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1 Introduction
The aim of this paper is to study the existence of positive solutions for a third order p-

Laplacian difference equation

Algpy(A%y(n))] + q(m)f (m, y(n), Ay(n)) =0, n€[0,N],
ay(0) — bAy(0) =0, cy(N +3)+dAy(N +2) =0, A?y(0) =0,

where

+ N >1an integer;

e a,¢>0,and b,d > 0 with ad + ac(N + 3) + bc > 0;

« f and g are continuous and positive;

+ ¢ is called p-Laplacian, ¢, (x) = [x[P~>x with p > 1, its inverse function is denoted by

Bq(x) with ¢y (x) = |x]72x with 1/p + 1/g = 1;
o Y., x(i) =0ifr,s € Z and s < r, where Z is the integer set, denote
[r,s]={r,r+1,...,s} forr,s € Z withr <s.

Difference equations, the discrete analog of differential equations, have been widely used
in many fields such as computer science, economics, neural network, ecology, cybernet-
ics, etc. [1]. In the past decade, the existence of positive solutions for the boundary value
problems (BVPs) of the difference equations has been extensively studied; to mention a
few references, see [1-13] and the references therein. Also there has been much interest
shown in obtaining the existence of positive solutions for the third order p-Laplacian dy-
namic equations on time scales. To mention a few papers along these lines, see [14—18].

We now discuss briefly several of the appropriate papers on the topic.
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Liu [10] studied the following second order p-Laplacian difference equation with multi-

point boundary conditions:

Alp(Ax(n))] + f(n,x(n + 1), Ax(n), Ax(n+1)) =0, ne[0,N],
x(0) = 37 () = A,
*(N +2) - Bix(n;) = B.

The sufficient conditions to guarantee the existence of at least three positive solutions of
the above multi-point boundary value problem were established by using a new fixed point
theorem obtained in [19].

Liu [12] studied the following boundary value problem:

Alp(Ax(n))] + f(n,x(n + 1), Ax(n), Ax(n+1)) =0, ne[0,N],
x(0) = 27 ax(n;) = 0,
x(N +2) - Bix(n;) = B.

By using the five functionals fixed point theorem [20], Liu obtained the existence criteria
of at least three positive solutions.

Therefore, in this paper, we will consider the existence of at least three positive solutions
for the third order p-Laplacian difference equation (1.1) by using the Avery-Peterson fixed
point theorem [3].

Throughout this paper we assume that the following condition holds:

(C1) f:]0,N] x [0,+00) x R — (0,+00) and g : [0, N] — (0, +00) are continuous.

This paper is organized as follows. In Section 2, we give some preliminary lemmas which
are key tools for our proof. The main result is given in Section 3. Finally, in Section 4, we

give an example to demonstrate our result.

2 Preliminaries
In this section we present some lemmas, which will be needed in the proof of the main
result.

Let y and 6 be nonnegative continuous convex functionals on P, o be a nonnegative
continuous concave functional on P and v be a nonnegative continuous functional on P.

Then for positive real numbers ¢, v, w, and z, we define the following convex sets of P:

Ply,2)={yeP:y() <z},
Pla,v;y,z) = {ye P:v<a®),yky) < z},
Plo,v;0,w;7,2) = {y eP:v<a®),0(y) <w,y@) < z},

and a closed set
R, 5y,2)={yeP:t <y ),y <z}.

The following fixed point theorem is fundamental and important to the proof of our

main result.
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Lemma 2.1 ([3]) Let B be a real Banach space and P C B be a cone in B. Let y, 0 be
nonnegative continuous convex functionals on P, let o be a nonnegative continuous concave
functional on P, and let  be a nonnegative continuous functional on P satisfying yr(Ay) <
Ay (y) for all 0 < A <1, such that for some positive numbers z and M,

aly) <y ), Iyl <My (y), forallyeP(y,z).

Suppose that T : P(y,z) — P(y,z) is completely continuous and there exist positive num-
bers t, v, and w with 0 < t <v < w such that
(i) {yePla,v;0,w;y,2)|a(y) > v} #0 and a(Ty) > v fory € P, v;0,w; v,2);
(il) a(Ty)>vforyePla,v;y,z) with 0(Ty) > w;
(iii) 0 ¢ R(Y,ty,2) and y(Ty) <t fory e R(Y,t;y,z) with ¥ (y) = t.
Then T has at least three fixed points y1,y,,y3 € P(y,z) such that

y) <z, i=12,3, v<a(n), t<y(yz) witha(y,) <vand ¥(ys) <t.

Let i(n) (n € [0,N]) be a positive sequence. Consider the following BVP:

:A[@(Azy(n))] +h(n)=0, nel0,N], o

ay(0) — bAy(0) =0, cy(N +3)+dAy(N +2) =0, A%y(0) = 0.

Lemma 2.2 [fyis a solution of BVP (2.1), then there exists unique ng € [0, N + 1] such that
Ay(ng) >0 and Ay(ng +1) <O0.

Proof Suppose y satisfies (2.1). It follows that

n-1 r-1 i-1
y(n) = (0) + nAy(0) — Z ?q (Z h(s)), ne[0,N +3]. (2.2)
r=0 i=0 s=0

The BCs in (2.1) imply that
ay(0) = bAy(0)

and

r=0 i=0 5=0 i=0 s=0

N+2 r-1 i-1 N+1 i-1
cy(0) +c(N +3)Ay(0) —c Y > "¢, <Z h(s)) +dAy(0)-d) ¢, (Z h(s)) = 0.

It follows that

b
¥(0) = — Ay(0)
a

and

a N+2 r-1 i-1 N+1 i-1
Ay(0) = ad +ac(N +3) + bc (C; Z q (Z h(s)) +d Z bq (Z h(s))).

Page 3 of 15
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Similarly, we get

N+2 N+1 i-1
y(n) =y(N +3) = (N +3 -n)Ay(N +2) — ZZ%(Z )

ne[0,N +3]. (2.3)

The BCs in (2.1) imply that

y(N +3) = —%lAy(N+ 2)

and
Ay(N +2)
c N+2 N+1 i-1 N+1 i-1
:_ad+ac(N+3)+bc< 202¢q<2h(s)>+b2¢q<2 ))

Since a,b > 0, and ¢,d > 0 with ad + ac(N + 3) + bc > 0 and h(n) a positive sequence, one
can easily see that Ay(0) > 0 and Ay(N +2) < 0. It follows from Ay(0) > 0, Ay(N +2) <0,
and the fact that Ay(n) is decreasing on [0, N + 2] that there exists unique ny € [0,N + 1]
such that Ay(ng) > 0 and Ay(ng + 1) < 0. The proof is complete. O

Lemma 2.3 Ify is a solution of BVP (2.1), then y(0) > 0, y(N + 3) > 0, and y(n) > 0 for all
nell,N +2].

Proof We get from Lemma 2.2 the result that there exists unique ny € [0,N] such that
Ay(no) >0 and Ay(ng +1) < 0. It follows from (2.1) that

Ay(ng +1) - Z?_,,IOH &y Zl h h ), neln+1,N+2],

Ay(n) = Ay(no) + Zno 1¢q Zl 1 h(s n e [0,mn].

Then

YN +3)—=(N+3-nmAy(ng +1) + Zmz Zl no+1 Pa Zl o hls
y(n) = nelng+1,N+3],

Y(0) + nAY(mo) + 310 S0 (I h(s)),  me [0,m +1],

with
no np-1
y(no +1) = y(0) + (no + 1) Ay(no) Z Z o (Z h(s))
r=0 i=r

N+2 r-1 i-1
=y(N+3) = (N +2-no)Ay(mo +1) Y Y ¢, (Z h(s)).

r=ng+1i=ng+1 s=0

It follows from /(n) being positive, Ay(ng) > 0, and Ay(ng + 1) < 0 that

y(N+3), nelny+1L,N+2],

Y200, melm + 1.

Page 4 of 15
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So y(n) = min{y(0), y(N + 3)} for all n € [0, N + 3]. From BCs in BVP (2.1), we get

ay(0) = bAy(0) > 0,
¢y(N +3) = -dAy(N +2) > 0.

Then

min{y(O),y(N + 3)} >0
Hence y(n) > 0 for all #n € [1, N + 2]. The proof is complete. O
Lemma 2.4 Ify is a solution of BVP (2.1), then

y(n) > o, ner[g’allv);]y(n) forallne[0,N +3], (2.4)

N+3-n
N+3

where 0, = min{ /5,

Proof It follows from Lemma 2.2 and Lemma 2.3 that y(n) > 0 for n € [0, N + 3]. Suppose
that y(ng) = max{y(n) : n € [0, N + 3]}. Since Ay(0) >0 and Ay(N + 1) <0, we get ny €
[1,N +1]. For n € [1, ng], it is easy to see that

Y(n0) -3(0) 2051 Ay(s) = o Y0y Ay(s)

+y(0) —y(n) =
no no
(mo =) X Ay +n 0 A
= e
Since AZy( —¢q(2 Vh(s)) < 0 for all # € [0,N +1], we get Ay ) < Ay(j) for all s > ;.
Then (no - n) S Ay(s) + m Y"1 Ay(s) < 0. Tt follows that Hn0)-y(0) "0 91 + y(0) - y(n) < 0.

Then

y(n) > nioy(no) + <1 - :—O>y(0) >

n
for all r € [1, no].
N +3 oy 70 forallm €11, mo]

Similarly, if n € [no, N + 2], we get

y(n) > T;n ner[g%])iS y(n) forallme [ny,N +2].
Then
N+3-
y(n) > min{Nt 3 % } ne[ON)iB]y(n) forall # € [0,N + 3]. 0

Lemma 2.5 Ify is a solution of BVP (2.1), then

n-1 r-1
y(n) = b+mAh—ZZ¢q(Zh(s) (2.5)

r=0 i=0
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where Ay, satisfies the equation

N+2 r-1 Nl
ad+ac(N+3) +bc< ZZ%(Z“”) +dz¢q(2h(s)>>

0 i=0

Proof The proof follows from Lemma 2.2 and is omitted. g

Lemma 2.6 Ify is a solution of BVP (2.1), then there exists an ny € [0,N] such that

max y(n) = y(ny +1)

>max{”z°"°zl¢q(zh<s>) >y %(Zh@))}

r=0 i=r r=ng+1li=ng+1

Proof 1t follows from Lemma 2.2 that there is ny € [0, N + 1] such that Ay(ny) > 0 and
Ay(ng +1) <0, Ay(n) >0 for all m € [0, 1] and Ay(n) <0 for all n € [ny + 1, N + 2]. Then

1 ’
ner[gzggg]y( n) =y(no +1)

there exists & € (ng, 1y + 1] such that

Ay(ng +1) = Ay(ng) 0 - Ay(no)
no +1—ng E-ny

Then

l’lo+1—§

Ay(ng +1) =— r——

Ay(ng). (2.6)

It is easy to see from (2.1) that

no-1 i-1
0<Ay(mo) =Ay= ) g (Z h(s)), 27)

i=0 s=0

i-1
0> Ay(ng +1) = Ay, - quq (Zh s)) (2.8)

i=0 s=0

Here A, = Ay(0). So (2.6)-(2.8) imply that

no-1
Ah—quq(Zh()) I gZ%(Zh@)

Then

no-1

i-1 no i-1
A= +1—s>z¢q(zh<s>) e -no>z¢q(zh<s>).
s=0 i=0 s=0

i=0

Page 6 of 15
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We get
no-1 i-1 no i-1
Z ¢ (Z ) <A Y ¢y (Z h(s)). (2.9)
0 i=0 s=0

Lemma 2.3 implies that Bj, = y(0) > 0. Furthermore, one has from (2.6)

ny r-1 i-1
Yo +1) = B+ (no + DAy =Y Y g (Z h(S))

On the other hand, by a discussion similar to Lemma 2.2 and Lemma 2.3, we have A =
Ay(N +2), B, = (N + 3) with

N+1 i-1
Ay(n) =4y + Z%(Z h<s>)
i=n s=0
and

N+2 N+1 i-1
y(n) =By~ (N +3 - n)Ah—ZZ¢q<Zh(s))

r=n i=r

It follows that

N+1 i-1
Ay(no) =4y + Y ¢g (Z h(s)) >0

i=ngp s=0

N+1

Aylno +1) =Ay+ ) %(Zh s)) <o.

i=ng+1

So

N+1 }'lo+1 E— }’l0+1 %_N+1 i-1
A+ Y @y Zh() A Zcpq Zh(s)

i=np+1 i=ng

Then
N+1 i-1 N+1 i-1
=—(& —np) Z &4 (Z ) (o +1— é)Z(bq(Zh(s )
i=ngp+1 s i=ng
We get

N+1 i-1 N+l
- ¢4 (Zh(s) A== ) ¢, (Zh(s))

i=ng i=ng+1
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One has from Lemma 2.3 B, = y(N + 3) > 0. Therefore

N+2 r-1
Yoo+ 1) = By (N 2-m) - 30 3 ¢q(zh<s>)

r=ng+1i=ng+1

> (N +2 - np) %q&q(Zh ) Ni%@(i )

i=ng+1 r=ng+l i=r

E 5 a(5)

r=ng+1 i=ng+1

Hence

= 1
ner[gl%xs]y(n) y(no +1)

>max{§:n§¢q(2h(s)> Nf iqﬁq(Zh(s))}. .

r=0 i=r r=ng+1i=ng+1
Let h(n) = q(n)f (n,y(n), Ay(n)). Then A, satisfies the following equation:

N+2 r-1

A ad v acN  3) v be < 2.2 % (Z 4(6)f (5.5(5), Ay@))

r=0 i=0

N+1 i-1
+dy ¢, <Z a6)f (5:5(), Ay<s>)>>.

i=0 =0

Let B = RN**, We call x < y for x,y € B if x(n) < y(n) for all n € [0,N + 3].

Define the norm

- A }
Iyl =max{ max_ o, max |Ayn)|

It is easy to see that B is a semi-ordered real Banach space.
Choose

y(n) > 0, max,ejo,n+3) ¥(n) for all m € [0, N + 3],
P=3yeB: A%y(n) <0 formn e [0,N +1], , (2.10)
ay(0) - bAy(0) =

N+3-n
N+3

Define the operator 7: P — B by

where 0, = min{ 73, }. Then P is a cone in B.

b n-1 r-1 i-1
(D)) = T4, =3 ¢ (Z 46)f (5,3(5), Ay(s))),
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forye P,n € [0,N + 3]. Then

b + na N+2 r-1 i-1
(Ty)(n) = (c ) ( q(s)f (s,(s), Ay(s)))
ad +ac(N + 3) + bc = 1 ~ (

14

+d1§¢q<iq ¥(s), Ay(s) ))
)

[

n-1 r-1

- Z Z%(Z q(s)f (s,5(s), Ay(s))

r=0 i=0

Lemma 2.7 Suppose that (C1) holds. Then
(i) Ty satisfies the following:

Alpp(A*(Ty) ()] + q(n)f (n,y(n), Ay(m)) =0, 0<n<N,
a(Ty)(0) — bA(Ty)(0) = 0, c(Ty)(N +3) + dA(Ty)(N +2) =0, (2.11)
A*(Ty)(0) = 0.

(i) Ty e P foreachy e P.

(iii) y is a solution of BVP (1.1) if and only if y is a solution of the operator equation
y="Ty.

(iv) T:P — P is completely continuous.

Proof
(i) By the definition of Ty, we get (2.11).

(ii) Note the definition of P. Since (C1) holds, for y € P, (2.11), Lemma 2.2, Lemma 2.3
and Lemma 2.4 imply that A(Ty)(n) is decreasing on [0, N + 2] and
(Ty)(n) = 0, max,ecjo,n+3)(Ty)(n) for all m € [0, N + 3]. Together with (2.11), it follows
that Ty € P.

(ili) Itis easy to see from (2.11) that y is a solution of BVP (1.1) if and only if y is a
solution of the operator equation y = Ty.

(iv) It suffices to prove that T is continuous on P and T is relative compact.

We divide the proof into three steps:

Step 1. For each bounded subset D C P, prove that A, is bounded in R for y € D

Denote

lemax{ max y(n), max |Ay(n xel_)}
ne(0,N+3] ne[0,N+1]

and

L, = =
2= max S, () = max max q()f (i u, x).

It follows from (2.9) in the proof of Lemma 2.6 that

N i—
0<A,< Z%(Z q(s)f (s, 9(s), Ay(s))) < (N +1)¢4(NLy).
i=0 =

Hence A, is bounded in RR.

Page 9 of 15
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Step 2. For each bounded subset D C P, and each yo € D, it is easy to prove that T is
continuous at yg.

Step 3. For each bounded subset D C P, prove that T is relative compact on D.

In fact, for each bounded subset Q2 C D and y € Q. Suppose

_ , A } M,
Iy ma"{ner[?,?v’is]y(”) Jnax [Ay(n)| <My

and Step 1 implies that there exists a constant M, > 0 such that A, < M;. Then

b n-1 r-1 i-1
@) = Z==4,- 339, (Z q(s)f (s,(5), Ay(s)))

r=0 i=0 s=0

IA

b+na N+2 N+1 N
M) D e (Z q6)f (5,7(6), Ay(s))>

r=0 i=0 s=0

- b+ (N +3)a
- a

N
My + (N +3)(N +2)¢, <Z fony (s))

s=0
= M3,

where fi, (s) = max, <pr, jxj<m; 9G)f (S, 4, x). Similarly, one has

AT ()] =

n-1 i-1
A=Y ¢y (Z a)f (5,5(), Ay(s))) ‘

i=0 s=0

N+1 N
<M+ ¢y (ZfMl (s))
i=0 =0

s

N
= M+ (N +2)¢, (ZfMl (s))

s=0
= M4.

It follows that TS is bounded. Since B = RN*4, one knows that T is relative compact.
Steps 1, 2, and 3 imply that T is completely continuous. d

3 Main result
In this section, our objective is to establish the existence of at least three positive solutions
for BVP (1.1) by using the Avery-Peterson fixed point theorem [3].

Choose []%] > k > 0, where [x] denotes the largest integer not greater than x, and denote

N+3—k}
N+3

Define the functionals on P : P — [0, +00) by

: k
O = mll’l{m,

- A
y () ner[g%<+21| y(n)

’

0()=v () = max y(n),

nel0,N+3]

a(y)= min n.
) ne[k,N+3—k]y( )
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For y € P and n € [0,N + 3] we have

y(n) = y(n) - y(0) + ¥(0)

IA

n-1
> Ay +(0)
i=0

n— ' b
= ZAM +=Ay(0)

N+2

b
> Ay + =~ Ay(0)

IA

IA

b
(N+ 3+ —) max
nel0,N+2]

max y(n) < (N+ 3+ é) max ’Ay(n)‘.

nel0,N+3] a ) nel0,N+2]

So,

- , Ay( ]
Il = max| max_y0m), max 1550

b
§<N+3+;) max |Ay(n){

nel0,N+2]

Hence, we obtain

b
Iyl < <N+3 + ;)y(y), yeP.

Let

N+2 i-1
Q :2Z¢q(2q<s>>,
i=0 s=0

[N+3][N+3] 1

A= akmm{z 3 qsq(Zq(s)) Nik Z ¢q

r=k i=r e [N+3]

o)

Theorem 3.1 Suppose that (C1) holds. If there are positive numbers

v .
t<v<— <z withQv< Az,
Ok

such that the following conditions are satisfied:

(C2) f(n,y(n), Ay(n)) < ¢p(5) for all (n,y(n), Ay(n)) € [0,N +3] x

[0,(N+3+ s)z] x [-z,z];

(C3) f(n,y(n), Ay(n)) > ¢p(l)for all (n,y(n), Ay(n)) € [k, N +3 - k] x [v,
(C4) f(n,y(n), Ay(m) < s $p(§) Sor all (m,y(n), Ay(n)) € [0,N +3] x [0,£] x [z,
then BVP (1.1) has at least three positive solutions.

(3.2)

2] x [-2,2)

Page 11 of 15
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Proof We choose positive numbers ¢, v, w = o Z withz<v< = <% #p(x) < min{g,(5),

mqbp( )}. Next we show that all the COI‘ldltlonS of Lemma 2 1 are satisfied.

It is clear that for y € P and A € [0,1], there are a(y) < ¥ (y), ¥ = Ay (y). From (3.2),
we have ||y|| < (N +3+2 y(y) Furthermore, ¥(0) =0 < t and therefore 0¢ R, ty,2).
Now the proof is d1V1ded into four steps.
Step 1. We will show that (C2) implies that
T:P(y,z) > Ply,2).

For y € P(y,z), we have y () = max,cjon+2) |Ay(n)| < z. From (3.2) we get
b
(n,y(n), Ay(n)) €e[OLN+3]x |0, N+3+ 2 z| % [~z,z].
This implies that (C2) holds. Then one has from (C2) and (2.9) in the proof of Lemma 2.6

y(Ty) = max |A(Ty)(n)|

ne(0,N+2]
n-1 i-1
A= 4, (Z a)f (s, 5(s), Ay(s))) ’

i=0 s=0

= max
ne(0,N+2]

< max

ne(0,N+2]

N+2 i-1
Z%(Zq@ ) (5,5(5), Ay(s>)>

n-1

+ quq (Zq s)f 5,9(s), Ay(s)))‘

i=0

N+2 i-1
<2 Z bq (Z q(s)f (s,5(s), Ay(s)))

i=0 s=0

= —A§¢q<iq(8)

= Z.

Therefore, T : P(y,z) — P(y,z). Hence, by Lemma 2.7, we know that T : P(y,z) —
P(y,z) is completely continuous.
Step 2. We show that condition (i) in Lemma 2.1 holds.

Choose y(n) = = =wforall n € [0,N + 3]. It is easy to see that
0= _min yn)=~ 00) (n) =~
= min n)=—>v, = max y(n)=—=w,
« ne[k,N+3—k]y Ok ne[O,N+3]y Ok

= A 0<z
y(y) = Er[g%[xz| y(n)| <z

since oy = min{ﬁ, Ng[i;k} < % Hence {y € P(a,v;0,w; y,2)|a(y) > v} # 0.

Fory € P(a,v;0,w;y,z), we have v < y(n) < # and -z < Ay(n) <zforn € [k, N +3 —k].
It follows from (C3) that

F(my(m), Ay()) > ¢, (%) (1, (), Ay(n)) € [k, N +3 k] x [v, 1} x [-2,2].

Ok
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Similarly to Lemma 2.6 there exists n1g € [k, N +3—k] such that Ay(ny) > 0 and Ay(np +1) <
0 and

Jnax (1)) = (T)(mo +1) = max{(Ty)(no), (Ty)(no + 2)},

we get from (2.4), (C1), (C3), and Lemma 2.6

a(Ty) = min  (Ty)(n)

nelk,N+3-k]
> T = ox(T)
> o% neI[IOI,?\[)S-S]( y)(n) = ox(Ty)(no)
no np-1
>akmax{22¢q<2q ())),
r=0 i=r
N+2 r-1

> Z%(Zq@ 5,y <)))}

r=ng+1 i=ng+1

[N+3][N+3] 1
> ok maX{ > Z b, (Zq(S)f 5(s), Ay(S)))

N+2 r-1

> %(Zq@ 5,y <)))}

r:[N2+3] [N+3]

i-1
> oy min[ Z (Z a(s)f (s, 5(s), AJ’(S)))

s=k

N+2 r-1 i-1
<Z q(s)f (s,5(s), Ay(s)))}

r=(82i=(033) s
Vo (M) (N3] N+3-k  r-1
=S| 2 (L) Z«pq(zqw)}
rek N+37 . N+3
=[F521i=[75"]
=y

We conclude that condition (i) of Lemma 2.1 holds.
Step 3. We prove that condition (ii) of Lemma 2.1 holds. If y € P(«, v; v,2) and 6(Ty) >
w= G_Vk’ then we have

Ty) = i T > T =0 0( .
a(ly)= _min  (Ty)(n) =0 max (Ty)(n) = ox0(Ty) > v
Then condition (ii) of Lemma 2.1 is satisfied.

Step 4. Finally, we verify that (iii) of Lemma 2.1 also holds. Clearly, 0 ¢ R(v, t; v, z). Sup-
pose that y € R(, t; y,z) with ¥ (y) = t. Then by condition (C4) and (3.1), we obtain

¥ (Ty)

b
max (Ty)(n) < (N +3+ —) max |A(Ty)(n)|
nel0,N+3] a /) ne[0,N+2]

b
(N +3+ —) max
a ) nel0,N+2]

A, quq(Zq )f (s, s)Ay(»)’
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b N+2 i-1
< (N +3+ ;)2 Z bq (Z q(s)f (s,(s), Ay(s))>

i=0 s=0

N+3 b a 2tN+2 i-1
AN +;)<m>§§¢q ;q(s)

=t.

Thus, condition (iii) of Lemma 2.1 is satisfied.

From Steps 1-4 together with Lemma 2.1 we find that the operator T has at least three
fixed points which are positive solutions y;, ¥, and y3 belonging to P(y,z) of (1.1) such
that

y(y) <z i=12,3, v<a(y), t<y(yz) witha(y,) <v, ¥ (ys) <t O

4 An example
Example 4.1 Consider the following BVP:

ANy(n) +f (n,y(n), Ay(n) =0, ne€[0,99], 1)
29(0) - Ay(0) =0,  2y(102) + Ay(101) =0,  A2y(0) =0, :

where f(n,y(n), Ay(n)) is continuous and positive for all (n,y(n), Ay(n)) € [0,N] x [0,
+00) x R. Corresponding to BVP (1.1), we have N =99,p=2,q(n) =1,n € [O,N],a=c=2,
b=d=1,¢:0) =».

It is easy to see that (C1) holds.

Choose the constant k = 49, then 049 = min{%, %} = %, ©Q=10,302, A = %. Taking
t=10,v =50, and z = 600,000, it is easy to check that

v 5,100
10=t<v=50< — =
049

< 600,000, Qv =515,100 < Az =576,470.5882.

If
f(n,y(n), Ay(n)) < 3%‘1’%, for all (n, y(n), Ay(n)) € [0,102] x [0, 62,400,000] x
[-600,000, 600,000];
f(n,y(n), Ay(n)) > 2’2% for all (n, y(n), Ay(n)) € [49,53] x [50, S’i%] X
[-600,000,600,000];
f(n,y(n), Ay(n)) < 535,%, for all (n, y(n), Ay(n)) € [0,102] x [0,10] x
[-600,000,600,000],

then Theorem 3.1 implies that BVP (4.1) has at least three positive solutions such that

max |Ay;(n)| <600,000, i=1,2,3, 50< min_y(n),
nel0,101] nel49,53)

10< max y,(n) with min y,(n) <50 and max ys3(n) < 10.
n€[0,102] ne[49,53] 1n€[0,102]
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