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1 Introduction
The aim of this paper is to study the existence of positive solutions for a third order p-
Laplacian difference equation

{
�[φp(�y(n))] + q(n)f (n, y(n),�y(n)) = , n ∈ [,N],
ay() – b�y() = , cy(N + ) + d�y(N + ) = , �y() = ,

(.)

where
• N >  an integer;
• a, c > , and b,d ≥  with ad + ac(N + ) + bc > ;
• f and q are continuous and positive;
• φp is called p-Laplacian, φp(x) = |x|p–x with p > , its inverse function is denoted by

φq(x) with φq(x) = |x|q–x with /p + /q = ;
•

∑s
i=r x(i) =  if r, s ∈ Z and s < r, where Z is the integer set, denote

[r, s] = {r, r + , . . . , s} for r, s ∈ Z with r ≤ s.
Difference equations, the discrete analog of differential equations, have beenwidely used

in many fields such as computer science, economics, neural network, ecology, cybernet-
ics, etc. []. In the past decade, the existence of positive solutions for the boundary value
problems (BVPs) of the difference equations has been extensively studied; to mention a
few references, see [–] and the references therein. Also there has been much interest
shown in obtaining the existence of positive solutions for the third order p-Laplacian dy-
namic equations on time scales. To mention a few papers along these lines, see [–].
We now discuss briefly several of the appropriate papers on the topic.
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Liu [] studied the following second order p-Laplacian difference equation with multi-
point boundary conditions:

⎧⎪⎨
⎪⎩

�[φ(�x(n))] + f (n,x(n + ),�x(n),�x(n + )) = , n ∈ [,N],
x() –

∑m
i= αix(ηi) = A,

x(N + ) – βix(ηi) = B.

The sufficient conditions to guarantee the existence of at least three positive solutions of
the abovemulti-point boundary value problemwere established by using a newfixed point
theorem obtained in [].
Liu [] studied the following boundary value problem:

⎧⎪⎨
⎪⎩

�[φ(�x(n))] + f (n,x(n + ),�x(n),�x(n + )) = , n ∈ [,N],
x() –

∑m
i= αix(ηi) = ,

x(N + ) – βix(ηi) = B.

By using the five functionals fixed point theorem [], Liu obtained the existence criteria
of at least three positive solutions.
Therefore, in this paper, we will consider the existence of at least three positive solutions

for the third order p-Laplacian difference equation (.) by using the Avery-Peterson fixed
point theorem [].
Throughout this paper we assume that the following condition holds:
(C) f : [,N]× [, +∞)×R → (, +∞) and q : [,N]→ (, +∞) are continuous.
This paper is organized as follows. In Section , we give some preliminary lemmaswhich

are key tools for our proof. The main result is given in Section . Finally, in Section , we
give an example to demonstrate our result.

2 Preliminaries
In this section we present some lemmas, which will be needed in the proof of the main
result.
Let γ and θ be nonnegative continuous convex functionals on P , α be a nonnegative

continuous concave functional on P and ψ be a nonnegative continuous functional on P .
Then for positive real numbers t, v, w, and z, we define the following convex sets of P :

P(γ , z) =
{
y ∈P : γ (y) < z

}
,

P(α, v;γ , z) =
{
y ∈P : v ≤ α(y),γ (y)≤ z

}
,

P(α, v; θ ,w;γ , z) =
{
y ∈P : v ≤ α(y), θ (y)≤ w,γ (y) ≤ z

}
,

and a closed set

R(ψ , t;γ , z) =
{
y ∈P : t ≤ ψ(y),γ (y) ≤ z

}
.

The following fixed point theorem is fundamental and important to the proof of our
main result.
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Lemma . ([]) Let B be a real Banach space and P ⊂ B be a cone in B. Let γ , θ be
nonnegative continuous convex functionals onP , let α be a nonnegative continuous concave
functional onP , and letψ be a nonnegative continuous functional onP satisfyingψ(λy) ≤
λψ(y) for all  ≤ λ ≤ , such that for some positive numbers z and M,

α(y)≤ ψ(y), ‖y‖ ≤Mγ (y), for all y ∈P(γ , z).

Suppose that T : P(γ , z) → P(γ , z) is completely continuous and there exist positive num-
bers t, v, and w with  < t < v < w such that

(i) {y ∈P(α, v; θ ,w;γ , z)|α(y) > v} 	= ∅ and α(Ty) > v for y ∈P(α, v; θ ,w;γ , z);
(ii) α(Ty) > v for y ∈P(α, v;γ , z) with θ (Ty) > w;
(iii)  /∈ R(ψ , t;γ , z) and ψ(Ty) < t for y ∈ R(ψ , t;γ , z) with ψ(y) = t.

Then T has at least three fixed points y, y, y ∈P(γ , z) such that

γ (yi) ≤ z, i = , , , v < α(y), t < ψ(y) with α(y) < v and ψ(y) < t.

Let h(n) (n ∈ [,N]) be a positive sequence. Consider the following BVP:

{
�[φp(�y(n))] + h(n) = , n ∈ [,N],
ay() – b�y() = , cy(N + ) + d�y(N + ) = , �y() = .

(.)

Lemma . If y is a solution of BVP (.), then there exists unique n ∈ [,N + ] such that
�y(n) >  and �y(n + ) ≤ .

Proof Suppose y satisfies (.). It follows that

y(n) = y() + n�y() –
n–∑
r=

r–∑
i=

φq

( i–∑
s=

h(s)

)
, n ∈ [,N + ]. (.)

The BCs in (.) imply that

ay() = b�y()

and

cy() + c(N + )�y() – c
N+∑
r=

r–∑
i=

φq

( i–∑
s=

h(s)

)
+ d�y() – d

N+∑
i=

φq

( i–∑
s=

h(s)

)
= .

It follows that

y() =
b
a
�y()

and

�y() =
a

ad + ac(N + ) + bc

(
c
N+∑
r=

r–∑
i=

φq

( i–∑
s=

h(s)

)
+ d

N+∑
i=

φq

( i–∑
s=

h(s)

))
.
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Similarly, we get

y(n) = y(N + ) – (N +  – n)�y(N + ) –
N+∑
r=n

N+∑
i=r

φq

( i–∑
s=

h(s)

)
,

n ∈ [,N + ]. (.)

The BCs in (.) imply that

y(N + ) = –
d
c
�y(N + )

and

�y(N + )

= –
c

ad + ac(N + ) + bc

(
a

N+∑
r=

N+∑
i=r

φq

( i–∑
s=

h(s)

)
+ b

N+∑
i=

φq

( i–∑
s=

h(s)

))
.

Since a,b ≥ , and c,d >  with ad + ac(N + ) + bc >  and h(n) a positive sequence, one
can easily see that �y() >  and �y(N + ) ≤ . It follows from �y() > , �y(N + ) ≤ ,
and the fact that �y(n) is decreasing on [,N + ] that there exists unique n ∈ [,N + ]
such that �y(n) >  and �y(n + ) ≤ . The proof is complete. �

Lemma . If y is a solution of BVP (.), then y() ≥ , y(N + ) ≥ , and y(n) >  for all
n ∈ [,N + ].

Proof We get from Lemma . the result that there exists unique n ∈ [,N] such that
�y(n) >  and �y(n + ) ≤ . It follows from (.) that

�y(n) =

{
�y(n + ) –

∑n–
i=n+ φq(

∑i–
s= h(s)), n ∈ [n + ,N + ],

�y(n) +
∑n–

i=n φq(
∑i–

s= h(s)), n ∈ [,n].

Then

y(n) =

⎧⎪⎨
⎪⎩
y(N + ) – (N +  – n)�y(n + ) +

∑N+
r=n

∑r–
i=n+ φq(

∑i–
s= h(s)),

n ∈ [n + ,N + ],
y() + n�y(n) +

∑n–
r=

∑n–
i=r φq(

∑i–
s= h(s)), n ∈ [,n + ],

with

y(n + ) = y() + (n + )�y(n) +
n∑
r=

n–∑
i=r

φq

( i–∑
s=

h(s)

)

= y(N + ) – (N +  – n)�y(n + )
N+∑

r=n+

r–∑
i=n+

φq

( i–∑
s=

h(s)

)
.

It follows from h(n) being positive, �y(n) > , and �y(n + )≤  that

y(n) >

{
y(N + ), n ∈ [n + ,N + ],
y(), n ∈ [,n + ].
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So y(n) ≥min{y(), y(N + )} for all n ∈ [,N + ]. From BCs in BVP (.), we get

ay() = b�y() ≥ ,

cy(N + ) = –d�y(N + ) ≥ .

Then

min
{
y(), y(N + )

} ≥ .

Hence y(n) >  for all n ∈ [,N + ]. The proof is complete. �

Lemma . If y is a solution of BVP (.), then

y(n) ≥ σn max
n∈[,N+]

y(n) for all n ∈ [,N + ], (.)

where σn =min{ n
N+ ,

N+–n
N+ }.

Proof It follows from Lemma . and Lemma . that y(n) ≥  for n ∈ [,N + ]. Suppose
that y(n) = max{y(n) : n ∈ [,N + ]}. Since �y() >  and �y(N + ) ≤ , we get n ∈
[,N + ]. For n ∈ [,n], it is easy to see that

y(n) – y()
n

n + y() – y(n) =
n

∑n–
s= �y(s) – n

∑n–
s= �y(s)

n

=
–(n – n)

∑n–
s= �y(s) + n

∑n–
s=n �y(s)

n
.

Since �y(n) = –φq(
∑n–

s= h(s)) <  for all n ∈ [,N + ], we get �y(s) ≤ �y(j) for all s ≥ j.
Then –(n – n)

∑n–
s= �y(s) + n

∑n–
s=n �y(s) ≤ . It follows that y(n)–y()

n
n + y() – y(n) ≤ .

Then

y(n) ≥ n
n

y(n) +
(
 –

n
n

)
y() ≥ n

N + 
max

n∈[,N+]
y(n) for all n ∈ [,n].

Similarly, if n ∈ [n,N + ], we get

y(n) ≥ N +  – n
N + 

max
n∈[,N+]

y(n) for all n ∈ [n,N + ].

Then

y(n) ≥min

{
n

N + 
,
N +  – n
N + 

}
max

n∈[,N+]
y(n) for all n ∈ [,N + ]. �

Lemma . If y is a solution of BVP (.), then

y(n) =
b + na

a
Ah –

n–∑
r=

r–∑
i=

φq

( i–∑
s=

h(s)

)
, (.)

http://www.advancesindifferenceequations.com/content/2014/1/263
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where Ah satisfies the equation

Ah =
a

ad + ac(N + ) + bc

(
c
N+∑
r=

r–∑
i=

φq

( i–∑
s=

h(s)

)
+ d

N+∑
i=

φq

( i–∑
s=

h(s)

))
.

Proof The proof follows from Lemma . and is omitted. �

Lemma . If y is a solution of BVP (.), then there exists an n ∈ [,N] such that

max
n∈[,N+]

y(n) = y(n + )

≥ max

{ n∑
r=

n–∑
i=r

φq

( i–∑
s=

h(s)

)
,

N+∑
r=n+

r–∑
i=n+

φq

( i–∑
s=

h(s)

)}
.

Proof It follows from Lemma . that there is n ∈ [,N + ] such that �y(n) >  and
�y(n + ) ≤ , �y(n) >  for all n ∈ [,n] and �y(n) ≤  for all n ∈ [n + ,N + ]. Then

max
n∈[,N+]

y(n) = y(n + ),

there exists ξ ∈ (n,n + ] such that

�y(n + ) –�y(n)
n +  – n

=
 –�y(n)

ξ – n
.

Then

�y(n + ) = –
n +  – ξ

ξ – n
�y(n). (.)

It is easy to see from (.) that

 < �y(n) = Ah –
n–∑
i=

φq

( i–∑
s=

h(s)

)
, (.)

 ≥ �y(n + ) = Ah –
n∑
i=

φq

( i–∑
s=

h(s)

)
. (.)

Here Ah =�y(). So (.)-(.) imply that

Ah –
n∑
i=

φq

( i–∑
s=

h(s)

)
= –

n +  – ξ

ξ – n
Ah +

n +  – ξ

ξ – n

n–∑
i=

φq

( i–∑
s=

h(s)

)
.

Then

Ah = (n +  – ξ )
n–∑
i=

φq

( i–∑
s=

h(s)

)
+ (ξ – n)

n∑
i=

φq

( i–∑
s=

h(s)

)
.
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We get

n–∑
i=

φq

( i–∑
s=

h(s)

)
≤ Ah ≤

n∑
i=

φq

( i–∑
s=

h(s)

)
. (.)

Lemma . implies that Bh = y() ≥ . Furthermore, one has from (.)

y(n + ) = Bh + (n + )Ah –
n∑
r=

r–∑
i=

φq

( i–∑
s=

h(s)

)

≥
n∑
r=

n–∑
i=

φq

( i–∑
s=

h(s)

)
–

n∑
r=

r–∑
i=

φq

( i–∑
s=

h(s)

)

=
n∑
r=

n–∑
i=r

φq

( i–∑
s=

h(s)

)
.

On the other hand, by a discussion similar to Lemma . and Lemma ., we have Ah =
�y(N + ), Bh = y(N + ) with

�y(n) = Ah +
N+∑
i=n

φq

( i–∑
s=

h(s)

)

and

y(n) = Bh – (N +  – n)Ah –
N+∑
r=n

N+∑
i=r

φq

( i–∑
s=

h(s)

)
.

It follows that

�y(n) = Ah +
N+∑
i=n

φq

( i–∑
s=

h(s)

)
> ,

�y(n + ) = Ah +
N+∑

i=n+

φq

( i–∑
s=

h(s)

)
≤ .

So

Ah +
N+∑

i=n+

φq

( i–∑
s=

h(s)

)
= –

n +  – ξ

ξ – n
Ah –

n +  – ξ

ξ – n

N+∑
i=n

φq

( i–∑
s=

h(s)

)
.

Then

Ah = –(ξ – n)
N+∑

i=n+

φq

( i–∑
s=

h(s)

)
– (n +  – ξ )

N+∑
i=n

φq

( i–∑
s=

h(s)

)
.

We get

–
N+∑
i=n

φq

( i–∑
s=

h(s)

)
≥ Ah ≥ –

N+∑
i=n+

φq

( i–∑
s=

h(s)

)
.
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One has from Lemma . Bh = y(N + ) ≥ . Therefore

y(n + ) = Bh – (N +  – n)Ah –
N+∑

r=n+

r–∑
i=n+

φq

( i–∑
s=

h(s)

)

≥ (N +  – n)
N+∑

i=n+

φq

( i–∑
s=

h(s)

)
–

N+∑
r=n+

N+∑
i=r

φq

( i–∑
s=

h(s)

)

=
N+∑

r=n+

r–∑
i=n+

φq

( i–∑
s=

h(s)

)
.

Hence

max
n∈[,N+]

y(n) = y(n + )

≥ max

{ n∑
r=

n–∑
i=r

φq

( i–∑
s=

h(s)

)
,

N+∑
r=n+

r–∑
i=n+

φq

( i–∑
s=

h(s)

)}
. �

Let h(n) = q(n)f (n, y(n),�y(n)). Then Ay satisfies the following equation:

Ay =
a

ad + ac(N + ) + bc

(
c
N+∑
r=

r–∑
i=

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))

+ d
N+∑
i=

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

)))
.

Let B =R
N+. We call x≤ y for x, y ∈ B if x(n)≤ y(n) for all n ∈ [,N + ].

Define the norm

‖y‖ =max
{

max
n∈[,N+]

y(n), max
n∈[,N+]

∣∣�y(n)
∣∣}.

It is easy to see that B is a semi-ordered real Banach space.
Choose

P =

⎧⎪⎪⎨
⎪⎪⎩y ∈ B :

y(n) ≥ σnmaxn∈[,N+] y(n) for all n ∈ [,N + ],
�y(n) ≤  for n ∈ [,N + ],

ay() – b�y() = 

⎫⎪⎪⎬
⎪⎪⎭ , (.)

where σn =min{ n
N+ ,

N+–n
N+ }. Then P is a cone in B.

Define the operator T :P → B by

(Ty)(n) =
b + na

a
Ay –

n–∑
r=

r–∑
i=

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))
,

http://www.advancesindifferenceequations.com/content/2014/1/263
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for y ∈P , n ∈ [,N + ]. Then

(Ty)(n) =
b + na

ad + ac(N + ) + bc

(
c
N+∑
r=

r–∑
i=

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))

+ d
N+∑
i=

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

)))

–
n–∑
r=

r–∑
i=

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))
.

Lemma . Suppose that (C) holds. Then
(i) Ty satisfies the following:

⎧⎪⎨
⎪⎩

�[φp(�(Ty)(n))] + q(n)f (n, y(n),�y(n)) = ,  < n <N ,
a(Ty)() – b�(Ty)() = , c(Ty)(N + ) + d�(Ty)(N + ) = ,
�(Ty)() = .

(.)

(ii) Ty ∈P for each y ∈P .
(iii) y is a solution of BVP (.) if and only if y is a solution of the operator equation

y = Ty.
(iv) T :P →P is completely continuous.

Proof
(i) By the definition of Ty, we get (.).
(ii) Note the definition of P . Since (C) holds, for y ∈P , (.), Lemma ., Lemma .

and Lemma . imply that �(Ty)(n) is decreasing on [,N + ] and
(Ty)(n) ≥ σnmaxn∈[,N+](Ty)(n) for all n ∈ [,N + ]. Together with (.), it follows
that Ty ∈P .

(iii) It is easy to see from (.) that y is a solution of BVP (.) if and only if y is a
solution of the operator equation y = Ty.

(iv) It suffices to prove that T is continuous on P and T is relative compact.
We divide the proof into three steps:
Step . For each bounded subset D⊂P , prove that Ay is bounded in R for y ∈ D
Denote

L =max
{

max
n∈[,N+]

y(n), max
n∈[,N+]

∣∣�y(n)
∣∣ : x ∈D

}

and

L = max
j∈[,N]

fL (j) = max
j∈[,N]

max
u,|x|≤L

q(j)f (j,u,x).

It follows from (.) in the proof of Lemma . that

 ≤ Ay ≤
N∑
i=

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

)) ≤ (N + )φq(NL).

Hence Ay is bounded in R.

http://www.advancesindifferenceequations.com/content/2014/1/263
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Step . For each bounded subset D ⊂ P , and each y ∈ D, it is easy to prove that T is
continuous at y.
Step . For each bounded subset D⊂P , prove that T is relative compact on D.
In fact, for each bounded subset  ⊆D and y ∈ . Suppose

‖y‖ =max
{

max
n∈[,N+]

y(n), max
n∈[,N+]

∣∣�y(n)
∣∣} <M,

and Step  implies that there exists a constantM >  such that Ay <M. Then

(Ty)(n) =
b + na

a
Ay –

n–∑
r=

r–∑
i=

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))

≤ b + na
a

M +
N+∑
r=

N+∑
i=

φq

( N∑
s=

q(s)f
(
s, y(s),�y(s)

))

≤ b + (N + )a
a

M + (N + )(N + )φq

( N∑
s=

fM (s)

)

:=M,

where fM (s) =maxu≤M,|x|≤M q(j)f (s,u,x). Similarly, one has

∣∣�(Ty)(n)
∣∣ =

∣∣∣∣∣Ay –
n–∑
i=

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))∣∣∣∣∣
≤ M +

N+∑
i=

φq

( N∑
s=

fM (s)

)

= M + (N + )φq

( N∑
s=

fM (s)

)

:=M.

It follows that T is bounded. Since B = R
N+, one knows that T is relative compact.

Steps , , and  imply that T is completely continuous. �

3 Main result
In this section, our objective is to establish the existence of at least three positive solutions
for BVP (.) by using the Avery-Peterson fixed point theorem [].
Choose [N+

 ] > k > ,where [x] denotes the largest integer not greater than x, and denote
σk =min{ k

N+ ,
N+–k
N+ }.

Define the functionals on P :P → [, +∞) by

γ (y) = max
n∈[,N+]

∣∣�y(n)
∣∣,

θ (y) = ψ(y) = max
n∈[,N+]

y(n),

α(y) = min
n∈[k,N+–k]

y(n).
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For y ∈P and n ∈ [,N + ] we have

y(n) = y(n) – y() + y()

≤
∣∣∣∣∣
n–∑
i=

�y(i)

∣∣∣∣∣ + y()

=

∣∣∣∣∣
n–∑
i=

�y(i)

∣∣∣∣∣ + b
a
�y()

≤
∣∣∣∣∣
N+∑
i=

�y(i)

∣∣∣∣∣ + b
a
�y()

≤
(
N +  +

b
a

)
max

n∈[,N+]

∣∣�y(n)
∣∣,

i.e.,

max
n∈[,N+]

y(n) ≤
(
N +  +

b
a

)
max

n∈[,N+]

∣∣�y(n)
∣∣. (.)

So,

‖y‖ = max
{

max
n∈[,N+]

y(n), max
n∈[,N+]

∣∣�y(n)
∣∣}

≤
(
N +  +

b
a

)
max

n∈[,N+]

∣∣�y(n)
∣∣.

Hence, we obtain

‖y‖ ≤
(
N +  +

b
a

)
γ (y), y ∈P . (.)

Let

 = 
N+∑
i=

φq

( i–∑
s=

q(s)

)
,

� = σk min

{[N+
 ]∑

r=k

[N+
 ]–∑
i=r

φq

( i–∑
s=k

q(s)

)
,
N+–k∑
r=[N+

 ]

r–∑
i=[N+

 ]

φq

( i–∑
s=k

q(s)

)}
.

Theorem . Suppose that (C) holds. If there are positive numbers

t < v <
v
σk

< z with v < �z,

such that the following conditions are satisfied:
(C) f (n, y(n),�y(n)) ≤ φp( z


) for all (n, y(n),�y(n)) ∈ [,N + ]×

[, (N +  + b
a )z]× [–z, z];

(C) f (n, y(n),�y(n)) > φp( v
�
) for all (n, y(n),�y(n)) ∈ [k,N +  – k]× [v, v

σk
]× [–z, z];

(C) f (n, y(n),�y(n)) < a
(N+)a+bφp( t


) for all (n, y(n),�y(n)) ∈ [,N +]× [, t]× [–z, z],

then BVP (.) has at least three positive solutions.
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Proof We choose positive numbers t, v, w = v
σk
, z with t < v < v

σk
< z, φp( v

�
) ≤ min{φp( z


),

a
(N+)a+bφp( t


)}. Next we show that all the conditions of Lemma . are satisfied.

It is clear that for y ∈ P and λ ∈ [, ], there are α(y) ≤ ψ(y), ψ(λy) = λψ(y). From (.),
we have ‖y‖ ≤ (N +  + b

a )γ (y). Furthermore, ψ() =  < t and therefore  /∈ R(ψ , t;γ , z).
Now the proof is divided into four steps.
Step . We will show that (C) implies that

T :P(γ , z) →P(γ , z).

For y ∈P(γ , z), we have γ (y) =maxn∈[,N+] |�y(n)| ≤ z. From (.) we get

(
n, y(n),�y(n)

) ∈ [,N + ]×
[
,

(
N +  +

b
a

)
z
]

× [–z, z].

This implies that (C) holds. Then one has from (C) and (.) in the proof of Lemma .

γ (Ty) = max
n∈[,N+]

∣∣�(Ty)(n)
∣∣

= max
n∈[,N+]

∣∣∣∣∣Ay –
n–∑
i=

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))∣∣∣∣∣
≤ max

n∈[,N+]

∣∣∣∣∣
N+∑
i=

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))

+
n–∑
i=

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))∣∣∣∣∣
≤ 

N+∑
i=

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))

≤ z


N+∑
i=

φq

( i–∑
s=

q(s)

)

= z.

Therefore, T : P(γ , z) → P(γ , z). Hence, by Lemma ., we know that T : P(γ , z) →
P(γ , z) is completely continuous.
Step . We show that condition (i) in Lemma . holds.
Choose y(n) = v

σk
= w for all n ∈ [,N + ]. It is easy to see that

α(y) = min
n∈[k,N+–k]

y(n) =
v
σk

> v, θ (y) = max
n∈[,N+]

y(n) =
v
σk

= w,

γ (y) = max
n∈[,N+]

∣∣�y(n)
∣∣ =  < z,

since σk =min{ k
N+ ,

N+–k
N+ } < 

 . Hence {y ∈P(α, v; θ ,w;γ , z)|α(y) > v} 	= ∅.
For y ∈P(α, v; θ ,w;γ , z), we have v≤ y(n) ≤ v

σk
and –z ≤ �y(n) ≤ z for n ∈ [k,N +– k].

It follows from (C) that

f
(
n, y(n),�y(n)

)
> φp

(
v
�

)
,

(
n, y(n),�y(n)

) ∈ [k,N +  – k]×
[
v,

v
σk

]
× [–z, z].
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Similarly to Lemma. there exists n ∈ [k,N +–k] such that�y(n) >  and�y(n+)≤
 and

max
n∈[,N+]

(Ty)(n) = (Ty)(n + )≥max
{
(Ty)(n), (Ty)(n + )

}
,

we get from (.), (C), (C), and Lemma .

α(Ty) = min
n∈[k,N+–k]

(Ty)(n)

≥ σk max
n∈[,N+]

(Ty)(n) = σk(Ty)(n)

≥ σk max

{ n∑
r=

n–∑
i=r

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))
,

N+∑
r=n+

r–∑
i=n+

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))}

≥ σk max

{[N+
 ]∑

r=

[N+
 ]–∑
i=r

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))
,

N+∑
r=[N+

 ]

r–∑
i=[N+

 ]

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))}

≥ σk min

{[N+
 ]∑

r=k

[N+
 ]–∑
i=r

φq

( i–∑
s=k

q(s)f
(
s, y(s),�y(s)

))
,

N+∑
r=[N+

 ]

r–∑
i=[N+

 ]

φq

( i–∑
s=k

q(s)f
(
s, y(s),�y(s)

))}

≥ vσk

�
min

{[N+
 ]∑

r=k

[N+
 ]–∑
i=r

φq

( i–∑
s=k

q(s)

)
,
N+–k∑
r=[N+

 ]

r–∑
i=[N+

 ]

φq

( i–∑
s=k

q(s)

)}

= v.

We conclude that condition (i) of Lemma . holds.
Step . We prove that condition (ii) of Lemma . holds. If y ∈ P(α, v;γ , z) and θ (Ty) >

w = v
σk
, then we have

α(Ty) = min
n∈[k,N+–k]

(Ty)(n) ≥ σk max
n∈[,N+]

(Ty)(n) = σkθ (Ty) > v.

Then condition (ii) of Lemma . is satisfied.
Step . Finally, we verify that (iii) of Lemma . also holds. Clearly,  /∈ R(ψ , t;γ , z). Sup-

pose that y ∈ R(ψ , t;γ , z) with ψ(y) = t. Then by condition (C) and (.), we obtain

ψ(Ty) = max
n∈[,N+]

(Ty)(n) ≤
(
N +  +

b
a

)
max

n∈[,N+]

∣∣�(Ty)(n)
∣∣

=
(
N +  +

b
a

)
max

n∈[,N+]

∣∣∣∣∣Ay –
n–∑
i=

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))∣∣∣∣∣
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≤
(
N +  +

b
a

)

N+∑
i=

φq

( i–∑
s=

q(s)f
(
s, y(s),�y(s)

))

<
(
N +  +

b
a

)(
a

(N + )a + b

)
t


N+∑
i=

φq

( i–∑
s=

q(s)

)

= t.

Thus, condition (iii) of Lemma . is satisfied.
From Steps - together with Lemma . we find that the operator T has at least three

fixed points which are positive solutions y, y, and y belonging to P(γ , z) of (.) such
that

γ (yi) ≤ z, i = , , , v < α(y), t < ψ(y) with α(y) < v,ψ(y) < t. �

4 An example
Example . Consider the following BVP:

{
�y(n) + f (n, y(n),�y(n)) = , n ∈ [, ],
y() –�y() = , y() +�y() = , �y() = ,

(.)

where f (n, y(n),�y(n)) is continuous and positive for all (n, y(n),�y(n)) ∈ [,N] × [,
+∞)×R. Corresponding to BVP (.), we haveN = , p = , q(n) = , n ∈ [,N], a = c = ,
b = d = , φ(y) = y.
It is easy to see that (C) holds.
Choose the constant k = , then σ = min{ 

 ,

 } = 

 ,  = ,, � = 
 . Taking

t = , v = , and z = ,, it is easy to check that

 = t < v =  <
v

σ
=
,


< ,, v = , <�z = ,..

If
f (n, y(n),�y(n)) ≤ ,

, , for all (n, y(n),�y(n)) ∈ [, ]× [, ,,]×
[–,,,];
f (n, y(n),�y(n)) > ,

 for all (n, y(n),�y(n)) ∈ [, ]× [, , ]×
[–,,,];
f (n, y(n),�y(n)) < 

, , for all (n, y(n),�y(n)) ∈ [, ]× [, ]×
[–,,,],

then Theorem . implies that BVP (.) has at least three positive solutions such that

max
n∈[,]

∣∣�yi(n)
∣∣ ≤ ,, i = , , ,  < min

n∈[,]
y(n),

 < max
n∈[,]

y(n) with min
n∈[,]

y(n) <  and max
n∈[,]

y(n) < .
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