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Abstract
Taking into account that individual organisms usually go through immature and
mature stages, in this paper, we investigate the dynamics of an impulsive
prey-predator system with a Holling II functional response and stage-structure.
Applying the comparison theorem and some analysis techniques, the sufficient
conditions of the global attractivity of a mature predator periodic solution and the
permanence are investigated. Examples and numerical simulations are shown to
verify the validity of our results.
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1 Introduction
The Food and Agriculture Organization of the United Nations reported that, with the
development of modern science and technology, many methods have been used for pest
control, such as chemical pesticides and biological control (i.e., suppress the pests by natu-
ral enemies). Although great progress has been made in the Integrated Pest Management
(IPM), people still cannot completely exterminate them all. For the IPM strategy on an
ecosystem, the predators are released periodically every time T and periodic catching or
spraying pesticides is also applied. Hence the predator and prey abruptly experience a
change of state. In fact, many evolution processes are characterized by the fact that at cer-
tainmoments their stage changes abruptly. Consequently, it is natural to assume that these
processes act in the form of impulses. Impulsive methods have been applied in almost ev-
ery field of the applied sciences. On the other hand, the purpose of IPM is to gain the
biggest benefit with the minimum expense; see references [–]. For example, some au-
thors [] proposed an IPMpredator-preymodel concerning periodic biological and chem-
icalmanagement. It implied that the chemical pesticide is themost effectivemethodwhich
can eliminate a great quantity of pests in a short time. In recent work, biologists realized
that appropriate human harvesting and stocking has vital significance on the permanent
of biological resource. Jiang et al. [] considered an impulsive prey-predator system with
Holling type II functional response and state feedback control as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = rx(t)( – x(t)) – ax(t)y(t)
+x(t) ,

ẏ(t) = ax(t)y(t)
+x(t) – by(t),

}
x �= h,

�x(t) = –px(t),
�y(t) = qy(t) + τ ,

}
x = h,

©2014 Ju et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2014/1/280
mailto:shaoyuanfu@163.com
http://creativecommons.org/licenses/by/2.0


Ju et al. Advances in Difference Equations 2014, 2014:280 Page 2 of 16
http://www.advancesindifferenceequations.com/content/2014/1/280

where x(t), y(t) represent the densities of the prey and the predator, respectively. For the
parameters r,a,b > , r is the intrinsic growth rate of the prey, axy+x is theHolling II function
response, b denotes the death rate of the predator, p ∈ (, ), h > , q > , τ ≥ . One
obtained the complex dynamics of the system.
However, in the real world, the development of an individual organism usually goes

through two stages on the time: immaturity and maturity. Some stage-structured mod-
els for the prey-predator system consisting of immature and mature individuals were an-
alyzed in [–]. For example, a stage-structured prey-predator model with impulsive
stocking on prey and continuous harvesting on predator was considered in []. Song and
Chen [] studied optimal harvesting and stability for a two species competitive system
with stage structure. Shao and Dai [] considered a predator-prey model with time delay
and impulsive harvesting on prey and stocking on the immature predator. Actually, as the
literature [, ] pointed out, stage-structured differential equations exhibit much more
complicated behaviors than ordinary ones since time delays could cause a stable equilib-
rium to become unstable and cause the population to fluctuate. Therefore, it is important
to consider the dynamics of a prey-predator system with stage-structure; see [] and ref-
erences cited therein.
On the other hand, with food safety gaining importance, green food is being paid more

and more attention to. In order to plant green food, one can use a periodic harvesting or
stocking prey or predator, instead of using high toxic or high residues pesticide.
Based on the above discussion, in this paper, we consider a stage-structured prey-

predator model with Holling II functional response and impulsive catching or poisoning
the immature prey and stocking of the mature predator as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = rx(t) – re–dτx(t – τ) – dx(t),
ẋ(t) = re–dτx(t – τ) – kx(t)

c+x(t)
y(t) – dx(t) – dx(t),

ẏ(t) = λkx(t)
c+x(t)

y(t) – λke–dτ x(t–τ)
c+x(t–τ)

y(t – τ) – dy(t),
ẏ(t) = λke–dτ x(t–τ)

c+x(t–τ)
y(t – τ) – dy(t),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

t �= nT ,

x(t+) = ( – p)x(t),
x(t+) = x(t),
y(t+) = y(t),
y(t+) = y(t) +μ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

t = nT ,

(.)

with initial conditions

(
ϕ(ξ ),ϕ(ξ ),ϕ(ξ ),ϕ(ξ )

) ∈ C+ = C
(
[–τ , ],R

+
)
, ϕi() > , i = , , , ,

R
+ =

{
x ∈ R : x ≥ 

}
, τ =max(τ, τ),

where x(t) (x(t)), y(t) (y(t)) denote the densities of immature (mature) prey and imma-
ture (mature) predator, respectively. The parameters r, k, λ, d, d, d, d, d are all posi-
tive constants, r denotes the birth rate of the immature prey, k is the maximum number of
the mature prey that can be eaten by a mature predator per unit of time, λ represents the
rate of conversing prey into predator (i.e., the converse rate frommature prey to immature
predator), d (d > d), d are the mortality rates of the immature andmature prey, respec-
tively, and d (d > d), d are the mortality rates of the immature and mature predator,
respectively, d is the intra-specific competition rate of the mature prey, τ, τ represent
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a constant time to reach maturity of prey and predator, respectively, μ (≥ ) denotes the
stocking amount of the mature predator, p (≤ p < ) is the catching rate of the immature
prey at t = nT , n ∈ Z+, and Z+ = {, , . . .}, T is the period of the impulsive effect.
In this paper, we aim to investigate the global attractivity of a mature predator periodic

solution and the permanence of system (.). In agreement with the biological point of
view, we only consider (.) in the biological sense, region D = {(x(t), y(t), y(t)) : x(t) ≥
, y(t) ≥ , y(t)≥ }.
The organization of the paper is as follows. In Section , some preliminaries and lemmas

are given. In Section , sufficient conditions for the global attractivity of a mature predator
survival periodic solution are obtained. In Section , the permanence of system (.) is
investigated. Some examples and numerical simulations are given to illustrate the main
results in Section . Finally, in Section , a brief conclusion is presented.

2 Preliminaries and lemmas
In this section, some definitions and lemmas are introduced.
Let R+ = [,∞), R

+ = {x ∈ R,x ≥ }. Denote by f = (f, f, f, f)T the map defined by the
right-hand side of system (.). Let V : R+ × R

+ → R+, if:
(i) V is continuous in (nT , (n + )T]× R

+, for each x ∈ R
+, n ∈ Z+,

lim
(t,y)→((n–)T ,x)

V (t, y) = V
(
(n – )T ,x

)
and

lim
(t,y)→(nT+,x)

V (t, y) = V
(
nT+,x

)
exist;

(ii) V is locally Lipschitzian in x, then V is said to belong to class V.

Definition . Let V ∈ V, (t,x) ∈ (nT , (n + )T]× R
+, n ∈ Z+, the upper right derivative

of V (t,x) with respect to impulsive differential system (.) is defined as

D+V (t,x) = lim
h→+

sup

h
[
V

(
t + h,x + hf (t,x)

)
–V (t,x)

]
.

Next, we give some important lemmas which will be useful for our main results.

Lemma . [] Consider the impulsive differential system
{
ṁ(t)≤ p(t)m(t) + q(t), t �= tk ,
m(t+) ≤ dkm(t) + bk , t = tk ,

where p,q ∈ C(R+,R), k ∈ Z+, dk ≥ , and bk are constants.
Assume that:
(i) the sequence {tk} satisfies  ≤ t < t < t < · · · , with limtk→+∞ tk =∞;
(ii) m ∈ pc(R+,R) andm(t) is left-continuous at tk , k ∈ Z+.

Then we have

m(t) ≤ m(t)
∏

t<tk<t
dk exp

(∫ t

t
p(x)ds

)
+

∑
t<tk<t

( ∏
tk<tj<t

dj exp
(∫ t

tk
p(s)ds

))
bk

+
∫ t

t

∏
s<tk<t

dk exp
(∫ t

s
p(θ )dθ

)
q(s)ds, t ≥ t.
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Lemma . [, ] Consider the following equation:

u̇(t) = au(t – τ ) – bu(t) – cu(t),

where a, b, c, and τ are positive constants, u(t) >  for t ∈ [–τ , ].We have
(i) if a < b, then limt→+∞ u(t) = ;
(ii) if a > b, then limt→+∞ u(t) = a–b

c .

Lemma . [] Consider the following system:

{
ẋ(t) = c – dx(t), t �= nT ,
x(t+) = x(t) + p, t = nT .

(.)

System (.) has a positive periodic solution x∗(t) with period T . For any solution x(t) of
system (.), we have

∣∣x(t) – x∗(t)
∣∣ →  as t → ∞,

where

x∗(t) =
c
d
+
pe–d(t–nT)

 – e–dT
, x∗(+) = c

d
+

p
 – e–dT

, nT < t ≤ (n + )T .

Lemma . Consider the following system:

{
u̇(t) = c – du(t), t �= nT ,
u(t+) = ( – p)u(t), t = nT .

(.)

Then system (.) has a positive periodic solution u∗(t) with period T . For any solution u(t)
of system (.), we have

∣∣u(t) – u∗(t)
∣∣ →  as t → ∞,

where

u∗(t) =
c
d

(
 –

pe–d(t–nT)

 – ( – p)e–dT

)
, nT < t ≤ (n + )T and

u∗(+) = c
d

(
 –

p
 – ( – p)e–dT

)
.

Proof Integrating the first equation of (.) on nT < t ≤ (n + )T , we have

u(t) =
c
d
+

(
u
(
nT+) – c

d

)
e–d(t–nT), nT < t < (n + )T .

After the successive pulses, the stroboscopic map of system (.) is obtained as follows:

u
(
(n + )T+) = ( – p)u

(
(n + )T

)
= ( – p)

(
c
d
+

(
u
(
nT+) – c

d

)
e–dT

)
. (.)
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There is a unique positive fixed point for (.), which is as follows:

ũ(t) =
c
d

(
 –

p
 – ( – p)e–dT

)
.

This means that there is a positive periodic solution

u∗(t) =
c
d

(
 –

pe–d(t–nT)

 – ( – p)e–dT

)
,

with initial value u∗(+) = c
d ( –

p
–(–p)e–dT ), nT < t ≤ (n + )T .

Suppose u(t) is an arbitrary solution of (.), then applying the iterative technique, we
have

u(t) =
c
d
+

(
c
d
( – p)

(
 – e–dT

)
+
c
d
( – p)

(
 – e–dT

)
e–dT + · · ·

+
c
d
( – p)n

(
 – e–dT

)
e–(n–)dT +

c
d
u
(
+

)
( – p)n

(
 – e–dT

)
e–ndT

)
e–(t–nT)

= u∗(t) + ( – p)ne–ndT
(
u
(
+

)
– u∗(+))e–(t–nT), nT < t ≤ (n + )T .

Hence, limt→∞ |u(t) – u∗(t)| = . The proof is completed. �

Lemma . There is a positive constant M such that xi(t)≤ M
λ
, yi(t)≤M, i = , , for every

solution (x(t),x(t), y(t), y(t)) of system (.) with t sufficiently large, and λ is a positive
constant defined in system (.).

Proof Define V (t) = V(t) +V(t), V(t) = λ(x(t) + x(t)), V(t) = y(t) + y(t).
If t �= nT , by d > d, d > d, we let d =min(d,d), then

D+V (t) + dV (t) ≤ D+V (t) + dV(t) + dV(t)

= –λ(d – d)x(t) – (d – d)y(t) + λrx(t) – λdx(t)

≤ λrx(t) – λdx(t)≤M =
λr

d
.

If t = nT , then

V
(
nT+) = λx(nT) + λμ + λx(nT) + y(nT) + ( – p)y(nT) ≤ V (nT) + λμ.

Hence, for t ∈ (nT , (n + )T], by using Lemma ., we have

V (t) ≤ V ()e–dt +
∫ t


Me–d(t–s) ds +

∑
<nT<t

λμe–(t–nT)

< V ()e–dt +
M

d
(
 – e–dt

)
+ λμ

e–d(t–T)

 – edT
+ λμ

edT

edT – 

→ M

d
+

λμedT

edT – 
, t → ∞.
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It means that V (t) is uniformly ultimately bounded. Therefore, according to the definition
of V (t), there is a constant

M =
M

d
+

λμedT

edT – 
> , (.)

such that xi(t) ≤ M
λ
, yi(t)≤M, i = , , with t large enough. This completes the proof. �

3 Global attractivity of mature predator periodic solution
In this section, we shall demonstrate the existence and global attractivity of the mature
predator survival periodic solution of system (.).
Firstly, by Lemmas ., ., and ., we can easily obtain the existence of a predator-

extinction periodic solution for system (.).

Theorem . System (.) has a mature predator survival periodic solution (, , , y∗
(t)).

For t ∈ (nT , (n+ )T], and each solution (, , , y(t)) of system (.), we have y(t)→ y∗
(t)

as t → ∞, where y∗
(t) = μ e–d(t–nT)

–e–dT
for nT < t ≤ (n + )T , and y∗

(+) =
μ

–e–dT
.

Next, we give the conditions on the global attractivity of the predator-extinction periodic
solution (x∗(t), , ) of the system (.).

Theorem . The mature predator survival periodic solution (, , , y∗
(t)) of system (.)

is globally attractive, if

(A)
(
re–dτ – d

)(
c +

M
λ

)
< kμ

e–dT

 – e–dT
.

Proof Let (x(t),x(t), y(t), y(t)) be any solution of system (.). From the fourth and the
eighth of system (.), we have

{
ẏ(t) ≥ –dy(t), t �= nT ,
y(t+) = y(t) +μ, t = nT .

(.)

Considering the auxiliary system of (.) as follows:

{
ż(t) = –dz(t), t �= nT ,
z(t+) = z(t) +μ, t = nT .

(.)

Applying Lemma ., we have

z∗
 (t) = μ

e–d(t–nT)

 – e–dT
for nT < t ≤ (n + )T .

Then system (.) has a unique and globally attractive positive periodic solution. Applying
the comparison theorem of the impulsive differential equation [], there is a n ∈ Z+ and
a sufficiently small positive constant ε such that

y(t) ≥ z(t)≥ z∗
 (t) – ε = μ

e–d(t–nT)

 – e–dT
– ε ≥ μ

e–dT

 – e–dT
– ε � ρ (.)

http://www.advancesindifferenceequations.com/content/2014/1/280
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for t ≥ nT . By Lemma . and (.), we have

ẋ(t)≤ re–dτx(t – τ) –
(

kρ
c + M

λ

+ d
)
x(t) – dx(t),

when t ≥ nT + τ. We consider the auxiliary impulsive differential equation

ż(t) = re–dτz(t – τ) –
(

kρ
c + M

λ

+ d
)
z(t) – dz(t).

According to hypothesis (A), for the sufficiently small constant ε > , we can obtain

re–dτ <
kρ

c + M
λ

+ d.

Applying Lemma ., we have limt→∞ z(t) = . Since x(s) = z(s) = ϕ(s) >  for all s ∈
[–τ, ], applying the comparison theorem, we have x(t) →  as t → ∞. Without loss of
generality, suppose that there is a constant ε >  such that

x(t) < ε, t ≥ . (.)

From the first and the fifth equations of (.) and (.), we have

{
ẋ(t)≤ rε – dx(t), t �= nT ,
x(t+) = ( – p)x(t), t = nT .

(.)

Consider the following auxiliary impulsive differential system of (.):

{
ż(t) = rε – dz(t), t �= nT ,
z(t+) = ( – p)z(t), t = nT .

(.)

Applying Lemma ., we have

z(t) =
rε
d

(
 –

pe–d(t–nT)

 – ( – p)e–dT

)
for nT < t ≤ (n + )T .

Taking into account the comparison theorem, for any small ε > , there exists t >  such
that x(t)≤ z(t) + ε, t > t. Let ε → , then z(t) →  and

x(t) ≤ ε. (.)

From the fourth and the eighth equations of system (.), we have

{
ẏ(t) ≤ λke–dτ εM

c+ε
– dy(t), t �= nT ,

y(t+) = y(t) +μ, t = nT .
(.)

Consider the auxiliary system of (.),

{
ż(t) = λke–dτ εM

c+ε
– dz(t), t �= nT ,

z(t+) = z(t) +μ, t = nT .
(.)

http://www.advancesindifferenceequations.com/content/2014/1/280


Ju et al. Advances in Difference Equations 2014, 2014:280 Page 8 of 16
http://www.advancesindifferenceequations.com/content/2014/1/280

By using Lemma ., the unique positive periodic solution of system (.) is

z∗
(t) = λke–dτ εM

d(c + ε)
+

μe–d(t–nT)

 – e–dT
for nT < t ≤ (n + )T .

By the comparison theorem, for sufficiently small constants ε > , there exists t >  such
that y(t) ≤ z∗

(t) + ε � ρ, for all t > t. Let ε → , then z∗
(t) → y∗

(t) and we have y(t) ≤
y∗
(t)+ε. On the other hand, we can conclude from (.), (.), and (.) that y(t)≥ y∗

(t)–ε

for t large enough, which implies y(t)→ y∗
(t) as t → ∞.

From the third and the seventh equations of system (.) and (.), (.), we have

ẏ(t) ≤ λk
ερ

c + ε
– dy(t), t ≥ . (.)

Consider the auxiliary system of (.),

ż(t) = λk
ερ

c + ε
– dz(t), t ≥ . (.)

By simple calculation, we have

z(t) =
λkερ

d(c + ε)
+

(
z

(
+

)
–

λkερ

d(c + ε)

)
e–dt .

It follows from the comparison theorem that, for sufficiently small constants ε > , there
exists t > , such that y(t) ≤ z(t) + ε for all t > t. Let ε → , then z(t) → , and we
have

y(t) ≤ ε. (.)

Since ε, ε, ε, ε are arbitrary small, we obtain x(t)→ , x(t) → , y(t)→ , as t is large
enough. The proof is completed. �

4 Permanence of system (1.1)
In the real world, from the principle of ecosystem balance and saving resources, we only
need to control the prey under the economic threshold level, and not to eradicate the prey
totally. Thus we focus on the permanence of system (.).
First, we give the definition of permanence.

Definition . System (.) is said to be permanent if there exist positive constantsm and
M such that each positive solution (x(t),x(t), y(t), y(t)) of system (.) satisfiesm ≤ xi(t),
yi(t) ≤M, i = , , for t large enough.

Theorem . Assume that:

(A) re–dτ –
kq
c

– d – d
M
λ

> ,

(A) d –
λkm∗


c +m∗


> ,

http://www.advancesindifferenceequations.com/content/2014/1/280
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(A) m –
M
λ
e–dτ > ,

(A)
m

c +m
m –

M

λc +M
e–dτ > ,

where M, m, m, q are defined in (.), (.), (.), (.), respectively, then system (.)
is permanent.

Proof Firstly, we will prove that there exists a constant m >  such that x(t) >m for t
sufficiently large. The second equation of (.) is equivalent to the following equality:

ẋ(t) =
(
re–dτ –

ky(t)
c + x(t)

– d – dx(t)
)
x(t)

– re–dτ
d
dt

∫ t

t–τ

x(s)ds. (.)

According to (.), we define

V (t) = x(t) + re–dτ
∫ t

t–τ

x(s)ds.

Calculating the derivative of V (t), we obtain

V̇ (t) =
(
re–dτ –

ky(t)
c + x(t)

– d – dx(t)
)
x(t). (.)

Applying Lemma ., (.) can be re-written as follows:

V̇ (t) >
(
re–dτ –

k
c
y(t) – d – d

M
λ

)
x(t). (.)

By hypothesis (A), there is an arbitrary small positive ε such that

re–dτ >
k
c
(q + ε) + d + d

M
λ
, (.)

where q = μ

–e
–(d–

λkm∗


c+m∗

)
.

Let m∗
 be determined as follows:

c
k

(
re–dτ – d – d

M
λ

)
=

μ

 – e
–(d–

λkm∗


c+m∗

)
.

Then, for any t > , it is impossible that x(t) <m∗
 for all t > t. Suppose that the claim

is invalid, then there is t >  such that x(t) <m∗
 for all t > . It follows from the fourth

and the eight equations of system (.) that

{
ẏ(t) < –(d –

λkm∗


c+m∗

)y(t), t �= nT ,

y(t+) = y(t) +μ, t = nT
(.)

http://www.advancesindifferenceequations.com/content/2014/1/280
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for all t > t + τ. Consider the following auxiliary impulsive system of (.):

{
ż(t) = –z(t)(d –

λkm∗


c+m∗

), t �= nT ,

z(t+) = z(t) +μ, t = nT .
(.)

By using Lemma ., the unique positive periodic solution of (.) is

z(t) =
μe

–(d–
λkm∗


c+m∗


)(t–nT)

 – e
–(d–

λkm∗


c+m∗

)

, nT < t ≤ (n + )T .

This is globally asymptotically stable by hypothesis (A). Taking into account the compar-
ison theorem of an impulsive differential equation, there exists t (> t + τ) such that

y(t) ≤ z(t) + ε.

For t > t, we have

z(t)≤ μ

 – e
–(d–

λkm∗


c+m∗

)
� q. (.)

Then

y(t) ≤ q + ε � σ , t ≥ t. (.)

According to (.), we have

re–dτ >
kσ
c

+ d + d
M
λ
.

By (.) and (.), we get

V̇ (t) >
(
re–dτ –

kσ
c

– d – d
M
λ

)
x(t), t ≥ t. (.)

Let xm =mint∈[t,t+τ ] x(t).
We will show that x(t) ≥ xm for all t ≥ t. Otherwise, there exists a T >  such that

x(t) ≥ xm for t ≤ t ≤ t + τ + T, x(t + τ + T) ≥ xm and ẋ(t + τ + T) < . From the
second equation of system (.) and (.), we have

ẋ(t + τ + T) >
(
re–dτ –

kσ
c

– d – d
M
λ

)
xm > .

This is a contradiction. Thus, we have x(t) ≥ xm , t ≥ t.
By (.) and (.), we have

V̇ (t) >
(
re–dτ –

kσ
c

– d – d
M
λ

)
xm , t ≥ t.

This means that V (t) → ∞ as t → ∞. It is a contradiction with V (t) ≤ M
λ
( + rτe–dτ ).
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Therefore, for any t > , the inequality x(t) < m∗
 cannot hold for all t > t. So there

exist the following two possibilities.
(i) If x(t)≥m∗

 holds for all t large enough, then our goal is obtained.
(ii) If x(t) is oscillatory aboutm∗

. Setting

m =min

{
m∗



,m∗

e
–(kM+d+dm∗

)τ
}
, (.)

we prove that x(t) ≥m for all t large enough. Suppose that there exist two positive con-
stants γ , η such that x(γ ) = x(γ + η) and x(t) < m∗

 for all γ < t < γ + η, where γ is
large enough, and the inequality (.) holds true for γ < t < γ + η. Since x(t) is con-
tinuous, bounded, and is not affected by impulses, we conclude that x(t) is uniformly
continuous. Hence, there exists a constant T ( < T < τ and T is independent of the
choice of γ ) such that x(γ ) >

m∗

 for γ ≤ t ≤ γ + T. If η ≤ T, our aim is obtained.

If T < η ≤ τ, from the second equation of (.), we obtain, for γ < t < γ + η, ẋ(t) ≥
– k

c x(t)y(t) – dx(t) – dx(t). According to the assumption x(γ ) = m∗
 and x(t) < m∗



for γ < t < γ + η, we have ẋ(t) ≥ –( kcM + d + dm∗
)x(t) for γ < t ≤ γ + η ≤ γ + τ. Then

we derive that x(t) ≥ m∗
e–(

k
c M+d+dm∗

)τ . It is clear that x(t) ≥ m for γ < t < γ + η. If
η ≥ τ, then we have x(t) ≥m for γ < t < γ + τ. The same arguments can be continued.
We obtain x(t) ≥ m for γ + τ < t < γ + η. Since the interval [γ ,γ + η] is arbitrarily cho-
sen, we get x(t) ≥ m for t large enough. In view of our arguments above, the choice of
m is independent of the positive solution of (.), which satisfies x(t) ≥ m for t large
enough.
Next, by the first and the fifth equations of system (.), we have

{
ẋ(t)≥ r(m – M

λ
e–dτ ) – dx(t), t �= nT ,

x(t+) = ( – p)x(t), t = nT .
(.)

Consider the auxiliary system of (.) as follows:

{
ż(t) = r(m – M

λ
e–dτ ) – dz(t), t �= nT ,

z(t+) = ( – p)z(t), t = nT .
(.)

By hypothesis (A), and applying Lemma ., we have

z(t) =
r(m – M

λ
e–dτ )

d

(
 –

pe–d(t–nT)

( – p)e–dT

)
.

By the comparison theorem, there exists a positive constant ε sufficiently small such that
ẋ(t) ≥ z(t) – ε as t is large enough. Taking into account the comparison theorem of an
impulsive differential equation, we obtain

x(t) ≥ r(m – M
λ
e–dτ )

d

(
 –

p
( – p)e–dT

)
– ε �m.

From (.), let ρ �m, then y(t)≥m.
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Finally, by the third equation of system (.), we have

ẏ(t) ≥ λk
(

m

c +m
m –

M

λc +M
e–dτ

)
– dy(t). (.)

Consider the auxiliary system of (.),

ż(t) = λk
(

m

c +m
m –

M

λc +M
e–dτ

)
– dz(t). (.)

It is easy to calculate that

z(t) =
λk( m

c+m
m – M

λc+Me–dτ )
d

–
(

λk
(

m

c +m
m –

M

λc +M
e–dτ

)
– z

(
+

))
e–dt .

Applying the comparison theorem, by hypothesis (A), there exists a positive constant ε

small enough when t is large enough, such that

y(t) ≥ z(t) – ε ≥ λk( m
c+m

m – M

λc+Me–dτ )
d

– ε �m.

Then taking m = min{m,m,m,m}, we have xi(t), yi(t) ≥ m, i = , . Considering
Lemma . and the above discussion, we can find that system (.) is permanent. This
completes the proof. �

5 Numerical simulations
In this section,we give some examples andnumerical simulations to show the effectiveness
of the main results. In system (.), we let r = , d = ., k = , c = , d = ., d = .,
λ = ., d = ., d = ., p = ., μ = ., τ = , τ = , T = . It is quite clear that the
parameters satisfy the conditions of Theorem ., so we can obtain the global attractivity
of the mature predator survival periodic solution, which is shown by Figure .
We let r = , d = ., k = , c = , d = ., d = ., λ = , d = ., d = ., p = .,

μ = ., τ = , τ = , T = . By computation, the conditions of Theorem . are also
satisfied, hence, by Theorem ., system (.) is permanent; see Figure .

6 Conclusion
In this paper, by using the comparison theorem of an impulsive differential equation and
some analysis techniques, we obtain the sufficient conditions of the mature predator sur-
vival periodic solution and permanence of system (.). Theorem . implies that increas-
ing T andμ is propitious to the global attractivity of themature predator survival periodic
solution (, , , y∗

(t)). By Theorem ., we may see that reducing T and μ plays an im-
portant role in the permanence of system (.). Combining the biological resource man-
agement, we believe that there exists a threshold value of economic benefits. Thus, it is
unadvisable to make too much effort to destroy all the pest, and there must exist an op-
timal harvesting policy for system (.), that is, what we should do is to gain more, rather
than wipe out all pest,so it is interesting for us to continue to study the optimal harvesting
policy of system (.) in the near future.
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(a)

(b)

(c)

Figure 1 Dynamical behaviors of system (1.1) with r = 1, d1 = 0.5, k = 1, c = 1, d2 = 0.3, d3 = 0.2,
λ = 0.5, d4 = 0.4, d5 = 0.2, p = 0.3, μ = 0.5, τ1 = 1, τ2 = 1, T = 1. (a) Time series of the immature prey
population. (b) Time series of the mature prey population. (c) Time series of the immature predator
population. (d) Time series of the mature predator population.
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(d)

Figure 1 Continued

(a)

(b)

Figure 2 Dynamical behaviors of system (1.1) for r = 1, d1 = 0.5, k = 2, c = 1, d2 = 0.3, d3 = 0.2, λ = 1,
d4 = 0.2, d5 = 0.1, p = 0.3, μ = 0.1, τ1 = 1, τ2 = 1, T = 10. (a) Time series of the immature prey population.
(b) Time series of the mature prey population. (c) Time series of the immature predator population. (d) Time
series of the mature predator population.
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(c)

(d)

Figure 2 Continued
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