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Abstract
We introduce a wavelet-type transform associated with the Laplace-Bessel differential
operator �B =

∑n
k=1

∂2

∂xk
+ 2νk

∂xk
∂

∂xk
and the relevant square-like functions. An analogue

of the Calderón reproducing formula and the L2,ν boundedness of the square-like
functions are obtained.
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1 Introduction
The classical square functions f (x)→ Sϕ(x) = (

∫ ∞
 |(f ∗ϕt)(x)| dt

t )

 , whereϕ ∈ S, S ≡ S(Rn)

is the Schwartz test function space and
∫
Rn ϕ(x)dx = , ϕt(x) = t–nϕ(t–x), t > , play im-

portant role in harmonic analysis and its applications; see Stein []. There are a lot of di-
verse variants of square functions and their applications; see Daly and Phillips [], Jones et
al. [], Pipher [], Kim []. Square-like functions generated by a composite wavelet trans-
form and its L estimates are proved by Aliev and Bayrakci [].
Note that the Laplace-Bessel differential operator �B is known as an important oper-

ator in analysis and its applications. The relevant harmonic analysis, known as Fourier-
Bessel harmonic analysis associated with the Bessel differential operator Bt = d

dt + ν
t

d
dt ,

has been the research area formanymathematicians such as Levitan,Muckenhoupt, Stein,
Kipriyanov, Klyuchantsev, Löfström, Peetre, Gadjiev, Aliev, Guliev, Triméche, Rubin and
others (see [–]). Moreover, a lot of mathematicians studied a Calderón reproducing
formula. For example, Amri and Rachdi [], Guliyev and Ibrahimov [], Kamoun and
Mohamed [], Pathak and Pandey [], Mourou and Trimèche [, ] and others.
In this paper, firstly we introduce a wavelet-like transform associated with the Laplace-

Bessel differential operator,

�B =
n∑
k=

∂

∂xk
+
νk
∂xk

∂

∂xk
, ν = (ν,ν, . . . ,νn),ν > ,

and then the relevant square-like function. The plan of the paper is as follows. Some neces-
sary definitions and auxiliary facts are given in Section . In Section we prove aCalderón-
type reproducing formula and the L,ν boundedness of the square-like functions.
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2 Preliminaries
R

n
+ = {x = (x, . . . ,xn) ∈R

n : x > ,x > , . . . ,xn > } and let S(Rn
+) be the Schwartz space of

infinitely differentiable and rapidly decreasing functions.
Lp,ν = Lp,ν(Rn

+) ( ≤ p < ∞, ν = (ν, . . . ,νn); ν > , . . . ,νn > ) space is defined as the class
of measurable functions f on R

n
+ for which

‖f ‖p,ν =
(∫

R
n
+

∣∣f (x)∣∣pxν dx) 
p
<∞, xν dx = xν xν · · ·xνnn dx dx · · · dxn.

In the case p = ∞, we identify L∞ ≡ L∞,ν with C the space of continuous functions
vanishing at infinity, and set ‖f ‖∞ = supx∈Rn

+ |f (x)|.
The Fourier-Bessel transform and its inverse are defined by

f ∧(x) = Fν(f )(x) =
∫
R
n
+

f (y)

( n∏
k=

jνk– 

(xkyk)

)
yν dy, (.)

F–
ν (f )(x) = cν(n)(Fν f )(x), cν(n) =

[
n

n∏
k=

�
(

νk +



)]–

, (.)

where jν– 

is the normalized Bessel function, which is also the eigenfunction of the Bessel

operator Bt = d
dt +

ν
t

d
dt ; jv– 


() =  and j′

ν– 

() =  (see []).

Denote by Ty (y ∈R
n
+) the generalized translation operator acting according to the law:

Tyf (x) = π–n/
n∏
k=

�

(
νk +




)
�–(νk)

∫ π


· · ·

∫ π


f
(√

x – xy cosα + y , . . . ,

√
xn – xnyn cosαn + yn

) n∏
k=

sinνk– αk dα · · · dαn.

Ty is closely connected with the Bessel operator Bt (see []). It is known that (see [])

∥∥Tyf
∥∥
p,ν ≤ ‖f ‖p,ν ∀y ∈ R

n
+, ≤ p≤ ∞, (.)∥∥Tyf – f

∥∥
p,ν → , |y| → ,  ≤ p ≤ ∞. (.)

The generalized convolution ‘B-convolution’ associated with the generalized translation
operator is (f ∗ g)(x) =

∫
R
+
n
f (y)(Tyg(x))yν dy for which

(f ∗ g)∧ = f ∧g∧. (.)

We consider the B-maximal operator (see [, ])

MBf (x) = sup
r>

∣∣E+(, r)
∣∣–
ν

∫
E+(,r)

Ty∣∣f (x)∣∣yνdy,
where E+(, r) = {y ∈ R

n
+ : |y| < r} and |E+(, r)|ν =

∫
E+(,r) x

ν dx = Crn+ν . Moreover, the
following inequalities are satisfied (see for details []).
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(a) If f ∈ L,ν(Rn
+), then for every α > ,

∣∣{x :MBf (x) > α
}∣∣

ν ≤ c
α

∫
R
n
+

∣∣f (x)∣∣xν dx,
where c >  is independent of f .

(b) If f ∈ Lp,ν(Rn
+),  < p≤ ∞, thenMBf ∈ Lp,ν(Rn

+) and

‖MBf ‖p,ν ≤ Cp‖f ‖p,ν ,

where cp is independent of f .
Furthermore, if f ∈ Lp,ν(Rn

+), ≤ p≤ ∞, then

lim
r→

∣∣E+(, r)
∣∣–
ν

∫
E+(,r)

Tyf (x)yν dy = f (x).

Now, we will need the generalized Gauss-Weierstrass kernel defined as

gν(x, t) = F–
ν

(
e–t|·|

)
(x) =

√
cν(n)t

–(n+|ν|)
 e

–x
t , x ∈R

n
+, t >  (.)

cν(n) being defined by (.) and |ν| = ν + ν + · · · + νn.
The kernel gν(x, t) possesses the following properties:

(a) Fν

(
gν(·, t)

)
(x) = e–t|x|

 (t > ); (.)

(b)
∫
R
n
+

gν(y, t)dy =  (t > ). (.)

Given a function f : R+
n → C, the generalized Gauss-Weierstrass semigroup, Gtf (x) is

defined as

Gtf (x) =
∫
R
n
+

gν(y, t)
(
Tyf (x)

)
yν dy, t > . (.)

This semigroup is well known and arises in the context of stable random processes
in probability, in pseudo-differential parabolic equations and in integral geometry; see
Koldobsky, Landkof, Fedorjuk, Aliev, Rubin, Sezer and Uyhan (see [–]).
The following lemma contains some properties of the semigroup {Gtf }t≥. (Compare

with the analogous properties of the classical Gauss-Weierstrass integral [, , ].)

Lemma . If f ∈ Lp,ν , ≤ p≤ ∞ (L∞ ≡ C), then

(a) ‖Gtf ‖p,ν ≤ c‖f ‖p,ν , (.)

(b) lim
t→

Gtf (x) = f (x). (.)

The limit is understood in Lp,ν norm and pointwise almost all x ∈ R
n
+. If f ∈ C, then the

limit is uniform on R
n
+.

(c) sup
t>

∣∣Gtf (x)
∣∣ ≤ cMBf (x), (.)

where MBf is the well-known Hardy-Littlewood maximal function.

http://www.advancesindifferenceequations.com/content/2014/1/281
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Moreover, let h(z) be an absolutely continuous function on [,∞) and

α =
∫ ∞



h(z)
z

dz <∞. (.)

If we denote w(z) = h′(z), we have from (.)

h() =  and h(∞) =  (.)

(see for details []).
Now, we define the following wavelet-like transform:

Vtf (x) =

α

∫ ∞


Gtzf (x)w(z)dz, (.)

where w(z) is known as ‘wavelet function’,
∫ ∞
 w(z)dz = , and the function Gtzf (x) is the

generalized Gauss-Weierstrass semigroup.
Using wavelet-like transform (.), we define the following square-like functions:

(Sf )(x) =

(∫ ∞



∣∣Vtf (x)
∣∣ dt

t

) 


. (.)

3 Main theorems and proofs
Theorem .
(a) Let f ∈ Lp,ν , ≤ p≤ ∞ (L∞ ≡ C), ν > .We have

‖Vtf ‖p,ν ≤ cc‖f ‖p,ν (∀t > ), (.)

where c = |ν|–n, |ν| = ν + ν + · · · + νn, c = 
α

∫ ∞
 |w(z)|dz <∞.

(b) Let f ∈ Lp,ν ,  < p≤ ∞ (L∞ ≡ C).We have

∫ ∞


Vtf (x)

dt
t

≡ lim
ε→
ρ→∞

∫ ρ

ε

Vtf (x)
dt
t
= f (x), (.)

where limit can be interpreted in the Lp,ν norm and pointwise for almost all x ∈R
n
+. If

f ∈ C, the convergence is uniform on R
n
+.

Theorem . If f ∈ L,ν , then

‖Sf ‖,ν ≤ 

‖f ‖,ν . (.)

Proof of Theorem . (a) By using the Minkowski inequality, we have

‖Vtf ‖p,ν = 
α

(∫
R
n
+

∣∣∣∣∣
∫ ∞


Gtzf (x)w(z)dz

∣∣∣∣∣
p

xν dx

) 
p

≤ 
α

∫ ∞



∣∣w(z)∣∣‖Gtzf ‖p,ν dz,

http://www.advancesindifferenceequations.com/content/2014/1/281
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‖Gtzf ‖p,ν =
(∫

R
n
+

∣∣∣∣∣
∫
R
n
+

gν(y, tz)Tyf (x)yν dy

∣∣∣∣∣
p

xν dx

) 
p

≤
∫
R
n
+

∣∣gν(y, tz)
∣∣(∫

R
n
+

∣∣Tyf (x)
∣∣pxν dx

) 
p

yν dy

≤ ‖f ‖p,ν
∫
R
n
+

∣∣gν(y, tz)
∣∣yν dy = c‖f ‖p,ν .

Taking into account the following equality for Reμ > , Reν > , p >  (see [, p.])

∫ ∞


xν–e–μxp dx =


p
μ
– ν
p �

(
ν

p

)
,

we have

∫ ∞


xνe–x


dx =



�

(
ν +




)
, ν > 

in one dimension. By using this equality, we get

c =
∫
R
n
+

∣∣gν(y, t)
∣∣yν dy

= –n
n∏
k=

�–
(

νk +



)
t
–(n+|ν|)



∫
R
n
+

e–
|y|
t yν dy

(
y = 

√
ty,dy = nt

n
 dy

)

= –n
n∏
k=

�–
(

νk +



)
t
–(n+|ν|)



∫
R
n
+

e–|y||ν|t|ν|nt
n
 yν dy

= |ν|
n∏
k=

�–
(

νk +



)∫
R
n
+

e–|y|yν dy

= |ν|
n∏
k=

�–
(

νk +



) n∏
k=

�

(
νk +




)
–n

= |ν|–n.

So we have ‖Gtzf ‖p,ν ≤ |ν|–n‖f ‖p,ν , and then inequality (.).
(b) Let (Aε,ρ f )(x) =

∫ ρ

ε
Vtf (x) dtt ,  < ε < ρ < ∞. Applying Fubini’s theorem, we get

(Aε,ρ f )(x) =

α

∫ ρ

ε

(∫ ∞


Gtzf (x)w(z)dz

)
dt
t

=

α

∫ ∞


w(z)

(∫ ρ

ε

Gtzf (x)
dt
t

)
dz

=

α

∫ ∞


w(z)

(∫ ρz

εz
Gtf (x)

dt
t

)
dz

=

α

∫ ∞



(∫ t
ε

t
ρ

w(z)dz

)
Gtf (x)

dt
t

http://www.advancesindifferenceequations.com/content/2014/1/281
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=

α

∫ ∞




t

[
h
(
t
ε

)
– h

(
t
ρ

)]
Gtf (x)dt

=

α

∫ ∞



h(t)
t

Gεt f (x)dt –

α

∫ ∞



h(t)
t

Gρt f (x)dt

= (Aε f )(x) – (Aρ f )(x).

By Theorem . in [, p.], if  < p ≤ ∞ (L∞ ≡ C), then

lim
ρ→∞‖Gρt f ‖p,ν = .

Therefore, by the Minkowski inequality and the Lebesgue dominated convergence the-
orem, taking into account Lemma ., we have

‖Aρ f ‖p,ν =

α

(∫
R
+
n

(∫ ∞



h(t)
t

Gρt f (x)dt

)p

xν dx

) 
p

≤ 
α

∫ ∞



h(t)
t

‖Gρt f ‖p,ν dt

=

α

∫ ∞



h( t
ρ
)

t
ρ

‖Gρt f ‖p,ν 
ρ
dt → , ρ → ∞

and

‖Aε f – f ‖p,ν =

(∫
R
+
n

(

α

∫ ∞



h(t)
t

Gεt f (x)dt – f (x)

)p

xν dx

) 
p

(.)=

(∫
R
+
n

(

α

∫ ∞



h(t)
t

Gεt f (x)dt –

α

∫ ∞



h(t)
t

f (x)dt

)p

xν dx

) 
p

≤ 
α

∫ ∞



h(t)
t

‖Gεt f – f ‖p,ν dt → , ε → .

Finally, for  < p≤ ∞ (L∞ ≡ C), we get

‖Aε,ρ f – f ‖p,ν = ‖Aε f – f ‖p,ν + ‖Aρ f ‖p,ν → , ε → ,ρ → ∞.

The a.e. convergence is based on the standard maximal function technique (see [, p.],
[] and []). �

Proof of Theorem . Firstly, let f ∈ S(Rn
+). Bymaking use of the Fubini and Plancherel (for

Fourier-Bessel transform) theorems, we get

‖Sf ‖,ν =
∫
R
n
+

(∫ ∞



∣∣Vtf (x)
∣∣ dt

t

)
xν dx

=
∫ ∞



(∫
R
+
n

∣∣Vtf (x)
∣∣xν dx

)
dt
t

=
∫ ∞



(∫
R
+
n

∣∣(Vtf )∧(x)
∣∣xν dx

)
dt
t

http://www.advancesindifferenceequations.com/content/2014/1/281
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and

(Vtf )∧(x) = Fν(Vtf )(x) =

α

∫
R
+
n

(∫ ∞


Gtzf (y)w(z)dz

) n∏
k=

jνk– 

(xkyk)yν dy

=

α

∫ ∞


w(z)

(∫
R
+
n

Gtzf (y)
n∏
k=

jνk– 

(xkyk)yν dy

)
dz

=

α

∫ ∞


w(z)(Gtzf )∧(x)dz

(.)=

α

∫ ∞


w(z)f ∧(x)e–tz|x|


dz.

Now, by using Fubini’s theorem, we have

‖Sf ‖,ν =

α

∫ ∞



[∫
R
+
n

(
f ∧(x)

)(∫ ∞


w(z)e–tz|x| dz

)

xν dx

]
dt
t

=

α

∫
R
+
n

(
f ∧(x)

) ∫ ∞



dt
t

(∫ ∞


w(z)e–tz|x|


dz

)

xν dx

(
t = τ |x|–,dt = |x|– dτ

)

=

α

∫
R
+
n

(
f ∧(x)

) ∫ ∞



dτ

τ

(∫ ∞


w(z)e–τz dz

)

xν dx

= C 
α ‖f ‖,ν ,

where

C =

(∫ ∞



dτ

τ

(∫ ∞


e–τzw(z)dz

))/

.

Since w(z) = h′(z), h(z) ≥ , h(∞) = h() = , it follows that

C =

(∫ ∞



dτ

τ

(∫ ∞


e–τzw(z)dz

))/

=

(∫ ∞



(∫ ∞



√
τe–τzh(z)dz

)

dτ

)/

≤
∫ ∞


h(z)

(∫ ∞


τe–τz dτ

)/

dz (zτ = t, zdτ = dt)

=
∫ ∞


h(z)

(∫ ∞



t
z

e–t

z

dt

)/

dz

=
∫ ∞



h(z)
z

(∫ ∞


te–t dt

)/

dz =


α.

http://www.advancesindifferenceequations.com/content/2014/1/281
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Finally, we get

‖Sf ‖,ν ≤ 

‖f ‖,ν .

For arbitrary f ∈ L,ν(Rn
+), the result follows by density of the class S(Rn

+) in L,ν(Rn
+).

Namely, let (fn) be a sequence of functions in S(Rn
+), which converge to f in L,ν(Rn

+)-norm.
That is, limn→∞ ‖fn(x) – f (x)‖,ν = , ∀x ∈R

n
+.

From the ‘triangle inequality’ ((‖u‖,ν – ‖v‖,ν) ≤ ‖u – v‖,ν ), we have

∣∣(Sfn)(x) – (Sfm)(x)
∣∣ =

[(∫ ∞



∣∣Vtfn(x)
∣∣ dt

t

) 


–

((∫ ∞



∣∣Vtfm(x)
∣∣ dt

t

) 

)]

≤
∫ ∞



∣∣Vtfn(x) –Vtfm(x)
∣∣ dt

t

=
∫ ∞



∣∣Vt(fn – fm)
∣∣ dt

t

=
(
S(fn – fm)(x)

).
Hence

‖Sfn – Sfm‖,ν ≤ ∥∥S(fn – fm)
∥∥
,ν ≤ 


‖fn – fm‖,ν .

This shows that the sequence (Sfn) converges to Sf in L,ν(Rn
+)-norm. Thus

‖Sf ‖,ν ≤ 

‖f ‖,ν , ∀f ∈ L,ν

(
R

n
+
)

and the proof is complete. �
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