Square-like functions generated by the Laplace-Bessel differential operator

Şeyda Keleş** and Simten Bayrakçı

"Correspondence: seydaaltinkol@gmail.com Department of Mathematics, Faculty of Science, Akdeniz University, Antalya, Turkey

Abstract

We introduce a wavelet-type transform associated with the Laplace-Bessel differential operator $\Delta_{B}=\sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}}+\frac{2 v_{k}}{\partial x_{k}} \frac{\partial}{\partial x_{k}}$ and the relevant square-like functions. An analogue of the Calderón reproducing formula and the $L_{2, v}$ boundedness of the square-like functions are obtained.

MSC: 47G10; 42C40; 44A35
Keywords: square functions; generalized translation; wavelet transform; Calderón reproducing formula

1 Introduction

The classical square functions $f(x) \rightarrow S_{\varphi}(x)=\left(\int_{0}^{\infty}\left|\left(f * \varphi_{t}\right)(x)\right|^{2} \frac{d t}{t}\right)^{\frac{1}{2}}$, where $\varphi \in S, S \equiv S\left(\mathbb{R}^{n}\right)$ is the Schwartz test function space and $\int_{\mathbb{R}^{n}} \varphi(x) d x=0, \varphi_{t}(x)=t^{-n} \varphi\left(t^{-1} x\right), t>0$, play important role in harmonic analysis and its applications; see Stein [1]. There are a lot of diverse variants of square functions and their applications; see Daly and Phillips [2], Jones et al. [3], Pipher [4], Kim [5]. Square-like functions generated by a composite wavelet transform and its L_{2} estimates are proved by Aliev and Bayrakci [6].

Note that the Laplace-Bessel differential operator Δ_{B} is known as an important operator in analysis and its applications. The relevant harmonic analysis, known as FourierBessel harmonic analysis associated with the Bessel differential operator $B_{t}=\frac{d^{2}}{d t^{2}}+\frac{2 v}{t} \frac{d}{d t}$, has been the research area for many mathematicians such as Levitan, Muckenhoupt, Stein, Kipriyanov, Klyuchantsev, Löfström, Peetre, Gadjiev, Aliev, Guliev, Triméche, Rubin and others (see [7-14]). Moreover, a lot of mathematicians studied a Calderón reproducing formula. For example, Amri and Rachdi [15], Guliyev and Ibrahimov [16], Kamoun and Mohamed [17], Pathak and Pandey [18], Mourou and Trimèche [19, 20] and others.

In this paper, firstly we introduce a wavelet-like transform associated with the LaplaceBessel differential operator,

$$
\Delta_{B}=\sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}^{2}}+\frac{2 v_{k}}{\partial x_{k}} \frac{\partial}{\partial x_{k}}, \quad v=\left(v_{1}, v_{2}, \ldots, v_{n}\right), v>0,
$$

and then the relevant square-like function. The plan of the paper is as follows. Some necessary definitions and auxiliary facts are given in Section 2. In Section 3 we prove a Calderóntype reproducing formula and the $L_{2, v}$ boundedness of the square-like functions.

[^0]
2 Preliminaries

$\mathbb{R}_{+}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}>0, x_{2}>0, \ldots, x_{n}>0\right\}$ and let $S\left(\mathbb{R}_{+}^{n}\right)$ be the Schwartz space of infinitely differentiable and rapidly decreasing functions.
$L_{p, v}=L_{p, v}\left(\mathbb{R}_{+}^{n}\right)\left(1 \leq p<\infty, v=\left(v_{1}, \ldots, v_{n}\right) ; v_{1}>0, \ldots, v_{n}>0\right)$ space is defined as the class of measurable functions f on \mathbb{R}_{+}^{n} for which

$$
\|f\|_{p, v}=\left(\int_{\mathbb{R}_{+}^{n}}|f(x)|^{p} x^{2 v} d x\right)^{\frac{1}{p}}<\infty, \quad x^{2 v} d x=x_{1}^{2 v_{1}} x_{2}^{2 v_{2}} \cdots x_{n}^{2 v_{n}} d x_{1} d x_{2} \cdots d x_{n}
$$

In the case $p=\infty$, we identify $L_{\infty} \equiv L_{\infty, \nu}$ with C_{0} the space of continuous functions vanishing at infinity, and set $\|f\|_{\infty}=\sup _{x \in \mathbb{R}_{+}^{n}}|f(x)|$.

The Fourier-Bessel transform and its inverse are defined by

$$
\begin{align*}
& f^{\wedge}(x)=F_{v}(f)(x)=\int_{\mathbb{R}_{+}^{n}} f(y)\left(\prod_{k=1}^{n} j_{v_{k}-\frac{1}{2}}\left(x_{k} y_{k}\right)\right) y^{2 v} d y, \tag{2.1}\\
& F_{v}^{-1}(f)(x)=c_{v}(n)\left(F_{v} f\right)(x), \quad c_{v}(n)=\left[2^{2 n} \prod_{k=1}^{n} \Gamma^{2}\left(v_{k}+\frac{1}{2}\right)\right]^{-1}, \tag{2.2}
\end{align*}
$$

where $j_{v-\frac{1}{2}}$ is the normalized Bessel function, which is also the eigenfunction of the Bessel operator $B_{t}=\frac{d^{2}}{d t^{2}}+\frac{2 v}{t} \frac{d}{d t} ; j_{v-\frac{1}{2}}(0)=1$ and $j_{v-\frac{1}{2}}^{\prime}(0)=0$ (see [10]).

Denote by $T^{y}\left(y \in \mathbb{R}_{+}^{n}\right)$ the generalized translation operator acting according to the law:

$$
\begin{aligned}
T^{y} f(x)= & \pi^{-n / 2} \prod_{k=1}^{n} \Gamma\left(v_{k}+\frac{1}{2}\right) \Gamma^{-1}\left(v_{k}\right) \int_{0}^{\pi} \cdots \int_{0}^{\pi} f\left(\sqrt{x_{1}^{2}-2 x_{1} y_{1} \cos \alpha_{1}+y_{1}^{2}}, \ldots,\right. \\
& \left.\sqrt{x_{n}^{2}-2 x_{n} y_{n} \cos \alpha_{n}+y_{n}^{2}}\right) \prod_{k=1}^{n} \sin ^{2 v_{k}-1} \alpha_{k} d \alpha_{1} \cdots d \alpha_{n} .
\end{aligned}
$$

T^{y} is closely connected with the Bessel operator B_{t} (see [10]). It is known that (see [11])

$$
\begin{align*}
& \left\|T^{y} f\right\|_{p, v} \leq\|f\|_{p, v} \quad \forall y \in \mathbb{R}_{+}^{n}, 1 \leq p \leq \infty \tag{2.3}\\
& \left\|T^{y} f-f\right\|_{p, v} \rightarrow 0, \quad|y| \rightarrow 0,1 \leq p \leq \infty \tag{2.4}
\end{align*}
$$

The generalized convolution ' B-convolution' associated with the generalized translation operator is $(f * g)(x)=\int_{\mathbb{R}_{n}^{+}} f(y)\left(T^{y} g(x)\right) y^{2 v} d y$ for which

$$
\begin{equation*}
(f * g)^{\wedge}=f^{\wedge} g^{\wedge} . \tag{2.5}
\end{equation*}
$$

We consider the B-maximal operator (see $[8,21]$)

$$
M_{B} f(x)=\sup _{r>0}\left|E_{+}(0, r)\right|_{2 v}^{-1} \int_{E_{+}(0, r)} T^{y}|f(x)| y^{2 v} d y
$$

where $E_{+}(0, r)=\left\{y \in \mathbb{R}_{+}^{n}:|y|<r\right\}$ and $\left|E_{+}(0, r)\right|_{2 v}=\int_{E_{+}(0, r)} x^{2 v} d x=C r^{n+2 v}$. Moreover, the following inequalities are satisfied (see for details [22]).
(a) If $f \in L_{1, v}\left(\mathbb{R}_{+}^{n}\right)$, then for every $\alpha>0$,

$$
\left|\left\{x: M_{B} f(x)>\alpha\right\}\right|_{2 v} \leq \frac{c}{\alpha} \int_{\mathbb{R}_{+}^{n}}|f(x)| x^{2 v} d x,
$$

where $c>0$ is independent of f.
(b) If $f \in L_{p, v}\left(\mathbb{R}_{+}^{n}\right), 1<p \leq \infty$, then $M_{B} f \in L_{p, v}\left(R_{+}^{n}\right)$ and

$$
\left\|M_{B} f\right\|_{p, v} \leq C_{p}\|f\|_{p, v}
$$

where c_{p} is independent of f.
Furthermore, if $f \in L_{p, v}\left(\mathbb{R}_{+}^{n}\right), 1 \leq p \leq \infty$, then

$$
\lim _{r \rightarrow 0}\left|E_{+}(0, r)\right|_{2 v}^{-1} \int_{E_{+}(0, r)} T^{y} f(x) y^{2 v} d y=f(x)
$$

Now, we will need the generalized Gauss-Weierstrass kernel defined as

$$
\begin{equation*}
g_{\nu}(x, t)=F_{\nu}^{-1}\left(e^{-t|\cdot|^{2}}\right)(x)=\sqrt{c_{\nu}(n)} t^{\frac{-(n+2|v|)}{2}} e^{\frac{-x^{2}}{4 t}}, \quad x \in \mathbb{R}_{+}^{n}, t>0 \tag{2.6}
\end{equation*}
$$

$c_{\nu}(n)$ being defined by (2.2) and $|\nu|=\nu_{1}+\nu_{2}+\cdots+v_{n}$.
The kernel $g_{\nu}(x, t)$ possesses the following properties:
(a) $\quad F_{v}\left(g_{\nu}(\cdot, t)\right)(x)=e^{-t|x|^{2}} \quad(t>0) ;$
(b) $\int_{\mathbb{R}_{+}^{n}} g_{\nu}(y, t) d y=1 \quad(t>0)$.

Given a function $f: \mathbb{R}_{n}^{+} \rightarrow \mathbb{C}$, the generalized Gauss-Weierstrass semigroup, $G_{t} f(x)$ is defined as

$$
\begin{equation*}
G_{t} f(x)=\int_{\mathbb{R}_{+}^{n}} g_{\nu}(y, t)\left(T^{y} f(x)\right) y^{2 v} d y, \quad t>0 \tag{2.9}
\end{equation*}
$$

This semigroup is well known and arises in the context of stable random processes in probability, in pseudo-differential parabolic equations and in integral geometry; see Koldobsky, Landkof, Fedorjuk, Aliev, Rubin, Sezer and Uyhan (see [23-26]).

The following lemma contains some properties of the semigroup $\left\{G_{t} f\right\}_{t \geq 0}$. (Compare with the analogous properties of the classical Gauss-Weierstrass integral [1, 27, 28].)

Lemma 2.1 Iff $\in L_{p, v}, 1 \leq p \leq \infty\left(L_{\infty} \equiv C_{0}\right)$, then
(a) $\left\|G_{t} f\right\|_{p, v} \leq c\|f\|_{p, v}$,
(b) $\lim _{t \rightarrow 0} G_{t} f(x)=f(x)$.

The limit is understood in $L_{p, v}$ norm and pointwise almost all $x \in \mathbb{R}_{+}^{n}$. If $f \in C_{0}$, then the limit is uniform on \mathbb{R}_{+}^{n}.
(c) $\sup _{t>0}\left|G_{t} f(x)\right| \leq c M_{B} f(x)$,

Moreover, let $h(z)$ be an absolutely continuous function on $[0, \infty)$ and

$$
\begin{equation*}
\alpha=\int_{0}^{\infty} \frac{h(z)}{z} d z<\infty \tag{2.13}
\end{equation*}
$$

If we denote $w(z)=h^{\prime}(z)$, we have from (2.13)

$$
\begin{equation*}
h(0)=0 \quad \text { and } \quad h(\infty)=0 \tag{2.14}
\end{equation*}
$$

(see for details [29]).
Now, we define the following wavelet-like transform:

$$
\begin{equation*}
V_{t} f(x)=\frac{1}{\alpha} \int_{0}^{\infty} G_{t z} f(x) w(z) d z \tag{2.15}
\end{equation*}
$$

where $w(z)$ is known as 'wavelet function', $\int_{0}^{\infty} w(z) d z=0$, and the function $G_{t z} f(x)$ is the generalized Gauss-Weierstrass semigroup.

Using wavelet-like transform (2.15), we define the following square-like functions:

$$
\begin{equation*}
(S f)(x)=\left(\int_{0}^{\infty}\left|V_{t} f(x)\right|^{2} \frac{d t}{t}\right)^{\frac{1}{2}} \tag{2.16}
\end{equation*}
$$

3 Main theorems and proofs

Theorem 3.1

(a) Letf $\in L_{p, v}, 1 \leq p \leq \infty\left(L_{\infty} \equiv C_{0}\right), v>0$. We have

$$
\begin{equation*}
\left\|V_{t} f\right\|_{p, v} \leq c_{1} c_{2}\|f\|_{p, v} \quad(\forall t>0) \tag{3.1}
\end{equation*}
$$

where $c_{1}=2^{2|\nu|-n},|\nu|=v_{1}+v_{2}+\cdots+v_{n}, c_{2}=\frac{1}{\alpha} \int_{0}^{\infty}|w(z)| d z<\infty$.
(b) Letf $\in L_{p, v}, 1<p \leq \infty\left(L_{\infty} \equiv C_{0}\right)$. We have

$$
\begin{equation*}
\int_{0}^{\infty} V_{t} f(x) \frac{d t}{t} \equiv \lim _{\substack{\epsilon \rightarrow 0 \\ \rho \rightarrow \infty}} \int_{\epsilon}^{\rho} V_{t} f(x) \frac{d t}{t}=f(x) \tag{3.2}
\end{equation*}
$$

where limit can be interpreted in the $L_{p, v}$ norm and pointwise for almost all $x \in \mathbb{R}_{+}^{n}$. If $f \in C_{0}$, the convergence is uniform on \mathbb{R}_{+}^{n}.

Theorem 3.2 Iff $\in L_{2, v}$, then

$$
\begin{equation*}
\|S f\|_{2, v} \leq \frac{1}{2}\|f\|_{2, v} \tag{3.3}
\end{equation*}
$$

Proof of Theorem 3.1 (a) By using the Minkowski inequality, we have

$$
\begin{aligned}
\left\|V_{t} f\right\|_{p, v} & =\frac{1}{\alpha}\left(\int_{\mathbb{R}_{+}^{n}}\left|\int_{0}^{\infty} G_{t z} f(x) w(z) d z\right|^{p} x^{2 v} d x\right)^{\frac{1}{p}} \\
& \leq \frac{1}{\alpha} \int_{0}^{\infty}|w(z)|\left\|G_{t z} f\right\|_{p, v} d z
\end{aligned}
$$

$$
\begin{aligned}
\left\|G_{t z} f\right\|_{p, v} & =\left(\int_{\mathbb{R}_{+}^{n}}\left|\int_{\mathbb{R}_{+}^{g}} g_{v}(y, t z) T^{y} f(x) y^{2 v} d y\right|^{p} x^{2 v} d x\right)^{\frac{1}{p}} \\
& \leq \int_{\mathbb{R}_{+}^{n}}\left|g_{v}(y, t z)\right|\left(\int_{\mathbb{R}_{+}^{n}}\left|T^{y} f(x)\right|^{p} x^{2 v} d x\right)^{\frac{1}{p}} y^{2 v} d y \\
& \leq\|f\|_{p, v} \int_{\mathbb{R}_{+}^{n}}\left|g_{v}(y, t z)\right| y^{2 v} d y=c_{1}\|f\|_{p, v} .
\end{aligned}
$$

Taking into account the following equality for $\operatorname{Re} \mu>0, \operatorname{Re} v>0, p>0$ (see [30, p.370])

$$
\int_{0}^{\infty} x^{\nu-1} e^{-\mu x^{p}} d x=\frac{1}{p} \mu^{-\frac{\nu}{p}} \Gamma\left(\frac{\nu}{p}\right),
$$

we have

$$
\int_{0}^{\infty} x^{2 v} e^{-x^{2}} d x=\frac{1}{2} \Gamma\left(v+\frac{1}{2}\right), \quad v>0
$$

in one dimension. By using this equality, we get

$$
\begin{aligned}
c_{1} & =\int_{\mathbb{R}_{+}^{n}}\left|g_{v}(y, t)\right| y^{2 v} d y \\
& =2^{-n} \prod_{k=1}^{n} \Gamma^{-1}\left(v_{k}+\frac{1}{2}\right) t^{\frac{-(n+2|v|}{2}} \int_{\mathbb{R}_{+}^{n}} e^{-\frac{| |^{2}}{4 t}} y^{2 v} d y \quad\left(y=2 \sqrt{t} y, d y=2^{n} t^{\frac{n}{2}} d y\right) \\
& =2^{-n} \prod_{k=1}^{n} \Gamma^{-1}\left(v_{k}+\frac{1}{2}\right) t^{\frac{-(n+2|v|}{2}} \int_{\mathbb{R}_{+}^{n}} e^{-|y|^{2}} 2^{2|v|} t^{|\nu|} 2^{n} t^{\frac{n}{2}} y^{2 v} d y \\
& =2^{2|v|} \prod_{k=1}^{n} \Gamma^{-1}\left(v_{k}+\frac{1}{2}\right) \int_{\mathbb{R}_{+}^{e}} e^{-|y|^{2}} y^{2 v} d y \\
& =2^{2|v|} \prod_{k=1}^{n} \Gamma^{-1}\left(v_{k}+\frac{1}{2}\right) \prod_{k=1}^{n} \Gamma\left(v_{k}+\frac{1}{2}\right) 2^{-n} \\
& =2^{2|v|-n} .
\end{aligned}
$$

So we have $\left\|G_{t f} f\right\|_{p, v} \leq 2^{2|v|-n}\|f\|_{p, v}$, and then inequality (3.1).
(b) Let $\left(A_{\epsilon, \rho} f\right)(x)=\int_{\epsilon}^{\rho} V_{t} f(x) \frac{d t}{t}, 0<\epsilon<\rho<\infty$. Applying Fubini's theorem, we get

$$
\begin{aligned}
\left(A_{\epsilon, \rho} f\right)(x) & =\frac{1}{\alpha} \int_{\epsilon}^{\rho}\left(\int_{0}^{\infty} G_{t z} f(x) w(z) d z\right) \frac{d t}{t} \\
& =\frac{1}{\alpha} \int_{0}^{\infty} w(z)\left(\int_{\epsilon}^{\rho} G_{t z} f(x) \frac{d t}{t}\right) d z \\
& =\frac{1}{\alpha} \int_{0}^{\infty} w(z)\left(\int_{\epsilon z}^{\rho z} G_{t} f(x) \frac{d t}{t}\right) d z \\
& =\frac{1}{\alpha} \int_{0}^{\infty}\left(\int_{\frac{t}{\rho}}^{\frac{t}{\epsilon}} w(z) d z\right) G_{t} f(x) \frac{d t}{t}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\alpha} \int_{0}^{\infty} \frac{1}{t}\left[h\left(\frac{t}{\epsilon}\right)-h\left(\frac{t}{\rho}\right)\right] G_{t} f(x) d t \\
& =\frac{1}{\alpha} \int_{0}^{\infty} \frac{h(t)}{t} G_{\epsilon t} f(x) d t-\frac{1}{\alpha} \int_{0}^{\infty} \frac{h(t)}{t} G_{\rho t} f(x) d t \\
& =\left(A_{\epsilon} f\right)(x)-\left(A_{\rho} f\right)(x)
\end{aligned}
$$

By Theorem 1.15 in [28, p.3], if $1<p \leq \infty\left(L_{\infty} \equiv C_{0}\right)$, then

$$
\lim _{\rho \rightarrow \infty}\left\|G_{\rho t} f\right\|_{p, v}=0
$$

Therefore, by the Minkowski inequality and the Lebesgue dominated convergence theorem, taking into account Lemma 2.1, we have

$$
\begin{aligned}
\left\|A_{\rho} f\right\|_{p, v} & =\frac{1}{\alpha}\left(\int_{\mathbb{R}_{n}^{+}}\left(\int_{0}^{\infty} \frac{h(t)}{t} G_{\rho t} f(x) d t\right)^{p} x^{2 v} d x\right)^{\frac{1}{p}} \\
& \leq \frac{1}{\alpha} \int_{0}^{\infty} \frac{h(t)}{t}\left\|G_{\rho t} f\right\|_{p, v} d t \\
& =\frac{1}{\alpha} \int_{0}^{\infty} \frac{h\left(\frac{t}{\rho}\right)}{\frac{t}{\rho}}\left\|G_{\rho t} f\right\|_{p, v} \frac{1}{\rho} d t \rightarrow 0, \quad \rho \rightarrow \infty
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|A_{\epsilon} f-f\right\|_{p, v} & =\left(\int_{\mathbb{R}_{n}^{+}}\left(\frac{1}{\alpha} \int_{0}^{\infty} \frac{h(t)}{t} G_{\epsilon t} f(x) d t-f(x)\right)^{p} x^{2 v} d x\right)^{\frac{1}{p}} \\
& \stackrel{(2.13)}{=}\left(\int_{\mathbb{R}_{n}^{+}}\left(\frac{1}{\alpha} \int_{0}^{\infty} \frac{h(t)}{t} G_{\epsilon t} f(x) d t-\frac{1}{\alpha} \int_{0}^{\infty} \frac{h(t)}{t} f(x) d t\right)^{p} x^{2 v} d x\right)^{\frac{1}{p}} \\
& \leq \frac{1}{\alpha} \int_{0}^{\infty} \frac{h(t)}{t}\left\|G_{\epsilon t} f-f\right\|_{p, v} d t \rightarrow 0, \quad \epsilon \rightarrow 0
\end{aligned}
$$

Finally, for $1<p \leq \infty\left(L_{\infty} \equiv C_{0}\right)$, we get

$$
\left\|A_{\epsilon, \rho} f-f\right\|_{p, v}=\left\|A_{\epsilon} f-f\right\|_{p, v}+\left\|A_{\rho} f\right\|_{p, v} \rightarrow 0, \quad \epsilon \rightarrow 0, \rho \rightarrow \infty
$$

The a.e. convergence is based on the standard maximal function technique (see [31, p.60], [29] and [32]).

Proof of Theorem 3.2 Firstly, let $f \in S\left(\mathbb{R}_{+}^{n}\right)$. By making use of the Fubini and Plancherel (for Fourier-Bessel transform) theorems, we get

$$
\begin{aligned}
\|S f\|_{2, v}^{2} & =\int_{\mathbb{R}_{+}^{n}}\left(\int_{0}^{\infty}\left|V_{t} f(x)\right|^{2} \frac{d t}{t}\right) x^{2 v} d x \\
& =\int_{0}^{\infty}\left(\int_{\mathbb{R}_{n}^{+}}\left|V_{t} f(x)\right|^{2} x^{2 v} d x\right) \frac{d t}{t} \\
& =\int_{0}^{\infty}\left(\int_{\mathbb{R}_{n}^{+}}\left|\left(V_{t} f\right)^{\wedge}(x)\right|^{2} x^{2 v} d x\right) \frac{d t}{t}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(V_{t} f\right)^{\wedge}(x) & =F_{v}\left(V_{t} f\right)(x)=\frac{1}{\alpha} \int_{\mathbb{R}_{n}^{+}}\left(\int_{0}^{\infty} G_{t z} f(y) w(z) d z\right) \prod_{k=1}^{n} j_{v_{k}-\frac{1}{2}}\left(x_{k} y_{k}\right) y^{2 v} d y \\
& =\frac{1}{\alpha} \int_{0}^{\infty} w(z)\left(\int_{\mathbb{R}_{n}^{+}} G_{t z} f(y) \prod_{k=1}^{n} j_{v_{k}-\frac{1}{2}}\left(x_{k} y_{k}\right) y^{2 v} d y\right) d z \\
& =\frac{1}{\alpha} \int_{0}^{\infty} w(z)\left(G_{t z} f\right)^{\wedge}(x) d z \\
& \stackrel{(2.5)}{=} \frac{1}{\alpha} \int_{0}^{\infty} w(z) f^{\wedge}(x) e^{-t z|x|^{2}} d z .
\end{aligned}
$$

Now, by using Fubini's theorem, we have

$$
\begin{aligned}
\|S f\|_{2, v}^{2}= & \frac{1}{\alpha^{2}} \int_{0}^{\infty}\left[\int_{\mathbb{R}_{n}^{+}}\left(f^{\wedge}(x)\right)^{2}\left(\int_{0}^{\infty} w(z) e^{-t z|x|^{2}} d z\right)^{2} x^{2 v} d x\right] \frac{d t}{t} \\
= & \frac{1}{\alpha^{2}} \int_{\mathbb{R}_{n}^{+}}\left(f^{\wedge}(x)\right)^{2} \int_{0}^{\infty} \frac{d t}{t}\left(\int_{0}^{\infty} w(z) e^{-t z|x|^{2}} d z\right)^{2} x^{2 v} d x \\
& \left(t=\tau|x|^{-2}, d t=|x|^{-2} d \tau\right) \\
= & \frac{1}{\alpha^{2}} \int_{\mathbb{R}_{n}^{+}}\left(f^{\wedge}(x)\right)^{2} \int_{0}^{\infty} \frac{d \tau}{\tau}\left(\int_{0}^{\infty} w(z) e^{-\tau z} d z\right)^{2} x^{2 v} d x \\
= & C^{2} \frac{1}{\alpha^{2}}\|f\|_{2, v}^{2}
\end{aligned}
$$

where

$$
C=\left(\int_{0}^{\infty} \frac{d \tau}{\tau}\left(\int_{0}^{\infty} e^{-\tau z} w(z) d z\right)^{2}\right)^{1 / 2}
$$

Since $w(z)=h^{\prime}(z), h(z) \geq 0, h(\infty)=h(0)=0$, it follows that

$$
\begin{aligned}
C & =\left(\int_{0}^{\infty} \frac{d \tau}{\tau}\left(\int_{0}^{\infty} e^{-\tau z} w(z) d z\right)^{2}\right)^{1 / 2} \\
& =\left(\int_{0}^{\infty}\left(\int_{0}^{\infty} \sqrt{\tau} e^{-\tau z} h(z) d z\right)^{2} d \tau\right)^{1 / 2} \\
& \leq \int_{0}^{\infty} h(z)\left(\int_{0}^{\infty} \tau e^{-2 \tau z} d \tau\right)^{1 / 2} d z \quad(2 z \tau=t, 2 z d \tau=d t) \\
& =\int_{0}^{\infty} h(z)\left(\int_{0}^{\infty} \frac{t}{2 z} e^{-t} \frac{1}{2 z} d t\right)^{1 / 2} d z \\
& =\int_{0}^{\infty} \frac{h(z)}{2 z}\left(\int_{0}^{\infty} t e^{-t} d t\right)^{1 / 2} d z=\frac{1}{2} \alpha
\end{aligned}
$$

Finally, we get

$$
\|S f\|_{2, v} \leq \frac{1}{2}\|f\|_{2, v}
$$

For arbitrary $f \in L_{2, v}\left(\mathbb{R}_{+}^{n}\right)$, the result follows by density of the class $S\left(\mathbb{R}_{+}^{n}\right)$ in $L_{2, v}\left(\mathbb{R}_{+}^{n}\right)$. Namely, let $\left(f_{n}\right)$ be a sequence of functions in $S\left(\mathbb{R}_{+}^{n}\right)$, which converge to f in $L_{2, v}\left(\mathbb{R}_{+}^{n}\right)$-norm. That is, $\lim _{n \rightarrow \infty}\left\|f_{n}(x)-f(x)\right\|_{2, v}=0, \forall x \in \mathbb{R}_{+}^{n}$.

From the 'triangle inequality' $\left(\left(\|u\|_{2, v}-\|v\|_{2, v}\right)^{2} \leq\|u-v\|_{2, v}^{2}\right)$, we have

$$
\begin{aligned}
\left|\left(S f_{n}\right)(x)-\left(S f_{m}\right)(x)\right|^{2} & =\left[\left(\int_{0}^{\infty}\left|V_{t} f_{n}(x)\right|^{2} \frac{d t}{t}\right)^{\frac{1}{2}}-\left(\left(\int_{0}^{\infty}\left|V_{t} f_{m}(x)\right|^{2} \frac{d t}{t}\right)^{\frac{1}{2}}\right)\right]^{2} \\
& \leq \int_{0}^{\infty}\left|V_{t} f_{n}(x)-V_{t} f_{m}(x)\right|^{2} \frac{d t}{t} \\
& =\int_{0}^{\infty} \left\lvert\, V_{t}\left(f_{n}-f_{m}\right)^{2} \frac{d t}{t}\right. \\
& =\left(S\left(f_{n}-f_{m}\right)(x)\right)^{2} .
\end{aligned}
$$

Hence

$$
\left\|S f_{n}-S f_{m}\right\|_{2, v} \leq\left\|S\left(f_{n}-f_{m}\right)\right\|_{2, v} \leq \frac{1}{2}\left\|f_{n}-f_{m}\right\|_{2, v}
$$

This shows that the sequence $\left(S f_{n}\right)$ converges to $S f$ in $L_{2, v}\left(\mathbb{R}_{+}^{n}\right)$-norm. Thus

$$
\|S f\|_{2, v} \leq \frac{1}{2}\|f\|_{2, v}, \quad \forall f \in L_{2, v}\left(\mathbb{R}_{+}^{n}\right)
$$

and the proof is complete.

Competing interests

The authors declare that they have no competing interests.
Authors' contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank the referees for their valuable comments. This work was supported by the Scientific Research Project Administration Unit of the Akdeniz University (Turkey)

Received: 24 June 2014 Accepted: 19 October 2014 Published: 31 Oct 2014
References

1. Stein, EM: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)
2. Daly, JE, Phillips, KL: Walsh multipliers and square functions for the Hardy space H ${ }^{\prime}$. Acta Math. Hung. 79(4), 311-327 (1998)
3. Jones, RL, Ostrovskii, IV, Rosenblatt, JM: Square functions in ergodic theory. Ergod. Theory Dyn. Syst. 16, 267-305 (1996)
4. Pipher, J: Bounded double square functions. Ann. Inst. Fourier (Grenoble) 36(2), 69-82 (1986)
5. Kim, YC: Weak type estimates of square functions associated with quasiradial Bochner-Riesz means on certain Hardy spaces. J. Math. Anal. Appl. 339(1), 266-280 (2008)
6. Aliev, IA, Bayrakci, S: Square-like functions generated by a composite wavelet transform. Mediterr. J. Math. 8, 553-561 (2011)
7. Gadjiev, AD, Aliev, IA: On a class of potential type operator generated by a generalized shift operator. In: Reports of Enlarged Session of the Seminars of I. N. Vekua Inst. Appl. Math. (Tbilisi), vol. 3(2), pp. 21-24 (1988) (in Russian)
8. Guliev, Vs: Sobolev's theorem for Riesz B-potentials. Dokl. Akad. Nauk SSSR 358(4), 450-451 (1998) (in Russian)
9. Kipriyanov, IA, Klyuchantsev, MI: On singular integrals generated by the generalized shift operator II. Sib. Mat. Zh. 11, 1060-1083 (1970)
10. Levitan, BM: Expansion in Fourier series and integrals in Bessel functions. Usp. Mat. Nauk 6, 102-143 (1951) (in Russian)
11. Löfström, J, Peetre, J: Approximation theorems connected with generalized translations. Math. Ann. 181, 255-268 (1969)
12. Muckenhoupt, B, Stein, E: Classical expansions and their relation to conjugate harmonic functions. Trans. Am. Math. Soc. 118, 17-92 (1965)
13. Rubin, B: Intersection bodies and generalized cosine transforms. Adv. Math. 218, 696-727 (2008)
14. Trimèche, K: Generalized Wavelets and Hypergroups. Gordon \& Breach, New York (1997)
15. Amri, B, Rachdi, LT: Calderón reproducing formula for singular partial differential operators. Integral Transforms Spec. Funct. 25(8), 597-611 (2014)
16. Guliyev, VS, Ibrahimov, EJ: Calderón reproducing formula associated with Gegenbauer operator on the half line. J. Math. Anal. Appl. 335(2), 1079-1094 (2007)
17. Komoun, L, Mohamed, S: Calderón's reproducing formula associated with partial differential operators on the half plane. Glob. J. Pure Appl. Math. 2(3), 197-205 (2006)
18. Pathak, RS, Pandey, G: Calderón's reproducing formula for Hankel convolution. Int. J. Math. Sci. 2006, Article ID 24217 (2006)
19. Mourou, MA, Trimèche, K: Calderón's reproducing formula related to the Dunkl operator on the real line. Monatshefte Math. 136(1), 47-65 (2002)
20. Mourou, MA, Trimèche, K: Calderón's reproducing formula associated with the Bessel operator. J. Math. Anal. Appl. 219(1), 97-109 (1998)
21. Guliyev, VS: Sobolev's theorem for anisotropic Riesz-Bessel potentials on Morrey-Bessel spaces. Dokl. Akad. Nauk SSSR 367(2), 155-156 (1999)
22. Guliyev, VS: On maximal function and fractional integral, associated with the Bessel differential operator. Math. Inequal. Appl. 2, 317-330 (2003)
23. Aliev, IA, Rubin, B, Sezer, S, Uyhan, SB: Composite wavelet transforms: applications and perspectives. In: Radon Transforms, Geometry and Wavelets. Contemporary Mathematics, vol. 464, pp. 1-25. Am. Math. Soc., Providence (2008)
24. Fedorjuk, MV: Asymptotic behavior of the Green function of a pseudodifferential parabolic equation. Differ. Uravn. 14(7), 1296-1301 (1978)
25. Koldobsky, A: Fourier Analysis in Convex Geometry. Mathematical Surveys and Monographs, vol. 116. Am. Math. Soc., Providence (2005)
26. Landkof, NS: Several remarks on stable random processes and α-superharmonic functions. Mat. Zametki 14, 901-912 (1973) (in Russian)
27. Aliev, IA: Bi-parametric potentials, relevant function spaces and wavelet-like transforms. Integral Equ. Oper. Theory 65, 151-167 (2009)
28. Rubin, B: Fractional Integrals and Potentials. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 82. Longman, Harlow (1996)
29. Aliev, IA, Bayrakci, S: On inversion of Bessel potentials associated with the Laplace-Bessel differential operator. Acta Math. Hung. 95, 125-145 (2002)
30. Gradshtein, IS, Ryzhik, IM: Tables of Integrals, Sums, Series and Products, 5th edn. Academic Press, New York (1994)
31. Stein, EM, Weiss, G: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)
32. Aliev, IA, Rubin, B: Wavelet-like transforms for admissible semi-groups; inversion formulas for potentials and Radon transforms. J. Fourier Anal. Appl. 11, 333-352 (2005)

Submit your manuscript to a SpringerOpen ${ }^{\text {© }}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: ©2014 Keleş and Bayrakçı; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

