

((
ay
b

))
, ()

s
(
bc′,a

)
=

a–∑
x=

(–)[
bx
a ]+[ cxa ], ()

s
(
ab′, c

)
=

c–∑
z=

(–)z+[
bz
c ]

((
az
c

))
, ()

s
(
ca′,b

)
=

b–∑
y=

(–)y
((

cy
b

))((
ay
b

))
, ()

s
(
bc′,a

)
=

a–∑
x=

(–)[
bx
a ]

((
cx
a

))
, ()

s
(
ab′, c

)
=

c–∑
z=

(–)[
bz
c ]

((
az
c

))
, ()

and also

s
(
cb′,a

)
=

a–∑
x=

(–)x+[
cx
a ]

((
bx
a

))
. ()

2 New sums involving the functions [x] and ((x))
In this section, we define some new finite sums which are related to not only the functions
[x] and ((x)), but also the Dedekind sums, theHardy-Berndt sums, the Simsek sum Y (h,k),
and the other finite sums. We also investigate the reciprocity laws of these sums. We also
ask two open questions for these reciprocity laws.

Definition  Let a,a, . . . ,an be pairwise coprime positive integers. We define the fol-
lowing sums Yn–(a, . . . ,an–;an), Bn–(a, . . . ,an–;an) and C(a,a, . . . ,an–;an;k), respec-
tively:

Yn–(a, . . . ,an–;an) =
an–∑
j=

(j – )(–)j+[
a j
an ]+···+[ an– jan ]

[
aj
an

]
· · ·

[
an–j
an

]
,

Bn–(a, . . . ,an–;an) =
an–∑
j=

(–)j+[
a j
an ]+···+[ an– jan ]

[
aj
an

]
· · ·

[
an–j
an

]
, ()
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C(a,a, . . . ,an–;an;k) =
an–∑
j=

jk(–)j+[
a j
an ]+···+[ an– jan ],

where n≥  is a positive integer.

Substituting n =  and k =  into (), we have

Y(a;a) =
a–∑
j=

(j – )(–)j+[
a j
a

]
[
aj
a

]
, ()

B(a;a) =
a–∑
j=

(–)j+[
a j
a

]
[
aj
a

]
, ()

and

C(a;a; ) =
a–∑
j=

j(–)j+[
a j
a

].

Combining the function [x] = x – ((x)) – 
 with () and (), we get

Y(a,a) = –(a + a)s(a,a) +C(a,a) – C(a,a)

+
a
a

C(a;a; ) –


S(a,a)

and

B(a,a) = as(a,a) –C(a,a) +


S(a,a),

where

C(a,a) =
a–∑
j=

(–)j+[
a j
a

]
((

aj
a

))

and

C(a,a) =
a–∑
j=

j(–)j+[
a j
a

]
((

aj
a

))
.

Thus, our new definitions are related to the Hardy-Berndt sums and also the Simsek sum
Y (a,a). The reciprocity laws for the special finite sums, that is, the Dedekind type sums,
the Hardy-Berndt type sums, and the Simsek sum, are very important. Therefore, we are
ready to give the reciprocity law of the sums Yn–(a,a, . . . ,an–;an) by the following the-
orem.

Theorem  Let n be a natural number with n ≥  and a,a, . . . ,an be positive integers,
relatively prime in pairs. Then we have
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Yn–(a,a, . . . ,an;a) + Yn–(a,a, . . . ,an;a) + · · · + Yn–(a,a, . . . ,an–;an)

=
n∏

m=

(–)am–(am – ).

Let a,a, . . . ,an be positive integers, relatively prime in pairs. Then we define the fol-
lowing sums:

YSk,n(a, . . . ,an–;an) =
an–∑
j=

jk

akn

((
aj
an

))((
aj
an

))
· · ·

((
an–j
an

))
. ()

Substituting k =  and n =  into (), we arrive at the Dedekind sums

YS,(a;a) = s(a;a) =

a

a–∑
j=

j
((

aj
a

))
,

where (a;a) = .
Substituting n =  into (), we obtain

YSk,(a;a) =
a–∑
j=

jk

ak

((
aj
a

))
.

Open questions
() For n≥ , find the reciprocity laws of the sums YSk,n(a,a, . . . ,an–;an) and

Bn–(a,a, . . . ,an;a). That is, find

YSk,n(a,a, . . . ,an;a) + YSk,n(a,a, . . . ,an;a) + · · · + YSk,n(a,a, . . . ,an–;an)

and

Bn–(a,a, . . . ,an;a) + Bn–(a,a, . . . ,an;a) + · · · + Bn–(a, . . . ,an–;an).

() For k > , find the reciprocity law of C(a,a, . . . ,an–;an;k). That is, evaluate

C(a,a, . . . ,an;a;k) +C(a,a, . . . ,an;a;k) + · · · +C(a, . . . ,an–;an;k).

3 PDE for the Carlitz polynomials and their applications
In this section, we study on the Carlitz polynomials and their properties (cf. [, , , , ],
and the references cited in each of these earlier works).We find a PDE for this polynomial.
We give many applications for this PDE, which are related to the Dedekind-Rademacher
sums, the Hardy-Berndt sums, and the other finite sums. In [], Beck defined generalized
the Carlitz polynomials as follows.

Definition  (The Carlitz polynomial) c(u,u, . . . ,un;a,a, . . . ,an), where u,u, . . . ,un
are indeterminants and a,a, . . . ,an are positive integers, is defined as the polynomial

c(u,u, . . . ,un;a,a, . . . ,an) =
a–∑
k=

uk– u
[ kaa ]
 u

[ kaa ]
 · · ·u[

kan
a

]
n .
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Theorem  (Berndt-Dieter) If a,a, . . . ,an are pairwise relatively prime positive integers,
then

(u – )c(u,u, . . . ,un;a,a, . . . ,an) + (u – )c(u,u, . . . ,un,u;a,a, . . . ,an,a)

+ · · · + (un – )c(un,u, . . . ,un–;an,a, . . . ,an–)

= ua– ua– · · ·uan–n – .

Proof of Theorem  was given by Beck in []. Now we will give a new definition:

Definition  Let u, v,w be indeterminants. Let a, b, c be positive integers, relatively prime
in pairs, and let k, k, k be positive natural numbers, which are the orders of the deriva-
tives of u, v, w, respectively. Then the polynomial F (u, v,w;a,b, c;k,k,k) is defined by

F (u, v,w;a,b, c;k,k,k) = k
a–∑
x=

(x – )k–
[
bx
a

]
k

[
cx
a

]
k
uxv[

bx
a ]w[ cxa ]

+ (u – )
a–∑
x=

(x – )k

[
bx
a

]
k

[
cx
a

]
k
ux–v[

bx
a ]w[ cxa ]

+ k
b–∑
y=

(y – )k–
[
ay
b

]
k

[
cy
b

]
k
vyw[ cyb ]u[

ay
b ]

+ (v – )
b–∑
y=

(y – )k

[
ay
b

]
k

[
cy
b

]
k
vy–w[ cyb ]u[

ay
b ]

+ k
c–∑
z=

(z – )k–
[
az
c

]
k

[
bz
c

]
k
wzu[

az
c ]v[

bz
c ]

+ (w – )
c–∑
z=

(z – )k

[
az
c

]
k

[
bz
c

]
k
wz–u[

az
c ]v[

bz
c ], ()

where k, k, and k are not zero simultaneously.

By using (), we derive the following theorem, which is very important and valuable to
obtain some new and old identities related to the function [·], the Dedekind sums, the
Hardy-Berndt sums, and the Simsek sum Y (h,k).

Theorem  The following identity holds true:

F (u, v,w;a,b, c;k,k,k) = (a – )k (b – )k (c – )ku
a–vb–wc–. ()

Proof By using (), we have

P(u, v,w) = (u – )
a–∑
x=

ux–v[
bx
a ]w[ cxa ] + (v – )

b–∑
y=

vy–w[ cyb ]u[
ay
b ]

+ (w – )
c–∑
z=

wz–u[
az
c ]v[

bz
c ] = ua–vb–wc– – .
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First we take the partial derivative of P(u, v,w) with respect to u, then we have

∂P(u, v,w)
∂u

=
a–∑
x=

ux–v[
bx
a ]w[ cxa ] + (u – )

a–∑
x=

(x – )ux–v[
bx
a ]w[ cxa ]

+ (v – )
b–∑
y=

[
ay
b

]
vy–w[ cyb ]u[

ay
b ]– + (w – )

c–∑
z=

[
az
c

]
wz–u[

az
c ]–v[

bz
c ]

= (a – )ua–vb–wc–.

Now, we take the partial derivative of ∂P(u,v,w)
∂u with respect to u, and we get

∂P(u, v,w)
∂u

= 
a–∑
x=

(x – )ux–v[
bx
a ]w[ cxa ]

+ (u – )
a–∑
x=

(x – )(x – )ux–v[
bx
a ]w[ cxa ]

+ (v – )
b–∑
y=

[
ay
b

]([
ay
b

]
– 

)
vy–w[ cyb ]u[

ay
b ]–

+ (w – )
c–∑
z=

[
az
c

]([
az
c

]
– 

)
wz–u[

az
c ]–v[

bz
c ]

= (a – )(a – )ua–vb–wc–.

If we continue this processwith themathematical inductionmethod, taking partial deriva-
tive of ∂k–P(u,v,w)

∂uk–
with respect to u, then we get

E(u, v,w) =
∂kP(u, v,w)

∂uk
= (a – )k (b – )ku

a–(k+)vb–(k+)wc–.

That is,

E(u, v,w) = k
a–∑
x=

(x – )ku
x–kv[

bx
a ]w[ cxa ]

+ (u – )
a–∑
x=

(x – )k+u
x–(k+)v[

bx
a ]w[ cxa ]

+ (v – )
b–∑
y=

[
ay
b

]
k
vy–w[ cyb ]u[

ay
b ]–k + (w – )

c–∑
z=

[
az
c

]
k
wz–u[

az
c ]–kv[

bz
c ]

= (a – )ku
a–(k+)vb–wc–.

Now we need to apply the same procedure to the function E(u, v,w). If we calculate k
times the partial derivative of E(u, v,w) with respect to v, we get

G(u, v,w) =
∂kE(u, v,w)

∂vk
= (a – )k (b – )ku

a–(k+)vb–(k+)wc–.
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That is,

G(u, v,w) = k
a–∑
x=

(x – )k

[
bx
a

]
k
ux–kv[

bx
a ]–kw[ cxa ]

+ (u – )
a–∑
x=

(x – )k+
[
bx
a

]
k
ux–(k+)v[

bx
a ]–kw[ cxa ]

+ k
b–∑
y=

[
ay
b

]
k
(y – )kv

y–kw[ cyb ]u[
ay
b ]–k

+ (v – )
b–∑
y=

[
ay
b

]
k
(y – )k+v

y–(k+)w[ cyb ]u[
ay
b ]–k

+ (w – )
c–∑
z=

[
az
c

]
k

[
bz
c

]
k
wz–u[

az
c ]–kv[

bz
c ]–k

= (a – )k (b – )ku
a–(k+)vb–(k+)wc–.

Finally, if we also take k times partial derivative of G(u, v,w), with respect to w, then we
obtain the desired result. �

Substituting u = u = u =  into Definition , we get

F (, , ;a,b, c;k,k,k)

= k
a–∑
x=

(x – )k–
[
bx
a

]
k

[
cx
a

]
k
+ k

b–∑
y=

(y – )k–
[
ay
b

]
k

[
cy
b

]
k

+ k
c–∑
z=

(z – )k–
[
az
c

]
k

[
bz
c

]
k

and by () we arrive at the following corollary.

Corollary 

F (, , ;a,b, c;k,k,k) := (a – )k (b – )k (c – )k . ()

Corollary  If we substitute k = , k = , and k =  into (), we get

F (, , ;a,b, c; , , ) = a – ,

if we substitute k = , k = , and k =  into (), we get

F (, , ;a,b, c; , , ) = b – ,

and finally if we substitute k = , k = , and k =  into (), we get

F (, , ;a,b, c; , , ) = c – .
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Remark  If we substitute k = k = , k =  in (), then we have the following well-
known reciprocity law of the function [x], which is very important to prove the Gauss law
of quadratic reciprocity:

a–∑
x=

[
bx
a

]
+

b–∑
y=

[
ay
b

]
= (a – )(b – ) ()

(cf. [, , ], and the references cited in each of these earlier works).

Remark  If we substitute u = w = –, v =  and k = k = , k =  into (), we get

F (–, , –;a,b, c; , , ) = –
a–∑
x=

[
bx
a

]
(–)x+[

cx
a ]–

+
b–∑
y=

(–)[
cy
b ]+[ ayb ] – 

c–∑
z=

[
bz
c

]
(–)z+[

az
c ]–. ()

We also know from () that

F (–, , –;a,b, c; , , ) = (b – )(–)a+c–. ()

By combining () and (), we get

–
a–∑
x=

[
bx
a

]
(–)x+[

cx
a ]– +

b–∑
y=

(–)[
cy
b ]+[ ayb ] – 

c–∑
z=

[
bz
c

]
(–)z+[

az
c ]–

= (b – )(–)a+c–,

which gives us Theorem . in [], so we have

F (–, , –;a,b, c; , , ) = s
(
ac′,b

)
– s

(
cb′,a

)
– s

(
ab′, c

)
or equivalently

F (–, , –;a,b, c; , , ) =
b – ac
ac

.

Remark  If we substitute u = v = , w = – and k = k = , k =  into (), we get

F (, , –;a,b, c; , , ) =
a–∑
x=

(–)[
cx
a ]

[
bx
a

]
+

b–∑
y=

(–)[
cy
b ]

[
ay
b

]

– 
c–∑
z=

(–)z–
[
az
c

][
bz
c

]
;

we also know from () that

F (, , –;a,b, c; , , ) = (a – )(b – )(–)c–

http://www.advancesindifferenceequations.com/content/2014/1/283


Cetin et al. Advances in Difference Equations 2014, 2014:283 Page 12 of 18
http://www.advancesindifferenceequations.com/content/2014/1/283

so if we use these two equations together, then we get

a–∑
x=

(–)[
cx
a ]

[
bx
a

]
+

b–∑
y=

(–)[
cy
b ]

[
ay
b

]
– 

c–∑
z=

(–)z–
[
az
c

][
bz
c

]

= (a – )(b – )(–)c–,

which gives us Theorem . in [], so we have

F (, , –;a,b, c; , , ) = s
(
ab′, c

)
– s

(
cb′,a

)
– s

(
ca′,b

)
or equivalently

F (, , –;a,b, c; , , ) = –


+


c

(
a
c
+
b
c

)
.

Remark  If we substitute u = –, v = w =  and k = , k = k =  into (), we get

F (–, , ;a,b, c; , , ) = –
a–∑
x=

(–)x–
[
bx
a

]
+

b–∑
y=

(–)[
ay
b ].

We also know from () that

F (–, , ;a,b, c; , , ) = (b – )(–)a–

so if we use these two equations together, then we get

–
a–∑
x=

(–)x–
[
bx
a

]
+

b–∑
y=

(–)[
ay
b ] = (b – )(–)a–,

which gives us Theorem . in [], so we have

F (–, , ;a,b, c; , , ) = s(b,a) – s(a,b)

or equivalently

F (–, , ;a,b, c; , , ) =  –
b
a
.

Remark  If we substitute u = v = –, w =  and k = k = , k =  into (), we get

F (–,–, ;a,b, c; , , )

= –
a–∑
x=

(–)x+[
bx
a ]–

[
cx
a

]
– 

b–∑
y=

(–)y+[
ay
b ]–

[
cy
b

]
+

c–∑
z=

(–)[
az
c ]+[ bzc ];

we also know from () that

F (–,–, ;a,b, c; , , ) = (c – )(–)a+b–

http://www.advancesindifferenceequations.com/content/2014/1/283
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so if we use these two equations together, then we get

–
a–∑
x=

(–)x+[
bx
a ]–

[
cx
a

]
– 

b–∑
y=

(–)y+[
ay
b ]–

[
cy
b

]
+

c–∑
z=

(–)[
az
c ]+[ bzc ] = (c – )(–)a+b–,

which gives us Theorem . in [], so we have

F (–,–, ;a,b, c; , , ) = s
(
ab′, c

)
+ s

(
bc′,a

)
– s

(
ac′,b

)
or equivalently

F (–,–, ;a,b, c; , , ) = – +
c
ab

.

Remark  If we substitute w = v = , u = – and k = , k = k =  into (), we get

F (–, , ;a,b, c; , , ) = –
a–∑
x=

(–)x–
[
bx
a

][
cx
a

]

+
b–∑
y=

(–)[
ay
b ]

[
cy
b

]
+

c–∑
z=

(–)[
az
c ]

[
bz
c

]
;

we also know from () that

F (–, , ;a,b, c; , , ) = (b – )(c – )(–)a–,

so if we use these two equations together, then we get

–
a–∑
x=

(–)x–
[
bx
a

][
cx
a

]
+

b–∑
y=

(–)[
ay
b ]

[
cy
b

]
+

c–∑
z=

(–)[
az
c ]

[
bz
c

]
= (b – )(c – )(–)a–,

which gives us Theorem . in [], so we have

F (–, , ;a,b, c; , , ) = s
(
cb′,a

)
– s

(
ca′,b

)
– s

(
ca′,b

)
or equivalently

F (–, , ;a,b, c; , , ) = –


+


a

(
c
b
+
b
c

)
.

We can also have some results from [] by using the same method as follows.

Remark  If we substitute u = , v = w = – and k = , k = k =  into (), we get

F (, –,–;a,b, c; , , )

=
a–∑
x=

(–)[
bx
a ]+[ cxa ] – 

b–∑
y=

(–)y+[
cy
b ]

[
ay
b

]
– 

c–∑
z=

(–)z+[
bz
c ]–

[
az
c

]
;
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we also know from () that

F (, –,–;a,b, c; , , ) = (a – )(–)b+c,

so if we use these two equations together, then we get

a–∑
x=

(–)[
bx
a ]+[ cxa ] – 

b–∑
y=

(–)y+[
cy
b ]

[
ay
b

]
– 

c–∑
z=

(–)z+[
bz
c ]–

[
az
c

]

= (a – )(–)b+c,

which gives us Theorem . in [], so we have

F (, –,–;a,b, c; , , ) = s
(
ab′, c

)
+ s

(
ca′,b

)
–


s

(
bc′,a

)
or equivalently

F (, –,–;a,b, c; , , ) =


–

a
bc

,

where a and a′ are even and cc′ ≡  (mod a).

Remark  If we substitute u = w = , v = – and k = k = , k =  into (), we get

F (, –, ;a,b, c; , , )

=
a–∑
x=

(–)[
bx
a ]

[
cx
a

]
+ 

b–∑
y=

(–)y
[
ay
b

][
cy
b

]
+

c–∑
z=

(–)[
bz
c ]

[
az
c

]
.

From (), we see that

F (, –, ;a,b, c; , , ) = (a – )(c – )(–)b–.

Therefore

a–∑
x=

(–)[
bx
a ]

[
cx
a

]
+ 

b–∑
y=

(–)y
[
ay
b

][
cy
b

]
+

c–∑
z=

(–)[
bz
c ]

[
az
c

]

= (a – )(c – )(–)b–,

which gives us Theorem . in [], so we have

F (, –, ;a,b, c; , , ) = s
(
bc′,a

)
– s

(
ca′,b

)
+ s

(
ab′, c

)
or equivalently

F (, –, ;a,b, c; , , ) =


–



(
a
bc

+
c
ab

)
,

where b is even.
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Remark  If we substitute u = v = w = , and k = k = k = , into (), we get

F (, , ;a,b, c; , , )

=
a–∑
x=

[
bx
a

][
cx
a

]
+

b–∑
y=

[
ay
b

][
cy
b

]
+

c–∑
z=

[
az
c

][
bz
c

]

we also know from () that

F (, , ;a,b, c; , , ) = (a – )(b – )(c – ).

Therefore

a–∑
x=

[
bx
a

][
cx
a

]
+

b–∑
y=

[
ay
b

][
cy
b

]
+

c–∑
z=

[
az
c

][
bz
c

]
= (a – )(b – )(c – )

(cf. [, (.)], and the references cited in each of these earlier works).

By themathematical inductionmethod, we shall generalize Theorem. But first we need
a new definition.

Definition  Let u, . . . ,un be indeterminants. Let a, . . . ,an be positive integers, rela-
tively prime in pairs, and let k, . . . ,kn be positive natural numbers, which are the orders
of the derivatives of u, . . . ,un, respectively. Then the polynomial F (u, . . . ,un;a, . . . ,an;
k, . . . ,kn) is defined by

F (u, . . . ,un;a, . . . ,an;k, . . . ,kn)

=
n∑
l=

(ul – )
al–∑
xl=

(xl – )kl
n∏

m=,m�=l

[
amxl
al

]
km
u
[ amxl

al
]

m uxl–l

+
n∑
l=

kl
al–∑
xl=

(xl – )kl–
n∏

m=,m�=l

[
amxl
al

]
km
u
[ amxl

al
]

m uxll .

Now we can give the generalization of Theorem  as follows.

Theorem  Let u,u, . . . ,un be indeterminants. Let a,a, . . . ,an be positive integers, rel-
atively prime in pairs, and let k,k, . . . ,kn be positive integers. For n ≥ , the following
identity holds true:

F (u, . . . ,un;a, . . . ,an;k, . . . ,kn) =
n∏

m=

uam–
m (am – )km .

Remark  If we substitute n =  in Theorem , then Theorem  reduces to Theorem .

Corollary  Substituting u = u = · · · = un =  and k = k = · · · = kn =  into Definition 
and Theorem , we arrive at
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a–∑
x=

[
ax
a

][
ax
a

]
· · ·

[
anx
a

]
+

a–∑
x=

[
ax
a

][
ax
a

]
· · ·

[
anx
a

]

+ · · · +
an–∑
xn=

[
axn
an

][
axn
an

]
· · ·

[
an–xn
an

]

= (a – )(a – ) · · · (an – ). ()

A proof of Corollary  was given by Beck [, Corollary .].

Remark  Substituting n =  into (), we easily have

a–∑
x=

[
ax
a

][
ax
a

]
+

a–∑
x=

[
ax
a

][
ax
a

]
+

a–∑
x=

[
ax
a

][
ax
a

]

= (a – )(a – )(a – ).

By substituting [x] = x– ((x)) – 
 into the above equation, one can arrive at the reciprocity

law of the Dedekind-Rademacher sums:

a–∑
x=

((
ax
a

))((
ax
a

))
+

a–∑
x=

((
ax
a

))((
ax
a

))

+
a–∑
x=

((
ax
a

))((
ax
a

))

= –


+




(
a

aa
+

a
aa

+
a
aa

)

(cf. [, ], and the references cited in each of these earlier works).

Substituting u = u = · · · = un =  into Definition  and Theorem , then we arrive at
the following result.

Corollary  Let a,a, . . . ,an be positive integers, relatively prime in pairs, and let
k,k, . . . ,kn be positive integers. Then we have

n∑
l=

kl
al–∑
xl=

(xl – )kl–
n∏

m=,m�=l

[
amxl
al

]
km

=
n∏

m=

(am – )km . ()

Remark  Setting k = k = · · · = kn =  in (), we obtain the following well-known iden-
tity, which was proved by Berndt and Dieter [, p., Corollary .]:

n∑
l=

al–∑
xl=

n∏
m=,m�=l

[
amxl
al

]
=

n∏
m=

(am – ),

where a,a, . . . ,an be positive integers, relatively prime in pairs (cf. also [, Corollary .]).
Note that this result was also obtained in Corollary .
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Substituting u = u = · · · = un = – into Definition  and Theorem , we obtain the
following corollary.

Corollary 

n∑
l=

al–∑
xl=

(
(xl – )kl + kl(xl – )kl–

) n∏
m=,m�=l

[
amxl
al

]
km
(–)xl+[

amxl
al

]

=
n∏

m=

(–)am–(am – )km . ()

Remark  Substituting n =  and k = k = , in Corollary , then we arrive at

a–∑
x=

(x – )(–)x+[
ax
a

]
[
ax
a

]
+

a–∑
x=

(x – )(–)x+[
ax
a

]
[
ax
a

]

= (–)a+a (a – )(a – ).

We are now ready to give a proof of Theorem .

Proof of Theorem  Substituting k = k = · · · = kn =  into (), we obtain

n∑
l=

al–∑
xl=

(xl – )
n∏

m=,m�=l
(–)xl+[

amxl
al

]
[
amxl
al

]
=

n∏
m=

(–)am–(am – ).

Combining the above equation with (), we get

Yn–(a,a, . . . ,an;a) + Yn–(a,a, . . . ,an;a) + · · · + Yn–(a,a, . . . ,an–;an)

=
n∏

m=

(–)am–(am – ).

Hence, we arrive at the desired result. �
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