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Abstract

In this article, we discuss the properties of the neutral operator with variable
parameter (Ax)(t) = x(t) — c(t)x(t — &(t)) and by applying Green’s function of a
third-order differential equation and a fixed point theorem in cones, we obtain some
sufficient conditions for existence, nonexistence, multiplicity of positive periodic
solutions for a generalized third-order neutral differential equation.
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1 Introduction

In [1], Zhang discussed the properties of the neutral operator (A;x)(¢) = x(£) — cx(¢ — 5),
which became an effective tool for the research on differential equations with this pre-
scribed neutral operator (see, e.g., [2—4]). Lu and Ge [5] investigated an extension of A,
namely the neutral operator (Ax)(¢) = x(¢) — > i, cix(¢ — 8;), and obtained the existence of
periodic solutions for the corresponding neutral differential equation. Afterwards, Du et
al. [6] studied the neutral operator (A3x)(£) = x(¢t) — c(£)x(t — &), here c(¢) is w-periodic func-
tions. By means of Mawhin’s continuation theorem and the properties of A3, they obtained
sufficient conditions for the existence of periodic solutions to a Liénard neutral differen-
tial equation. Recently, in [7], Ren et al. investigated the neutral operator with variable
delay (A4)x(t) — cx(t — 8(¢)). By applying coincidence degree theory, they obtained suffi-
cient conditions for the existence of periodic solutions to a Rayleigh neutral differential
equation.

Motivated by [1, 5-7], in this paper, we consider the neutral operator (Ax)(¢) = x(¢) —
c(t)x(t — 8(t)), here |c(t)] #1, ¢,8 € CL(R,R) and § is an w-periodic function for some
o > 0. Notice that here the neutral operator A is a natural generalization of the famil-
iar operator A;, i =1,2,3,4. But A possesses a more complicated nonlinearity than A;,
i=1,2,3,4. For example, the neutral operator A;, i =1,2, is homogeneous in the following
sense (Ax)'(£) = (Ax')(¢), i = 1,2, whereas the neutral operator A in general is inhomo-
geneous. As a consequence, many of the new results for differential equations with the
neutral operator A will not be a direct extension of known theorems for neutral differen-
tial equations.

The paper is organized as follows. In Section 2, we first analyze qualitative properties
of the generalized neutral operator A which will be helpful for further studies of differen-
tial equations with this neutral operator; in Section 3, we consider a third-order neutral
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differential equation as follows:

(%) — c(®)x(t - 8()))" = alt)x(t) - Ab(E)f (x(t - (1)), (1.1)

here X is a positive parameter; §(¢) is said to be variable delay, ¢, § € C}(R,R) and § is an w-
periodic function for some w > 0, f € C(R, [0,00)), and f(x) > 0 for x > 0; a € C(R, (0, 00))
with max{a(t) : t € [0,w]} < %(%)3, b e C(R,(0,00)), T € C(R,R), a(t), b(t) and t(¢t) are
w-periodic functions. By applying Green’s function of a third-order differential equation
and a fixed point theorem in cones, we obtain sufficient conditions for the existence, mul-
tiplicity and nonexistence of positive periodic solutions to the third-order neutral differ-
ential equation. We will give an example to illustrate our results, and an example is also

given in this section. Our results improve and extend the results in [6-10].

2 Analysis of the generalized neutral operator with variable parameter
Let

, Co = min ’c(t)|.

Coo = Max }c(t)
te[0,w] te[0,0]

Let X = {x € C(R,R) : (¢ + w) = x(t),t € R} with the norm |x| = max;c[o. |[#(¢)|, and
let C} = {x € C(R,(0,00)) : x(¢ + ) =x(¢)}, C, = {x € C(R, (—00,0)) : x(¢ + ) = x(¢)}. Then
(X, Il - II) is a Banach space. A cone K in X is defined by K = {x € X : x(¢) > a|x|,Vt € R},
where « is a fixed positive number with o < 1. Moreover, define operators A,B: C, — C,

by

(Ax)(t) = x(2) — c(t)x (£ — 8(2)), (Bx)(t) = c()x(t - 8(2)).

Lemma 2.1 If|c(t)| #1, then the operator A has a continuous inverse A~ on C,,, satisfying

@)
( . ) f@)+ Z]Ofl é=1 c(D;)x(t - ]l:=1 3(Dy))  forle(®)| < L,Vf € C,,
t = J /
F(t+8(2) fe+8(6)+37;_, 8(DY))
_c(tié(t)) _ Z}‘fl m Sfor |c(8)| > 1,¥f € C,,.
()
£
or ¢ < IVf € C,,
el ={ e
et for ¢y >1Vf € C,,.
3)

= Y@t for e <1¥f € C,,

! A7) @) dt
/0‘( f)()‘ = ﬁféulf(mdt for co > 1Vf € C,,.

Proof Case 1: [c(f)| < ¢xo < 1.

Lett=D1 andDj:t—Z’:IS(Di),]':LZ....

i

(Bx)(t) = c(t)x(t - 8(2)) = c(D1)x(t - 8(Dv));
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(B?x) () = c(t)c(t - 8(8))x(t — 8(2) - 8(¢ - 8(2)))
= c(D1)e(Dy)x(t — 8(Dy) — 8(Dy));

(B?x)(£) = c(t)c(t = 8(8))c(t - 8(£) = 8(£ = 8(2)))x(t = 8(D1) - 8(D5) - 8(D3))

= c(Dy)e Dz)C(DB)x< Z(S(D ))

Therefore
j j
Bix(t) = l_[ c(D)x (t - Z 5(Dt)>,
i=1 i=1
and
00 oo j
> (B)@®) =f( +ZHC(D)x<t D8 D))
j=0 j=1 i=1 i=1

Since A = I — B, we get from ||B|| < cs <1 that A has a continuous inverse A : C, — C,
with

=(I-B)'= I+ZB’ ZB/

j=0

here B® = I. Then

1ft):f: )+

j=0

J J
[ = (t -y 5<Di)>,

i=1 i=1

~
Ul
—_

and consequently

(A7) 0] =

i[B’f](t)

= (t)+iﬁcD)x( Zsum)’

j=1 i=1
o0

(SR
j=1

f oo

<
1-c

[e¢]

Moreover,
0] 4 ~ 0]
/0 |(A7)@)| dt = / ;(B’f)(t)

00 wl| J j
= Z / 1_[ c(D;)x (t - Z 8(D,»))
j=0 i=1 i=1

dt < wB/f(t)dt
2/ ()0

1 w
o /0 [f(2)| dt.

dt <
1
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Case 2: [c(t)] > ¢co > 1.
LetDi:tD—t+Z 8(D)),j=1,2,.... And set

E:C,— C,, (Ex)(t)=x(t)- ﬂx(t +8(0)),

B1:C,— C,,  (Bix)(t) = —x(t +5(2)).

o
c(t)
By the definition of the linear operator B;, we have

) 1 /
@0 ot (e o)
i=1 C( ) i=1
here D; is defined as in Case 1. Summing over j yields

S EHO=FfO+Y —— — ( S50 )
j=0 Hl( )

j=1 i=1

Since ||B; || < 1, we obtain that the operator E has a bounded inverse E~%,

[o¢]
1:Co—>Cp ET=(-B)'=1+) B,
j=1

and Vf € C,, we get

(E) @ =@+ Y (B,

j=1

On the other hand, from (Ax)(¢) = x(¢) — c(£)x(t — §(¢)), we have

(Ax)(t) = x(¢t) - c(t)x(t - B(t)) =—c(¢) [x(t - 8(1.‘)) - %x(t)],

(Ax)(t) = —c(t)(Ex)(t - 8(2)).
Let f € C, be arbitrary. We are looking for x such that

(Ax)(2) = £ (2)

—c(t)(Ex)(t - 8(2)) = (2).

Therefore

Sf(e+48(2)

(Ex)(t) = (1 30)

= fi(8),

Page 4 of 18
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and hence

x(t) = (E7£) () fl,;)+Z(Bz ) (0) = _ S+s@) Z ,f

= c(t +8(1))

proving that A™! exists and satisfies

) f+80) o i f(E+58(2)
A0 == ) ;lec(ma(t))
_ S+3@) if(t+8(t)+ 1 8(D))
c(t+8@) et +8®) [T, cD)
and
j /
(A1) - ‘ fle+8( Zf(t+8(t L3OD)| _ If

et +5(2) S(t)) c(t +8@) [Tye@) |~ -1
Statements (1) and (2) are proved. From the above proof, (3) can easily be deduced. O

2
Lemma 2.2 [fc(t) <0 and ocy < here o = ll_czo

o Coo 4 1
_— < (A 1) <
(1_cg 1_CL,)nyu_( N0 = =

oo
Proof Since ¢(t) < 0 and |c(t)| < oo < 0Coo < @ <1, by Lemma 2.1, we have for y € K that

oo j j
(A @ =y + Y [ [y (s - 6(Di))

i=1

j j j j
=y)+ Y Hc(Di)y(t—Za(Do)— > 1‘[|c<Di)|y<t—Za(Di))
i=1 i=1

j>1 even i=1 j>1 odd i=1

>alyll+a Y lyll-lyl D

j>1 even j>1 odd

2 Iyl - Iyl

o0
1_2

1_ 00

- (= Iyl
“\1-& 1—02 O

Lemma 2.3 Ifc(t) > 0 and c(t) < 1, then for y € K we have

1_—”3’” = (A J’)(t)

Proof Since ¢(£) >0 and ¢(t) <1, a < 1, by Lemma 2.1, we have for y € K that

O

(A7)0 = y(e) + Z]‘[c(D )y(t— > 8D )) > allyll +alyl > cp = —||y||

j=1 i=1 i=1 j=1
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3 Positive periodic solutions for third-order neutral equations
At first, we introduce the following Green’s functions and properties of Green’s functions,
which can be found in [11].

Theorem 3.1 For p >0 and h € X, the equation

u — p3u — h(t),

(3.1)
u(0) = u(w), u'(0) = v/ (w), u"(0) = u"(w)
has a unique solution which is of the form
w
u(t) = / Gi(t, s)(—h(s)) ds, (3.2)
0
where
2exp(} pls=H)Isin( %2 p(t=9)+ I )=exp(- 1 po) sin( plt=s-w)+ I)] 4+ —oxpo(t=9)
392 (Lexp(—pw)-2exp(~ 42) cos( %2 pw)) 30> (explpe)-1)’
Gi(t,) 0<s<t<ow,
»8) =
! 2exp(4 pls—t-0)[sin(Y2 plt-s+w)+ T)-exp(— & po) sin(42 ple-5)+ L )] 4 eppltro-5)
302 (L +exp(—pe)-2exp(- 22) cos(L2 pw)) 30 (exp(pw)-1)’
0<t<s<ow.
(3.3)
Theorem 3.2 For p >0 and h € X, the equation
u” + p3u=ht),
(3.4)
u(0) = u(w), u'(0) = u'(w), u"(0) = u"(w)
has a unique w-periodic solution
w
)= [ Gttt ds, (35)
0
where
ZCxp(%p(t—s))[sin(@p(t—s)—%)—exp(%pw) sin(@p(t—s—a))—%)] + exp(p(s—1))
302 (1+exp(pw) -2 exp(L pw) cos(*52 pw) 302 (1-exp(-pw))’
Goltss) 0<s<t<ow,
»S) =
2 2exp(} p(t+a-9))[sin(2 p(t+o-s)-Z)-exp(2 po) sin( L p(t-9-5)]  explp(s—t-w))
302 (Leexp(pw)-2 exp( 3 po) cos( %2 pw)) 30 (1-exp(-pw))’
0<t<s<ow.
(3.6)

Now we present the properties of the Green’s functions for (3.1), (3.4).

/- 1 ~ 3 +2exp(-57)
"~ 3p2(exp(pw) —1)’  3p2(1-exp(-£42))2°
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Theorem 3.3 fo Gi(t,s)ds = and Lf\/—pa) < 71 holds, then 0 <1 < Gy(¢,s) < L for all
t e [0,w] and s € [0, w].

Theorem 3.4 fo Gy(t,s)ds = % and if V/3pw < n holds, then 0 <l < Gy(t,s) < L for all
[0, w] and s € [0, w].

Define the Banach space X as in Section 2. Denote

M:max{a(t):te [O,a)]}, m:min{a(t):te [O,w]}, P> =M,

k=R —aoLibim I — (M + m)en
k=M em)+oLM, kg = Aot - U],

20LM LM(1 - cs)
It is easy to see that M, m, B8, k, k; > 0.
Now we consider (1.1). First let
f()zhm@ foozm@’ f_l_mf(x) f —l_m@,
x—0 X x—00 X -0 o X -0 T X

and denote

io = number of 0’s in (f,,f ), iy = number of O's in (f ,f );

i = number of 00’s in (f,,f..), io, = number of oo’s in (f ,f )

Itis clear that io, i, ioo, iy € {0,1,2}. We will show that (1.1) has iy or i positive w-periodic
solutions for sufficiently large or small A, respectively.

In what follows, we discuss (1.1) in two cases, namely the case where ¢(f) < 0 and —co, >
—min{ky, 37}

From —Coo > — I[m—(M+m)coo] U(m—(M+m)- M+m

, we have o = M)~ > DM = = 0. So, we get o > 0.

m_
M+m
Moreover, we consider the equation

oLMx?* —kx +1m = 0.

k=vk2—40 LIMm

Then the equation has a solution x = k; = oAl

. From ¢4, < ki, we can get
o LMc2, — koo + Im < 0.

So, we have
oLMck, — (UM + m) + 0 LM)coo + Im < 0,

we get

m—(M+m)eas]

TCo0 > T M = co0)

On the other hand, the case where ¢ > 0 and ¢« < min{37--, (Luz\;[%} (note that ¢ <
T @u}fﬁ implies « < 1). Obviously, we have ¢, < 1, which makes

Lemma 2.1 applicable for both cases, and also Lemma 2.2 or 2.3, respectively.

implies & > 0; coo <
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Let K = {x € X : x(¢) > «||x||} denote the cone in X as defined in Section 2, where « is
just as defined above. We also use K, = {x € K : ||x|| < r} and 0K, = {x € K : ||x| = r}.

Let y(¢) = (Ax)(¢), then from Lemma 2.1 we have x(t) = (A~ y)(t). Hence (1.1) can be trans-
formed into

y"(8) = a(®) (A7) (6) = =xb()f (A7) (£ - 7)), (3.7)
which can be further rewritten as
y" (&) = a@®)y(t) + a®)H (y(0)) = -2bO)f (A7y) (¢ - (1)), (3.8)

where H(y(£)) = y(£) - (A™9)(¢) = —c(£)(A71y)( - 8(2)).
Now we discuss the two cases separately.

3.1 Casel: c(t) <0 and —c > -min{ky, ;)
Now we consider

y"(£) - a(t)y(t) + a(OH(y(t)) = h(t), heC,, (3.9)

and define the operators T,H:X—> X by
(Th)(t) = / Gi(t,s)(~h(s))ds,  (Fy)(t) = =M + a(£)y(®) - a(®)H (y(r)).

Clearly 7, H are completely continuous, (Th)(¢) > 0 for h(t) < 0 and IHI < (M- m +

M lfcfoo ). By Theorem 3.1, the solution of (3.9) can be written in the form

y(t) = (Th)(t) + (THy)(@). (3.10)
In view of ¢() < 0 and —c > —min{k;, 37—}, we have

A A~ M —m + mc
ITHI < ITIIH| < ——— <1, (3.11)
M1 - cyo)

where we used the fact ft“w Gi(t,s)ds = 1\_1/1 Hence

() = (I = TH) ™ (Th)(e).
Define an operator P: X — X by
(Ph)(®) = (I = TH) ™ (Th)(2).

Obviously, for any & € C,, if max{a(t) : t € [0, w]} < %(%)3, y(¢) = (Ph)(¢) is the unique

positive w-periodic solution of (3.9).

Lemma 3.1 P is completely continuous and

() < @) < —2=) o o aiine c (3.12)
m— (M + m)cs

Page 8 of 18
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Proof By the Neumann expansion of P, we have

P=(-TH™T
=(1+TI:I+(T1:[)2+---+(TI:I)”+---)T

A~

=T+THT +(TH?T +---+(TH)"T +--- . (3.13)

Since T and H are completely continuous, so is P. Moreover, by (3.13), and recalling that

ITH| < Momemees < 1, we get

M(1 - cx)
(Th)(t) < (Ph)(t) < m | Th]. a

Define an operator Q: X — X by

Qy(t) = P(Ab()f (A7) (£ - T(1)))). (3.14)
Lemma 3.2 Q(K)CK.

Proof From the definition of Q, it is easy to verify that Qy(¢ + w) = Qy(¢t). For y € K, we
have from Lemma 3.1 that

Qy(t) = P(b()f (A7) (¢ - 7))
> T(b@)f (A7) (t - (®))))

Y / Gu(t, )B)(A™) (s - ()] ds

> )J/ bS)f[(A7'y) (s — ()] ds.
0
On the other hand,

Q) = POBOF (A7) (¢ - 7))
M=) g ((a) (- 1)

T m—(M+m)coo
M(l— OO) +w B
i) o [ G o) as
M(1 - ceo)
m— (M + m)eos

L /(‘)w b(s)f((A'ly) (S — T(S))) ds.

Therefore
I[m— (M + m)coo] B
Qy(t) > WHQ)’” =a|Qyll,
ie., QIK) C K. 0

From the continuity of P, it is easy to verify that Q is completely continuous in X. Com-
paring (3.8) to (3.9), it is obvious that the existence of periodic solutions for equation (3.8)
is equivalent to the existence of fixed-points for the operator Q in X. Recalling Lemma 3.2,
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the existence of positive periodic solutions for (3.8) is equivalent to the existence of fixed
points of Q in K. Furthermore, if Q has a fixed point y in K, it means that (A™1y)(¢) is a
positive w-periodic solution of (1.1).

Lemma 3.3 If there exists n > 0 such that
f((Afly) (t - ‘c(t))) > (A’ly) (t - r(t))n forte[0,w] andy e K,

then

o Coo @
A —— - , :
1yl = ln<1_cz 1—c§o>/0 b(s)dslyl, yeK

0

Proof By Lemma 2.2 and Lemma 3.1, we have for y € K that

Q) = P(rb(e)f (A7) (£ - (1))
= T(+b(@)f (A7) (e - ®)))

= A/ Gi(t,)bB) (A7) (s - 7(s))) ds

> AMn /Ow b(s)(A7'y) (s - 7(s)) ds

o Coo @
> M| — - b(s)ds|y-
=it - 1) [ bt

Hence

o C @
IIQyIIzkln< —%) / b(s)ds|lyl, yeK. 0
0

1-c§ 1-c%

Lemma 3.4 Ifthere exists € > 0 such that

(A ) (t-7®)) = (AT (E-1@)e forte[0,w]andy€eXK,

then

LM fow b(s)ds

< Ag——
L e

Iyl, yek.

Proof By Lemma 2.2 and Lemma 3.1, we have

M(1 - coo)
m— (M + m)cy
M(1-cyo)
m — (M + m)coo

e LM [} b(s)ds

1Ol <2 L "B ((A7) (s - (5))) ds

Le /w b(s) (A_ly) (s - T(S)) ds
0

m”}% O

Define

F(r) = max{f(t) :0<t< 4 },
1-cs
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() =min{f(t): <L - C;”)rftf r }

1-c¢3 1-¢2

Lemma 3.5 Ify € 0K, then

1Qyl = MAK) /0 b(s) ds.

Proof By Lemma 2.2, we obtain (ﬁ - 1C‘Z°2 < (A7) - T(®) < —— for y € 3K,
-5 —C50 o0

which yields f((A™'y)(t — 7(¢))) > fi(r). The lemma now follows analogous to the proof
of Lemma 3.3. O

Lemma 3.6 Ify € dK,, then

LM - co)F(r) [
||Q}’||§)Lm/(; b(s)ds.

Proof By Lemma 2.2, we can have 0 < (A7!y)(¢ - t(¢)) < —— for y € 3K, which yields

— l-cxo

f((AYy)(t — ©(¢))) < E(r). Similar to the proof of Lemma 3.4, we get the conclusion. O
We quote the fixed point theorem which our results will be based on.

Lemma 3.7 [12] Let X be a Banach space and K be a cone in X. For r > 0, define K, =
{u € K : |ull <r}. Assume that T : K, — K is completely continuous such that Tx # x for
x€dK, ={uek:|ul|=r}

(i) If ' Tx|| = ||x|l for x € K, then i(T,K,,K) = 0;

(i) IfITx| < ||x|| for x € OK,, then i(T,K,,K) = 1.

Now we give our main results on positive periodic solutions for (1.1).

Theorem 3.5
T 3 " T , 1 .
(@) Ifio =1o0r2, then (1.1) has iy positive w-periodic solutions for X > A0S 0;

(b) Ifi,, =1or2,then (11) has i, positive w-periodic solutions for

m—(M+m)c .
0 <A< e 2 50 ds

(¢) Ifics =0 or iy = 0, then (1.1) has no positive w-periodic solutions for sufficiently small
or sufficiently large A > 0, respectively.

Proof (a) Choose r, = 1. Take Ag =
Lemma 3.5 that

m > 0, then for all A > Ay, we have from
0

1Qyll > llyll  forye dK,. (3.15)

Case 1. Ifj_”0 =0, we can choose 0 < 7, < 11, so that f(u) < eu for 0 < u < r;, where the
constant ¢ > 0 satisfies

LM [} b(s)ds
8 —_—

m — (M + m)coo (3.16)

Let ry = (1 - coo)72, we have f((A71y)(t - (¢))) < e(A7y)(¢ -7 (2)) fory € K,,,. By Lemma 2.2,
we have 0 < (A7ly)(t-1(¢) < % <1, fory € 9K,,. In view of Lemma 3.4 and (3.16), we
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have for y € 9K,, that

LM [} b(s)ds

<pe——JO0 T
Q= he s =i

Iyl <1yl
It follows from Lemma 3.7 and (3.15) that
i(Q,K,,,K)=1, i(Q,K,,K)=0,

thus i(Q, K, \I_<r2,1<) =—1 and Q has a fixed point y in K}, \1_(,2, which means that (A71y)()
is a positive w-positive solution of (1.1) for A > A,.

Case 2. IffOO = 0, there exists a constant H > 0 such that f(u) <euforu> H, where the
constant ¢ > 0 satisfies

LM fom b(s)ds (3.17)
m— (M + m)coo ’

H(1-c3)(1~c%,) 1 1
m}, we have f((A7y)(t - ©(2))) < e(A7y)(t — 7(¢)) for y €

K,,. By Lemma 2.2, we have (A7'y)(¢ — 7(£)) > (-~ s |yl > H for y € dK,,. Thus by

-2 l—cgo

Lemma 3.4 and (3.17), we have for y € dK,, that

Let r3 = max{2ry,

LM fow b(s)ds

<i
L

Iyl <1yl
Recalling Lemma 3.7 and (3.15) that
i(Q K, K) =1, i(Q,K,,K)=0,

then i(Q, K, \f(,l,K) =1and Q has a fixed point y in K, \f(,l, which means that (A71y)(¢)
is a positive w-positive solution of (1.1) for A > Ay.

Case 3.If f,, = f, = 0, from the above arguments, there exist 0 < r; < 71 < r3 such that Q
has a fixed point y, (¢) in K, \I_(,2 and a fixed point y,(t) in K., \I_(,l. Consequently, (A~1y;)(¢)
and (A71y,)(¢) are two positive w-periodic solutions of (1.1) for A > Ao.

(b) Let r; = 1. Take Ag = LM(1IZ;;;\;:rZV;)j§JOb(s) — > 0, then by Lemma 3.6 we know if 1 < 2o
then

IQyll < liyll, ye€dK,. (3.18)

Case 1. If_i0 = 00, we can choose 0 < 7, < 1y so that f(u) > nu for 0 < u < r,, where the
constant > 0 satisfies

Aln< *__ CL) / " bs)ds > 1. (3.19)
0

2 1_c2
1-cg 1-c3

Let ry = (1 - coo)T2, we have f((A71y)(E - T(2))) > n(A71y)(t - (¢)) for y € K,,. By Lemma 2.2,

we have 0 < (Aly)(t-1(8) < % <r, for y € 9K,,. Thus by Lemma 3.3 and (3.19),

o Coo @
A — - —2— .
IQyll = 177(1_6% 1_C<2>O>/O b(s)dsllyll > Iyl
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It follows from Lemma 3.7 and (3.18) that
i(QK,,K)=0, i(QK,,K)=1,

which implies i(Q, K}, \I_(,Z,I() =1and Q has a fixed point y in K}, \I_(,Z. Therefore (A~1y)(¢)
is a positive w-periodic solution of (1.1) for 0 < A < Ao.
Case 2. Ifj_fOc = 00, there exists a constant H > 0 such that f(u) > nu for u > H, where

the constant 7 > 0 satisfies

un(i - CL) f " bs)ds > 1. (3.20)

2 2
1-c5 1-¢% /) Jo

H(1-c})(-c%) 1 1
m}, we have f((A7y)(t - 7(2))) = n(A7 )t — 7(¢) for y €

K,,. By Lemma 2.2, we have (A7'y)(¢ — 7(¢)) > (& <o )|ly|| > H for y € 0K,,. Thus by

l—c% l—cgo

Lemma 3.3 and (3.20), we have for y € 9K, that

Let r3 = max{2ry,

o Coo @
> M| — - —— b(s)d .
e n(l - ch> | o dsion > iy
It follows from Lemma 3.7 and (3.18) that
i(Q’I<r3¢I<) = 0) l(Q:]<r1’I<) = 17

ie, i(QK,, \I_(rl,l() = -1 and Q has a fixed point y in K, \I_(,l. That means (A7!y)(¢) is a
positive w-periodic solution of (1.1) for 0 < A < Ao.

Case 3. Ifj_fo :]:OO = 00, from the above arguments, Q has a fixed point y; in K}, \I_(,2
and a fixed point y, in K, \I_<r1' Consequently, (A7y,)(t) and (A71y,)(¢) are two positive
w-periodic solutions of (1.1) for 0 < A < .

(c) By Lemma 2.2, if y € K, then (A7y)(£ — 7(¢)) > (11(2) - 1f"c‘§c>o)||y|| >0 for t € [0, w].

Casel.If i, = 0, we have[o >0 and[oo >0.Let b = min{@; u >0} > 0, then we obtain

fw) > b, uel0,+00).

Assume that y(f) is a positive w-periodic solution of (1.1) for A > Xy, where Xy =

(l—c%)(l—cgc) . _ .
el oo 1—co 7] [ 50 s > 0. Since Qy(¢) = y(¢) for t € [0, w], then by Lemma 3.3 if . > Ag,

we have

/ b(s)dslyl > Iyl

0

o Coo
= > Ab -
Iyl = QY1 = l(l_cg 1_%0)
which is a contradiction.
Case 2. If in, = 0, we have f,, < 0o and f,, < 00. Let b = max{f(Tu) :u >0} >0, then we

obtain

f(u) <byu, uel0,00).
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Assume that y(¢) is a positive w-periodic solution of (1.1) for 0 < A < A9, where Ao =
m-(Mimos . Gince Qy(t) = y(¢) for t € [0, w], it follows from Lemma 3.4 that

byLM [’ b(s)ds*
LM [ b(s)ds
= Ay ——————— ,
Iyl =11Qyll < 2 T M+ e Iyl <yl
which is a contradiction. O
Theorem 3.6
(@) Ifthere exists a constant by > 0 such that f(u) > byu for u € [0, +00), then (1.1) has

(1-c3)(1-c,)
Ib1[e(1~cZo)—coo(1-c2)] [§ b(s)ds”
) If there exists a constant by > 0 such that f(u) < byu for u € [0, +00), then (1.1) has

m—(M+m)coo
byLM [’ b(s)ds*

no positive w-periodic solution for A >

no positive w-periodic solution for 0 < A <
Proof From the proof of (c) in Theorem 3.5, we obtain this theorem immediately. O

Theorem 3.7 Assumei, = io = i, = is, = 0, and that one of the following conditions holds:
D) fo<f
2) f,>f i
@) f,<f <fo <[
@) f_<f, <fo<For
If

(1-cg)1-c2)
No(1= %) —coo1 = c3)] ) bls) dsmax{}:o,fo,]joo,foo}

m— (M + m)cy

SIM Jo bls)dsmin{f ,fo.f_foo)

then (1.1) has one positive w-periodic solution.

Proof Case1.Iff,, < S o then

(1-a3)1-c2) N m— (M + m)coo
lla(— ) —cl-)] [Cb(s)ds "~ LM [Zb(s)ds

It is easy to see that there exists 0 < ¢ < f, such that

1-a3)1-c%) Ny m— (M +m)cso
(foo — ) (1 = 2) = coo1 = €)1 Ji b(s) s (f, +&)LM [ b(s)ds

For the above ¢, we choose r; > 0 such that f (1) < (fo +&)ufor0<u <r.Letr; = (1—cs)r,

we have f((A™y)(t — T(2)) < (io +&)(A7y)(¢ — 7(¢)) for y € K,,. By Lemma 2.2, we have
0<(AY)(t-1(®) < % <r for K € 9K,,. Thus by Lemma 3.4 we have for y € 9K, that

M [} b(s)ds

QI = Al +8)m

Iyl < Iyl

Page 14 0of 18
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On the other hand, there exists a constant H > 0 such that f(u) > (foo —¢&)uforu> H.
A=) 3 (e have f((A- y) t—1(®) > (Fo — &) Ayt — T(8)) for

a(l-ck)—coo(1-c3)
y € K,,. By Lemma 2.2, we have At -1(t) > - 1-c§c )yl = H fory e 0K,,. Thus

Let r, = max{2ry,

by Lemma 3.3, for y € 0K,

/ b(s) dsllyll > [yl

0

1Qyll = A, — e)(l‘"—2 - %)

— G 00

It follows from Lemma 3.7 that
(QK,,K)=1,  i(QK,,K)=0,
thus i(Q, K, \I_(rl,l() = -1 and Q has a fixed point y in K, \I_(rl. So (A71y)(¢) is a positive

w-periodic solution of (1.1).
Case 2. If f > f ., in this case, we have

1-a3)1-c) ey m — (M + m)Coo
Solla(1 =) — coo(1 = c2)] fow b(s)ds 'fOOLMfO(” b(s)ds

It is easy to see that there exists 0 < € < f; such that

(1-c)-c3) oo M= M+ mics
(fo — e)l[a(l = 2,) = coo(1 = c2)] s bls)ds f + e)LM [’ b(s)ds

For the above ¢, we choose 7y > 0 such that f (i) > (}70 —g)ufor0 <u <r.Letr; = (1—coo)V1,
we have f((A7y)(t — ©(t)) > (f, — &)(A7y)(t — 7(¢)) for y € K,. By Lemma 2.2, we have
0<(AY)(t-1(t) < ”LL < fory e dK,,. Thus we have by Lemma 3.3 that for y € 9K,,,

— 1-c

nQyuzu(fo—e)(L— oo ) /0 b(s)dslyll > 171l

2 1_c2
1-c¢; 1-cZ

On the other hand, there exists a constant H > 0 such that flu) < (Z o &)u for u > H.
), we havef((A y)(t r(t))) <(f_+e)A™y)(t - () for

ry-.

H(1- CO )1 Coo

Let ry = max{2r1, m

ry-.

by Lemma 3.4, for y € 9K,,,

LM [ b(s)ds

QI =A(f te) M m)em

71l
It follows from Lemma 3.7 that
i(QK,,K)=0,  i(QK,,K)=L
Thus i(Q, K, \I_(rl,l() = -1 and Q has a fixed point y in K, \I_(rl, proving that (A71y)(¢) is a
positive w-periodic solution of (1.1).

Case 3.[0 5[00 5]70 5]700. The proof is the same as in Case 1.
Cased.f =<f <f+ <fo- The proof is the same as in Case 2. O
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3.2 Casell: c(t) > 0 and ¢ < min{ 3, hntm LM-im_y

L-NM-Im
Define

fz(r):min{f(t): 1ixcor§t< r }

T 1l-cx
Similarly as in Section 3.1, we get the following results.

Theorem 3.8

(a) Ifio =1 or 2, then (1.1) has iy positive w-periodic solutions for A > > 0.

1
fz(l)lf(;” b(s)ds
(b) Ifi,, =1or2,then (1.1) has i positive w-periodic solutions for

m—(M+m)coo
0 <2 < e b ds

(¢) Ifiso = 0 or iy = 0, then (1.1) has no positive w-periodic solution for sufficiently small

orlarge ). > 0, respectively.

Theorem 3.9
(a) Ifthere exists a constant by > 0 such that f(u) > byu for u € [0, +00), then (1.1) has no

. T . 1—
positive w-periodic solution for A > s

laby [y b(s)ds”
(b) Ifthere exists a constant by > 0 such that f(u) < byu for u € [0, +00), then (1.1) has no
m—(M+m)coo

positive w-periodic solution for 0 < A < DLV [T b(0) a5

Theorem 3.10 Assume that iy =i =i, = ix = 0 hold, and that one of the following con-
ditions holds:

(1) ]70 SJ_COO;

2) f,>f i

@) f,=f <fo=fwi

@) f_<fy<fo =fo
If

1-co m— (M + m)cy

— — A = —,
la [ b dsmax(f Foof Fod LMy bls)dsmin{f forf Joo)

then (1.1) has one positive w-periodic solution.

Remark1 Inasimilar way, one can consider the third-order neutral functional differential
equation (x(£) — c(£)x(t — 8(2)))” + a(t)x(t) = Ab(2)f (x(t — (2))).

We illustrate our results with an example.

Example 3.1 Consider the following third-order neutral differential equation:

1 1. ) 1 1.,
u(t) + — 1 - =sin2t u(t— cos t) — —|1-=sin” ¢ |u(z)
300 2 8 2

= —A(1 - cos2t)u?(t — T(8))a" "), (3.21)

where A and 0 < 4 < 1 are two positive parameters, t(¢ + ) = T(t).

Comparing (3.21) to (L.1), we see that 8(2) = cos? £, c(t) = — 55 (1 — 3 sin2t), a(t) = (1 -

%sin2 t), b(t)=1-cos2t, w=m, f(u) = uat. Clearly, co = ﬁ, Cco = ﬁ, M = é, m=L
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and we get p = %, noticing that @ < %” holds. f, = 0, f., =0, ig = 2. By Theorem 3.5, we

easily get the following conclusion: equation (3.21) has two positive  -periodic solutions
for A > %77r1’ where r; = min{f(0.0016),f(%)}.
In fact, by simple computations, we have

1 3 +2exp(-5)
12—20.175, L= 2 PWOY\2
3p(exp(pw) —1) 302(1 —exp(-57))

=17.62
k=2.235, ki =0.0050, o =0.0049,

1 . m 1
Coo = —— < mln{kl, —} =0.0050, Coo = — < 0.0049 = q,
M+m

~ 300 ~ 300
and
. o Coo 300
1)= £):0.0016 ~ - <<
AD mm{f() - 1-a, —299}

= min{f(0.0016),f<%) } =r,

1 7
AQLfy b(s)ds 40w’
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