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Abstract
The paper studies the optimal control of a nonlinear stochastic differential game of
two persons subjected to noisy measurements. The logarithmic transformation to the
value function is used in trying to find the solution of the problem. The conversion of
a quasilinear partial differential equation to an ordinary linear differential equation is
considered. Lastly, the iterative optimal control path estimates for the minimization
maximization differential game are attained.

Keywords: nonlinear stochastic differential equation; Brownian motion; stochastic
optimal control; Ito’s lemma

1 Introduction
Control theory is a field of mathematics and engineering used in a wide range of fields
and their applications, such as architecture, communications, queueing theory, robotics
and in economics as evidenced in [–] just to mention a few. Control theory is a subject
of much interest in today’s real world. As stated in [], optimizing a sequence of actions
to attain some future goal is the general topic of control theory. Therefore, the objective
of optimal control theory is to attain an optimal regulation of the system evolution [].
Without the indulgence of the noise, the continuous time control problems can be solved
in two ways: using Pontryagin Minimum Principle (PMP), which is a pair of ordinary dif-
ferential equations, or the Hamilton-Jacobi-Bellman (HJB), which is a partial differential
equation as in []. The addition of differential equations as constraints in the optimization
problem leads to the property that in optimal control theory the minimum is no longer
represented by one point x∗ in the state space but by a path or trajectory x∗ = (x∗

i )i=,...,N ,
which is known as the optimal trajectory.
In the presence of noise, the PMP formalismhas no obvious generalization asmentioned

in []. However, the inclusion of the noise in the HJB framework is mathematically quite
straightforward, while the numerical solution of either deterministic or stochastic HJB
equation is difficult due to the curse of dimensionality. A control problem is said to be
stochastic when it is subjected to some disturbances or noise terms and time dependent,
that is being uncertain of its future state. Under control theory, there lies a topic of interest
to this paper which is game theory.
Game theory deals with strategic interactions among several decision makers, known

as players. These players have objectives that may be contradicting or non-contradicting.
In situations whereby players’ aims are not in contradiction, they are said to be in coop-
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eration, which is enough to regard their aims as of one player, as seen in [] and []. If the
players’ decisions are in contradiction, then it is widely known as non-cooperative game
theory that is evenmore interesting as each player may have to be analyzed individually or
in distinct groups basing on the similarity of the objectives. Non-cooperative game theory
has been discussed by several authors [–].
The nonlinear stochastic optimal control theory is one of the optimization fundamentals

with plethora of applications in several domains, see [] and []. The main difficulty
associated with stochastic minimax dynamic games studied here is the presence of the
noise in the dynamical constraints and the solution to a nonlinear second order Hamilton
Jacobi Bellman equation (HJB) as mentioned in [].
In this paper a nonlinear stochastic problem is considered as a two-person zero sum

game. One player tries to attain the reward at minimal costs, while the other player tries to
maximize the costs of the other player, knowing that it would be advantageous to him. The
problem is modeled as a dynamical system with nonlinear stochastic constraints, and our
idea is to find the saddle point of the game after a certain time of play. The two controls act
as opponents, that is, the control u is a stabilizer or minimizer, while v is the destabilizing
ormaximizing control variable. A different approach to finding the solution of the problem
deployed through certain conditions assumed in this paper is similar to that of [].

2 Problem formulation
Let (�,F ,P,Ft) be a complete probability space, and let time interval [,T] with
 < T < ∞ be given. Assume that on this space an n-dimensional Brownian motion
{W (t),Ft}t∈[,T] is defined with {Ft}t∈[,T] as the Brownian filtration, Guo et al. []. The
expectation under the probability measure P will be denoted by Et , while F is a σ -algebra
of the subsets of �.

Definition. (Brownianmotion) Brownianmotion {W (t)} is the stochastic processwith
the following properties [].

(i) At any time s < t, the incrementW (t) –W (s) is Gaussian with mean zero and
variance Et[(W (t) –W (s))] = t – s; moreover, the increments associated with
disjoint intervals are independent.

(ii) Its sample path is continuous, that is, the function t →W (t) is almost surely
continuous.

(iii) Its initial state and time is zero, that is,W () = .

Let {x(t,ω)}t∈[,T] denote a stochastic process, then {x(t,ω)}t∈[,T] is said to beFt adapted
whenever Ft is known at time t.
Consider the evolution of the system given by a nonlinear stochastic differential game

of two persons,

dx(t,ω) = g
(
x(t,ω),u(t,ω), v(t,ω), t

)
dt + σ

(
x(t,ω)

)
dW (t) for t ∈ [,T],

x(,ω) = x(ω).
()

Here, the volatility coefficient of the noise term σ is only dependent on the state trajectory
x, similarly as addressed by []. The function g is dependent on the controls or policies,
the state trajectory and the time t. The value x(ω) denotes the initial random state. The
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problem is formulated as a differential game with two opponents as in Theodorou []
with

min
u

max
v

J
(
t,x(t,ω),u

(
x(t,ω)

)
, v

(
x(t,ω)

))

=min
u

max
v

Et
{
φ
(
x(T ,ω)

)
+

∫ T


e–βtL

(
t,x(t,ω),u

(
x(t,ω)

)
, v

(
x(t,ω)

))
dt

}
()

with

L
(
t,x(t,ω),u

(
x(t,ω)

)
, v

(
x(t,ω)

))
= q

(
x(t,ω)

)
+


uT

(
x(t,ω)

)
R(t,ω)u

(
x(t,ω)

)
– vT

(
x(t,ω)

)
S(t,ω)v

(
x(t,ω)

)
, ()

under stochastic nonlinear dynamical constraints,

dx(t,ω) =
(
f
(
x(t,ω)

)
+G(ω)u

(
x(t,ω)

)
+H(ω)v

(
x(t,ω)

))
dt

+ σ
(
t,x(t,ω)

)
dW (t), ()

where
(i) the function L : [,T]× ×R

n × Ep × Eq →R is known as the immediate cost to go,
while φ :Rn →R is the terminal cost;

(ii) x(t,ω) ∈ L(�,F ,P) is the n-dimensional random state vector for t ≥  with ω ∈ �

as the supporting set of a complete probability measure space P;
(iii) u(x(t,ω)) ∈ Ep and v(x(t,ω)) ∈ Eq are the p-dimensional and q-dimensional random

control variables of player one and player two defined respectively in the two
metric spaces;

(iv) the symmetric and positive definite random time varying matrices R(t,ω) and
S(t,ω) are matrices associated with the controls of u(x(t,ω)) and v(x(t,ω)),
respectively;

(v) β >  is the discounting factor of the value function.

Definition . (Admissible control) From [] a control {u(t),Ft}t∈[,T] is said to be ad-
missible if

(i) for every (t,x) the system of SDEs in () with initial condition x(,ω) = x(ω) admits
a pathwise unique strong solution;

(ii) there exists some function φ :Rn →U of class C, such that u is in relative
feedback to φ, that is, u(t) = φ(x(t)) for every t ∈ [,T].

The two controls u(x(t,ω)) and v(x(t,ω)) are referred to as the stabilizing and the desta-
bilizing controllers, respectively. The stabilizing controller minimizes the cost function,
while the destabilizing controller tries to maximize the cost function.
Considering the nonlinear stochastic dynamical constraints, let
(i) f : [,T]×R

n →R and σ : [,T]×R
n →R

n×m be bounded and continuous
functions;

(ii) G(ω) and H(ω) be n× p and n× q random matrices.
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3 Conditions
The following standard regularity conditions are made as in [] and [] throughout the
paper.

(i) The functions f (x), L(t,x,u, v) are continuously differentiable in
(t,x,u, v) ∈ [,T]×R

n × Ep × Eq and φ is twice differentiable in x ∈R
n.

(ii) J and L are nonnegative functions.
(iii) V (x), ∇xV , L, and φ are bounded, where V is defined as the value of the game that

each control tries to optimize from.
(iv) The controls are bounded in R

m and given in the spaces

LF :=
{
u :

∥∥u(
x(t,ω)

)∥∥


}
< ∞,

L∞
F :=

{
u :

∥∥u(
x(t,ω)

)∥∥∞
}
< ∞,

thus

∥∥u(
x(t,ω)

)∥∥
 = Et

(∫ T



∣∣u(
x(t,ω)

)∣∣dt),
∥∥v(x(t,ω))∥∥∞ = Et{sup∣∣v(x(t,ω))∣∣ : t ∈ [,T]

}
for v continuous. The same conditions for u under (iv) are applicable to v as well.

4 Approach to the solution of stochastic optimal controls
Our approach in finding the optimal control is based on the definition of the saddle point
given below as in [] with slight changes to suit our problem.

Definition .
(i) If the pair (u∗(x(t,ω)), v∗(x(t,ω))) ∈ U ×U is optimal, then there exists a saddle

point of the game over the interval [,T] with respect to x(t,ω) ∈R
n, if

J
(
t,x(t,ω),u∗(x(t,ω)), v(x(t,ω)))
≤ J

(
t,x(t,ω),u∗(x(t,ω)), v∗(x(t,ω)))

≤ J
(
t,x(t,ω),u

(
x(t,ω)

)
, v∗(x(t,ω)))

for all u(x(t,ω)) ∈U and v(x(t,ω)) ∈U, where U and U are nonempty sets of
admissible controls.

(ii) The upper value of the game at any path x(t,ω) and time t ∈ [,T] is defined by

V ∗(x(t,ω)) = inf
u∈U

sup
v∈U

J
(
t,x(t,ω),u

(
x(t,ω)

)
, v

(
x(t,ω)

))
,

and the lower value of the game is

V∗
(
x(t,ω)

)
= sup

v∈U
inf
u∈U

J
(
t,x(t,ω),u

(
x(t,ω)

)
, v

(
x(t,ω)

))

and if

V ∗(x(t,ω)) = V∗
(
x(t,ω)

) ≡ V
(
x(t,ω)

)
.
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The objective is to find the optimal admissible controls, u∗(x(t,ω)) ∈U and v∗(x(t,ω)) ∈
U, such that V (x(t,ω), t) satisfies Definition . for U ⊂ Ep and U ⊂ Eq.

Theorem . (Bellman principle of optimality) If u∗(x(t,ω)) is optimal over the interval
[,T] starting at an initial state x(ω), then u∗(x(t,ω)) is necessarily optimal over the subin-
terval [t, t + dt] for any dt such that T – t ≥ dt > .

For the proof of the above theorem, refer to [].
Applying Theorem . and Definition . to the value of the game V (x(t,ω)), we have

that

V
(
x(t,ω)

)
= min

u
max

v
Et

{
φ
(
x(T ,ω)

)

+
∫ t+dt

t
e–βτL

(
τ ,x(τ ,ω),u

(
x(τ ,ω)

)
, v

(
x(τ ,ω)

))
dτ

}

= Et{L(
t,x(t,ω),u∗(x(t,ω)), v∗(x(t,ω)))dt + e–β dtV

(
x(t + dt,ω)

)}
= L

(
t,x(t,ω),u∗(x(t,ω)), v∗(x(t,ω)))dt

+ t( – β dt)Et[V (
x(t + dt,ω)

)]
. ()

We need to calculate the expectation of the function V (x(t + dt,ω)). Approximating the
function V (x(·,ω)) using Taylor’s formula, we have

V
(
x(t + dt,ω)

)
= V

(
x(t,ω)

)
+V ′(x(t,ω))[x(t + dt,ω) – x(t,ω)

]
+


V ′′(x(t,ω))[x(t + dt,ω) – x(t,ω)

] + · · · .

Ignoring the terms of higher powers and letting dx(t,ω) = x(t + dt,ω) – x(t,ω), we get

V
(
x(t + dt,ω)

)
= V

(
x(t,ω)

)
+V ′(x(t,ω))[dx(t,ω)] + 


V ′′(x(t,ω))[dx(t,ω)]. ()

Substituting the stochastic equation () into equation () and using the properties of Ito’s
lemma, we give the function V (x(t + dt,ω)) by

V
(
x(t + dt,ω)

)
= V

(
x(t,ω)

)
+

[(
f
(
x(t,ω)

)
+G(ω)u

(
x(t,ω)

)
+H(ω)v

(
x(t,ω)

))
V ′(x(t,ω))

+


σ (x(t,ω), t)V ′′(x(t,ω), t)]dt

+ σ
(
x(t,ω), t

)
V ′(x(t,ω))dW (t). ()

Taking the expectation of equation (), we have

Et[V (
x(t + dt,ω)

)]
= V

(
x(t,ω)

)
+

[(
f
(
x(t,ω)

)
+G(ω)u

(
x(t,ω)

)
+H(ω)v

(
x(t,ω)

))
V ′(x(t,ω))

+


σ (x(t,ω), t)V ′′(x(t,ω))]dt. ()
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Substituting equation () to equation () yields

βV
(
x(t,ω)

)
= L

(
t,x(t,ω),u∗(x(t,ω)), v∗(x(t,ω))) + [

f
(
x(t,ω)

)
+G(ω)u

(
x(t,ω)

)
+H(ω)v

(
x(t,ω)

)]
V ′(x(t,ω))

+


Tr

[
σσT(

x(t,ω), t
)
V ′′(x(t,ω))]. ()

The above equation is the Bellman equation similar to the one in [] which is a parabolic
differential equation that has simple solutions for some simple processes and utility func-
tions. In this paper we will adopt the idea of [] instead of solving the Bellman equation,
which is not always easy. From the Bellman equation we can solve for the optimum values
u(x(t,ω)) ∈ U and v(x(t,ω)) ∈ U, by taking the derivative with respect to u(x(t,ω)) and
v(x(t,ω)),

 =Lu +GT (ω)Vx
(
x(t,ω), t

)
,

R(t,ω)u
(
x(t,ω)

)
= –GT (ω)Vx

(
x(t,ω), t

)
, ()

u∗(x(t,ω)) = –R–(t,ω)GT (ω)Vx
(
x(t,ω), t

)
.

As for the maximizer v(x(t,ω)), we have

 =Lv +HT (ω)V
(
x(t,ω), t

)
,

S(t,ω)v
(
x(t,ω)

)
=HT (ω)Vx

(
x(t,ω), t

)
, ()

v∗(x(t,ω)) = S–(t,ω)HT (ω)Vx
(
x(t,ω), t

)
.

Substituting the values of u∗(x(t,ω)) and v∗(x(t;ω)) onto L in equation () and collecting
the like terms yields the expression

βV
(
x(t,ω)

)
= q

(
x(t,ω)

)
–


VT
x

(
x(t,ω), t

)
G(ω)R–(t,ω)GT (ω)Vx

(
x(t,ω)

)
+


VT
x

(
x(t,ω), t

)
H(ω)S–(t,ω)HT (ω)Vx

(
x(t,ω)

)
+VT

x
(
x(t,ω), t

)
f
(
x(t,ω)

)
+


Tr

[
Vxx

(
x(t,ω)

)
σ
(
x(t,ω)

)
σT(

x(t,ω)
)]
. ()

Equation () is a nonlinear second order partial differential equation (PDE), and its solu-
tion is a bit challenging as it is nonlinear and in high dimensions. As assumed in [], there
is a connection between the controls and the variance of the Brownian noise. Considering
the difference in our control weights, we have the following cases:

(i) HS–HT –GR–GT <  implies that more weight is on the minimizing control than
on the maximizing control variable.

(ii) HS–HT –GR–GT >  implies more weight on the maximizing control than on the
minimizing control variable.
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Basimanebotlhe and Xue Advances in Difference Equations 2014, 2014:266 Page 7 of 14
http://www.advancesindifferenceequations.com/content/2014/1/266

(iii) HS–HT –GR–GT = , the weights of the controls are equivalent, hence it is an
ideal situation for a minimax optimal control.

The intuition we get from [] is that the higher the variance, the lower the weight of the
controls, hence ‘cheap’ controls and vice versa. In our casewewant to strike a deal such that
both players attain their optimums. The variance of the Brownian noise here is given by
σσT > , therefore we want to attain a situation whereby λ(t)[GR–GT –HS–HT ] = σσT

for all x ∈ R
n and t ∈ [,T], where the difference of the control coefficients will be the

same as the variance of the noise. Our assumption on the balancing parameter is different
from the one suggested by other authors, as in [] and [], where the balancing term is
just a constant parameter. In our case, the balancing variable λ(t) is dependent on t such
that at any time instant the equality sign is attained as the variance terms differing with
time.
Suppose that

V
(
x(t,ω)

)
= –λ(t) log	

(
x(t,ω)

)
. ()

We determine all the partial derivatives of the new value function given in equation (),

Vx
(
x(t,ω)

)
= –λ(t)


	(x(t,ω))

	x
(
x(t,ω)

)
()

and

Vxx
(
x(t,ω)

)
= –λ(t)

	xx(x(t,ω))	(x(t,ω)) –	x(x(t,ω))	x(x(t,ω))
	(x(t,ω))	T (x(t,ω))

. ()

Therefore substituting (), (), () and taking into consideration the assumption that
λ(t)[GR–GT – HS–HT ] = σσT for all t ∈ [,T] to the nonlinear PDE given in (), we
have

β	
(
x(t,ω)

)
log	

(
x(t,ω)

)
= –


λ(t)

	
(
x(t,ω)

)
q
(
x(t,ω)

)
+	T

x
(
x(t,ω)

)
f
(
x(t,ω)

)
+


Tr

[
	xx

(
x(t,ω)

)
σ

(
x(t,ω)

)
σT(

x(t,ω)
)]
, ()

which yields a second order quasilinear PDE with the boundary condition given as

	
(
x(T ,ω)

)
= exp

(
–


λ(T)

φ
(
x(T ,ω)

))
. ()

If the solution 	(x(t,ω)) is found to exist for equation (), then we have the results given
below.

Theorem . If 	(x(t,ω)) satisfies equation (), then the transformed control optimums
are given as

u∗(x(t,ω)) = λ(t)R–(t,ω)GT (ω)
	x(x(t,ω))
	(x(t,ω))
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and

v∗(x(t,ω)) = –λ(t)S–(t,ω)HT (ω)
	x(x(t,ω))
	(x(t,ω))

for the value

V
(
x(t,ω)

)
= λ(t) log	

(
x(t,ω)

)
,

where λ(t) satisfies

λ(t)
[
GR–GT –HS–HT]

= σσT , ∀x ∈ R
n, t ∈ [,T].

One would observe that u∗(x(t,ω)) is now positive while v∗(x(t,ω)), this is so because
the problem has been transformed from minimax to maxmin problem. The PDE in ()
is found to be a bit difficult to solve in terms of dependence variables x and t, therefore in
this paper we resort to transforming the above PDE to an ODE for which, in most cases,
a solution can be obtained. Consider a one-dimensional problem for this case, thus n = 
and fix t, then the equation becomesmore dependent on x. This leads to a nonlinear ODE,
and before solving the nonlinear ODE, we have the following assumptions.
(A:) (i) 	(x(t,ω), t), f (x(t,ω)) and q(x(t,ω)) are nonnegative functions.

(ii) 	(x(t,ω), t) is Lipschitz continuous for all (t,x) ∈ ([,T]×R) and ω ∈ �.
(iii) f (x(t,ω)) and q(x(t,ω)) are also continuous functions and bounded functions

for all x ∈R.
Let

σ
(
x(t,ω)

)
σT(

x(t,ω)
)
= θ

(
x(t,ω)

)
> .

Multiplying throughout by θ–(x(t,ω)), we have
[
d	(x(t,ω), t)

dx
+ f̃ (x)

d	(x(t,ω), t)
dx

]
=

λ
q̃(x)	

(
x(t,ω), t

)
+ r(x)	

(
x(t,ω), t

)
log	

(
x(t,ω), t

)
, ()

where

f̃
(
x(t,ω)

)
= f

(
x(t,ω)

)
θ–(x(t,ω)),

q̃
(
x(t,ω)

)
= q

(
x(t,ω)

)
θ–(x(t,ω))

and

r
(
x(t,ω)

)
= βθ–(x(t,ω)).

For transformation and simplicity purposes, we would represent the following functions
as U =	(x(t,ω), t) and V = d	(x(t,ω),t)

dx .
This yields the following first order ODE:

{
U̇ = V ,
V̇ = –f̃ (x)V + 

λ
q̃(x)U + r(x)U logU ,

()

http://www.advancesindifferenceequations.com/content/2014/1/266
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which gives the equation

F(x, U̇ , V̇) =
(

V
–f̃ (x)V + 

λ
q̃(x)U + r(x)U logU

)
. ()

Given the following conditions:
(A:) (i) U =U ×U ∈R

m is a compact and bounded set.
(ii) I ∈R is bounded.
(iii) H = [a,b], a >  and b > 

F :U × I ×H →R
(‖ · ‖� norm

)
.

By the Lipschitz condition in (A:), we have

∣∣F(x,U ,V) – F(x, Ũ , Ṽ)
∣∣ ≤ |U – Ũ | + ∣∣f̃ (x)∣∣|V – Ṽ|

+

|λ|

∣∣q̃(x)∣∣|U – Ũ | + ∣∣r̃(x)∣∣|U logU – Ũ log Ũ |, ()

we know that

|U logU – Ũ log Ũ | = (
log(ξ ) + 

)|U – Ũ | for ξ ∈ [a,b]

≤ max
ξ∈[a,b]

( + log ξ )|U – Ũ |. ()

For the equation

X =

(
U
V

)
.

Therefore,

{
Ẋ = F(x,X),
X(x(ω)) = X(ω) ∈ I ×H.

()

Hence the solution has been found to exist, with the terminal condition given by

	
(
x(ω), t

)
= exp

(
–


λ(t)

φ
(
x(ω)

))
. ()

In summary we have the following results.

Theorem . Consider a special case for the equation

β	
(
x(t,ω)

)
log	

(
x(t,ω)

)
= –


λ(t)

	
(
x(t,ω)

)
q
(
x(t,ω)

)
+	T

x
(
x(t,ω)

)
f
(
x(t,ω)

)
+


Tr

[
	xx

(
x(t,ω)

)
σ

(
x(t,ω)

)
σT(

x(t,ω)
)]
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for a one-dimensional problem and for

	
(
x(t,ω), t

)
=	

(
x(t,ω)

)
.

Then, assuming that (A:) and (A:) hold, at least one solution has been found to exist.

The solution in () is not necessarily unique, and to attain uniqueness, more boundary
conditions to theODEmust be given. For a one-dimensional problem at least one solution
has been found to exist, and for n ≥  the equation is a PDE which is difficult to solve.

4.1 Iterative optimal control estimates
From Theorem ., consider the estimated value function to be given as

	
(
x(tj+,ω)

)
=

∫
∂ϒ

ρ(ϒ |xj) exp
(
–


λ(T)

φ
(
x(T ,ω)

))

× exp

(
–

∫ tN–

tj

(|f̃j| + |Q̃j|
)
dt

)
dϒ , ()

where

ϒ =
(
x(tj,ω),x(tj+,ω), . . . ,x(tN–,ω)

)
and

dϒ =
(
dx(tj,ω)dx(tj+,ω) · · · dx(tN–,ω)

)
.

The expectation of the value function is driven by stochastic differential equation (). The
function ρ(ϒ |xj) in equation () is the probability density function of the transitions, and
the function Q̃j will be defined later.
Certainly, we cannot surely know future paths and the future control values due to the

presence of the noise to the problem. This does not mean we have to give up since future
paths cannot be certainly known, therefore we may estimate future paths, hence future
control values, in order to attain optimums as the controls are dependent on the path
control.
The continuous time interval is divided into small time intervals to attain small equal

discrete paths assuming we are not distorting the trajectory in any way, that is, let

xj+(ω) – xj(ω) = x(tj+,ω) – x(tj,ω) for all tj ∈ [ε,T – ε] for ε → .

Suppose the transition between the paths is given by

ρ(ϒ |xj) = ρ(xN–, . . . ,xj+|xj)

=
N–∏
j=

ρ(xj+|xj),

xj’s are identically independent and j =  is the initial state. ()

http://www.advancesindifferenceequations.com/content/2014/1/266
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The above equation is the cumulative probability density function for the sample path
from xj to xN–. The transitions of the sample paths are Markovian as they are solely de-
pendent on the current path (xj) at time tj. Following the work of [] to the latter, we
take the noise term to be Gaussian distributed with mean zero and variance θ (x) = σσT

as given earlier. Therefore,

ρ(xj+|xj) =
exp(– 


∑N–

j= ‖ xj+(ω)–xj(ω)
δj

– gj(ω)‖δjθ–
j (ω))∏N–

j= ((π )|θj(ω)|) 
()

for δj = tj+ – tj, which is the change in time t.
Hence we have the following results given as a lemma.

Lemma . From both Theorem . and Theorem ., and assuming that the transitions
are given by equation (), we give the iterative optimal controls as

u∗(ω) = –R–
j (ω)GT (ω)

exp(Aj(ω) + Bj(ω))∫
∂ϒ

exp(Aj(ω) + Bj(ω))dϒ

and

v∗(ω) = –S–j (ω)HT (ω)
exp(Aj(ω) + Bj(ω))∫

∂ϒ
exp(Aj(ω) + Bj(ω))dϒ

for the estimated value function

	
(
x(tj+,ω)

)
=

∫
∂ϒ

ρ(ϒ |xj) exp
(
–


λ(T)

φ
(
x(T ,ω)

))

× exp

(
–

N–∑
j=

(|f̃j| + |Q̃j|
)
dt

)
dϒ ,

where

Aj(ω) = –



N–∑
j=

∥∥∥∥xj+(ω) – xj(ω)
δj

– gj(ω)
∥∥∥∥


δjθ
–
j (ω)

and

Bj(ω) =
N–∑
j=

(|f̃j| + |Q̃j|
)
θ–
j (ω)δj.

Proof FromTheorem., suppose that the solution is given as an estimated iterative value
function in equation (). Consider the discrete paths of the optimal trajectory given as

	
(
x(tj+,ω)

)
=

∫
∂ϒ

ρ(ϒ |xj) exp
(
–


λ(T)

φ
(
x(T ,ω)

))

× exp

(
–

∫ tN–

tj

(|f̃j| + |Q̃j|
)
dt

)
dϒ . ()
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Now, substituting equation () to equation (), we have

	
(
x(tj,ω), t

)
=

∫
∂ϒ

exp(– 
λ(T)φ(x(T ,ω)))∏N–

j= ((π )|θj|) 

× exp

(
–



N–∑
j=


λj

∥∥∥∥xj+ – xj
δj

– gj
∥∥∥∥


δjθ
–
j

)

× exp

(N–∑
j=

(|f̃j| + |Q̃j|
)
δj

)
dϒ ()

for

∣∣Q̃(x)∣∣ = A
∣∣r(x)∣∣ +(

 +

λ

∣∣q̃(x)∣∣),
where

C = max
ξ∈(a,b)

( + log ξ ).

We know that

f̃ (x) = f (x)θ–(x), q̃(x) = q(x)θ–(x)

and

r(x) = βθ–(x).

Therefore, we have

	
(
x(tj,ω)

)
=

∫
∂ϒ

exp(– 
λ(T)φ(x(T ,ω)))∏N–

j= ((π )|θj|) 

×
[
exp

(
–



N–∑
j=


λj

∥∥∥∥xj+ – xj
δj

– gj
∥∥∥∥


δjθ
–
j

)]

×
[
exp

(N–∑
j=

(|f̃j| + |Q̃j|
)
δj

)]
dϒ . ()

Let

Aj(ω) = –



N–∑
j=

∥∥∥∥xj+(ω) – xj(ω)
δj

– gj(ω)
∥∥∥∥


δjθ
–
j (ω),

Bj(ω) =
N–∑
j=

(|f̃j| + |Q̃j|
)
θ–
j (ω)δj

and

fj(ω) = f
(
x(tj,ω)

)
.
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Similarly, extending that representation to other functions, we may express the iterative
value of the game as

	j(ω) =
∫

∂ϒ

exp(– 
λ(T)φ(x(T ,ω)))∏N–

j= ((π )|θj|) 
[
exp

(
Aj(ω) + Bj(ω)

)]
dϒ . ()

Applying Theorem ., we obtain the optimal iterative control estimates, which completes
the proof. �

5 Conclusion and future work
The paper studied the nonlinear stochastic control problem of a zero sum differential
game. The problem studied here is similar to the one in [], the difference is that ours
is a minimax problem and the state function is dependent on an additional random vari-
able ω, which was suggested as future work. Equating the control weights to the variance
of the Brownian noise played an important role towards the solution. A quasilinear PDE
was attained due to the logarithmic transformation of the value function, though the equa-
tion was difficult to solve. However, the quasilinear differential equation was converted to
an ODE by fixing the time variable t, which showed that at least a solution (saddle point)
does exist. The uniqueness of the solution can be attained if more boundary conditions are
set to the problem. The problem is path-dependent and Gaussian distributed with mean
zero and variance θ . Therefore, the Gaussian distribution has played a vital role in obtain-
ing the control path estimates as given in Lemma .. We are of the view that nonlinear
Feynmac-Kac formula can be of great help in attaining the solution for the nonlinear PDE
[]. Lastly, note that for n ≥ , the problem is a nonlinear PDE, which still remains an
open problem according to our understanding.
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