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Abstract

We introduce a wavelet-type transform associated with the Laplace-Bessel differential

a2 . . .

operator Ag=Y"_, ad_xk + %ﬁ Bixk and the relevant square-like functions. An analogue
of the Calderon reproducing formula and the L,,, boundedness of the square-like
functions are obtained.
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1 Introduction
The classical square functions f (x) — S, (x) = (foOo |(f % @) (x) |2 %)% ,wherep € S, S = S(R")
is the Schwartz test function space and [, ¢(x)dx = 0, @(x) = t™"o(t ), t > 0, play im-
portant role in harmonic analysis and its applications; see Stein [1]. There are a lot of di-
verse variants of square functions and their applications; see Daly and Phillips [2], Jones et
al. [3], Pipher [4], Kim [5]. Square-like functions generated by a composite wavelet trans-
form and its L, estimates are proved by Aliev and Bayrakci [6].

Note that the Laplace-Bessel differential operator Ap is known as an important oper-
ator in analysis and its applications. The relevant harmonic analysis, known as Fourier-
d  2wd

a2t T a

has been the research area for many mathematicians such as Levitan, Muckenhoupt, Stein,

Bessel harmonic analysis associated with the Bessel differential operator B, =

Kipriyanov, Klyuchantsev, Lofstrom, Peetre, Gadjiev, Aliev, Guliev, Triméche, Rubin and
others (see [7—14]). Moreover, a lot of mathematicians studied a Calderén reproducing
formula. For example, Amri and Rachdi [15], Guliyev and Ibrahimov [16], Kamoun and
Mohamed [17], Pathak and Pandey [18], Mourou and Trimeche [19, 20] and others.

In this paper, firstly we introduce a wavelet-like transform associated with the Laplace-

Bessel differential operator,

n
32 2\)k d
A= —t——, v=(V,V3...,V,),v>0,

B kX:I:ax]% 0Xy 0xk (1, v ”

and then the relevant square-like function. The plan of the paper is as follows. Some neces-
sary definitions and auxiliary facts are given in Section 2. In Section 3 we prove a Calderén-
type reproducing formula and the L;, boundedness of the square-like functions.
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2 Preliminaries
RY ={x=(x1,...,%,) € R":21 >0, > 0,...,%, > 0} and let S(R”) be the Schwartz space of
infinitely differentiable and rapidly decreasing functions.

Lpy =Ly (R?) (1 <p<oo,v=(vy,...,v,); 11 >0,...,v, > 0) space is defined as the class

of measurable functions f on R’ for which

1
p
1fllpw = </ [f(x)|px2“ dx) <00, x¥dx= xf”‘x%” X2 dxy doxy - -+ dix,.
RY

In the case p = 0o, we identify Lo, = L, with Cy the space of continuous functions
vanishing at infinity, and set ||f[|oo = sup,cgs [f (¥)]-
The Fourier-Bessel transform and its inverse are defined by

S ) =F,(f)(x) = f fO) (vari (xkyk)>y2” dy, (2.1)
RY k=1
n 1 -1
FAO0) = coEH@,  cln) = [22" [1r (vk . 5)} , 22)

wherej 1 is the normalized Bessel function, which is also the eigenfunction of the Bessel

operator B, = % + 27” %;jv_% 0)=1 andjj)i% (0) =0 (see [10]).

Denote by T” (y € R") the generalized translation operator acting according to the law:

n 1 T T
Tyf(x) =2 1_[ F(uk + 5)1"1(1)/()/ / f(\/xf — 2x1Y) COS 0 +y%,...,
k=1 0 0

\/x% — 2%, Y, COS 0ty + y},) 1_[ sin?* Yo doy -+ - da,.
k=1

T” is closely connected with the Bessel operator B; (see [10]). It is known that (see [11])

|71, < fllpw Yy eRL1<p<oo, (2.3)

|77F —f||p,v -0, |y—0,1<p<oo. (2.4)

The generalized convolution ‘B-convolution’ associated with the generalized translation
operator is (f * g)(x) = fR+ FO)(T?g(x))y*" dy for which

(f=g)" =f"g". (2.5)
We consider the B-maximal operator (see [8, 21])

Mgf(x) = sup|E+((),r)’;/ T [f(x)|y2"dy,
r>0 E.(0,r)

where E(0,7) = {y e R} : |y| <7} and |E,(0,7)3, = fE+(0,r) x%2’ dx = Cr"™*?. Moreover, the
following inequalities are satisfied (see for details [22]).
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(@) Iff € L1,,(RY}), then for every a > 0,

[{x: Mpf(x) >}, < 2/}1{}1 If () |%* dx,

where ¢ > 0 is independent of f.
(b) Iff eL,,(RY),1<p < oo, then Mgf € L,,(R}) and

IMeflpw < Collf lpws

where ¢, is independent of f.
Furthermore, if f € L,,,(R”), 1 < p < oo, then

lim|E, (0, )] f Tf ()™ dy = £ (x).
r—0 EL(0,)

Now, we will need the generalized Gauss-Weierstrass kernel defined as

—(n+2v) -2

gv(x,t):F\jl(e‘t"‘Z)(x)z\/cv(n)t T et, xeR",t>0 (2.6)

¢y(n) being defined by (2.2) and [v]| = vy + vg + -+ - + V.
The kernel g, (x, t) possesses the following properties:

@ Fu(g0)®=e™" (>0) 2.7)

(b) /R” &hdy=1 (t>0). (2.8)

Given a function f : R} — C, the generalized Gauss-Weierstrass semigroup, G.f (x) is
defined as

Gf(x) = ./R” o0, t)(Tyf(x))yz" dy, t>0. (2.9)

This semigroup is well known and arises in the context of stable random processes
in probability, in pseudo-differential parabolic equations and in integral geometry; see
Koldobsky, Landkof, Fedorjuk, Aliev, Rubin, Sezer and Uyhan (see [23-26]).

The following lemma contains some properties of the semigroup {G,f}:>o. (Compare
with the analogous properties of the classical Gauss-Weierstrass integral [1, 27, 28].)

Lemma2.l Iffel,,,1<p<00 (L= Co), then

(a) ”Glzf”p,v = C“f”p,vr (2.10)
(b)  lim Gif (o) = (). (2.11)

The limit is understood in Ly, norm and pointwise almost all x € R, If f € Cy, then the
limit is uniform on R’.

(©) sug)lGI;f @)| < cMgf (x), (2.12)

where Mgf is the well-known Hardy-Littlewood maximal function.
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Moreover, let /(z) be an absolutely continuous function on [0, c0) and

azfooo@dz«n (2.13)

z

If we denote w(z) = #'(z), we have from (2.13)
h(0)=0 and h(c0)=0 (2.14)

(see for details [29]).
Now, we define the following wavelet-like transform:

Vif (x) = é/ooo Guf x)w(z) dz, (2.15)

where w(z) is known as ‘wavelet function, fooo w(z) dz = 0, and the function Gf(x) is the
generalized Gauss-Weierstrass semigroup.
Using wavelet-like transform (2.15), we define the following square-like functions:

(S)(x ( / \Z00E dt) (2.16)

3 Main theorems and proofs
Theorem 3.1
(@) Letfel,,,1<p=<00(Le=Cy),v>0. Wehave

1V lpw < acallfllpy  (VE>0), (3.1)

where ¢y = 2217 vl = vy 4 vy + -+, 00 = L [ [w(2)| dz < 0.

b) Letfel,,, 1<p <00 (Lo = Cy). We have
* dt . p dt
[ v = i / Vi % = o) .2)
p—>00

where limit can be interpreted in the Ly, norm and pointwise for almost all x € R’} If
f € Cy, the convergence is uniform on RY.

Theorem 3.2 Iff € Ly, then

1
15F 120 = 3 1 ll2,v- (3.3)

Proof of Theorem 3.1 (a) By using the Minkowski inequality, we have

1
p P
1 2v
1Vif o =~ ( / x dx)
Rn

/0 Grf X)w(z)dz

+

1 oo
< —/ |W(Z)|||Gtzf||p,v dz’
a Jo
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» 5
X% dx)
1
p
5[ |gv(y,tz)‘<f ‘Tyf(x)|px2”dx) yz”dy
R? R%

< ”f”p,v /]R” |gv()/r tZ) |y2” dy B Cl”f”p,v-

/R” (5, t2) Tyf(x)yz" dy

+

1Gaf o = ( [,

Taking into account the following equality for Re £ > 0, Rev > 0, p > 0 (see [30, p.370])

00
/ xv—le—ltxp dx = lﬂ—ﬁp(ﬂ),
0 p p

we have

o0 1
/ ¥ dx——F(u+—>, v>0
0 2 2

in one dimension. By using this equality, we get
1 = / |gv (y, t) |y2v dy
Rn
1
=2 []r- ~)e
(e 3)
=27 ]_[ P (e 2 e
2
n
= 22|U‘ l_[ F_l <Uk +
k=1
n
= 92Ml 1—[ Fl(
k=1

— 22|v\—n'

n+2|v|) |J/|

€ arydy  (y=2Vty,dy= 23 dy)

n+2|v|)

\y\222\vltlv\2nt%y2v dy

—Iyl 2v dy

N =

RY

)
ie(o- e

[\)l’—‘

So we have ||Gyf |y < 22Mvl-n fllp,v» and then inequality (3.1).
(b) Let (Ac,of)(x) = f: Vlf(x)%, 0 < € < p < 00. Applying Fubini’s theorem, we get

o= [ ( [ et dz)?
R ( [ Gtzf(x)%) dz
=§/Omw<z>(/ez Gif( )?)dz
éfooo(/ (Z)dZ>GJ( 2
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1 ®©1 t t
- z[h<z)‘h<;>]w(")”“
1 [ k() 1 [ h(t)
_1 /0 " G war - /0 26, f ) de

o

= (Af)(x) = (Apf) ().
By Theorem 1.15 in [28, p.3], if 1 < p < 00 (Lo = Cp), then
;E;HGmﬂmuza

Therefore, by the Minkowski inequality and the Lebesgue dominated convergence the-
orem, taking into account Lemma 2.1, we have

14,1 = é( /. ( / ?Gmf(xmt) 2 dx)
1 [ h)
<= f =G I

1 [ h(%) 1
:_f PNGpfllpp—dt — 0, p— 00
a Jo 0

t
P

and

.- Y
1A ~Flps = ( / (g [ "ewa- f(x)) 2 dx)
o1 1 [ k() 1 (% k) "o
= (/l;{;<a/.§ TGqf(?C)dt—Eﬁ Tf(x)dt) x> dx)

1 [ h(t)
< ;‘/; T”Gqf _f”p,v dt—) 0, e — 0.

ASIE

Finally, for 1 < p < 00 (Lo, = Cp), we get

”Ae,pf _f”p,v = [|Af _f”p,u + ”Apf”p,v —-0, €—0,0— 00

The a.e. convergence is based on the standard maximal function technique (see [31, p.60],
[29] and [32]). O

Proofof Theorem 3.2 Firstly, let f € S(R’}). By making use of the Fubini and Plancherel (for
Fourier-Bessel transform) theorems, we get

e d
ISF113,, = fR ) ( /0 |VJ(x)¢27t>x2v dx
:/w(/ |vf(x)|2xZde)@
0 R}, t
*© d
- (/ |<VJ>A<x>|2x2“dx)7t
0 R
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and
(hf)A(x) = F(Vif)x) = l/ f Gof )W(z) dz |n|] 1 (xkyk)yzv dy
o Jri\Jo P

1 [ .
= w(z)< [ Gt [y o™ dy) dz

_ 1 /0 " D) (Gaf) () d

o

1 o0
@5 - / w(:z)fA(x)e‘tZ'x|2 dz.
o Jo

Now, by using Fubini’s theorem, we have

2
1 o o 2 dt
IS5, = J/(; |:/H;; (]M(x))2 </0 w(z)e dz) X% dx:| "
2
(fA ) f ait (/ w(z)e =’ dz) x¥ dx
0 0

(t = r|x|_2,dt = |x|2 d'()

2
1 2 [*dt 0

- A - -1z 4 2vd
3 /R;(f (x)) /0 . (/0 w(z)e z) x=" dx
2 1 2

=C Ellfllz,w

where

© g - 2\ 1/2
C= (/(‘) ?f(/o e‘”w(z)dz) ) .
Since w(z) = H'(z), h(z) > 0, h(oo) = h(0) = 0, it follows that
© g o 2 1/2
C= (/0 % (/0 e‘”w(z)dz) )
1/2
(/ (/ JTe % h(2) dz) dr)

1/2
< / h(z) (f Te 2 dr) dz (2zt =t,2zdt = dt)
0 0
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Finally, we get

|Sf”2v = |lf||2v

For arbitrary f € L,,(R}), the result follows by density of the class S(R) in L, ,(R?).
Namely, let (f,,) be a sequence of functions in S(R”), which converge to f in L, , (R”)-norm.
That is, lim,,_, o5 [|fu(x) —f(®)|l2,, =0, Vx € R”.

From the ‘triangle inequality’ (([|]|2, — [[v]l2,)? < ||z — V||%,v), we have

Zdt 2dt

1(S£,)(6) — (i) () / V@) - / Vi) 24

2dt

IA

f Vefalo) = Vi)~

/ Vi, fmn“”

= (S( —f) ()"

Hence

15 = Sfinllan < || S fm)||2V_2 ~ fnll2-

This shows that the sequence (Sf,,) converges to Sf in Ly, (R”)-norm. Thus

1
15 1l20 < Ellfllz,w Vf € Ly, (RY)

and the proof is complete. d
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