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Abstract
Recently Tariboon and Ntouyas (Adv. Differ. Equ. 2013:282, 2013) introduced the
notions of qk-derivative and qk-integral of a function on finite intervals. As
applications existence and uniqueness results for initial value problems for first- and
second-order impulsive qk-difference equations was proved. In this paper, continuing
the study of Tariboon and Ntouyas (Adv. Differ. Equ. 2013:282, 2013), we apply the
quantum calculus to initial value problems for impulsive first- and second-order
qk-difference inclusions. We establish new existence results, when the right hand side
is convex valued, by using the nonlinear alternative of Leray-Schauder type. Some
illustrative examples are also presented.
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1 Introduction and preliminaries
In [] the notions of qk-derivative and qk-integral of a function f : Jk := [tk , tk+] → R,
have been introduced and their basic properties was proved. As applications, existence
and uniqueness results for initial value problems for first- and second-order impulsive qk-
difference equations was proved.
We recall the notions of qk-derivative and qk-integral on finite intervals. For a fixed k ∈

N ∪ {} let Jk := [tk , tk+] ⊂ R be an interval and  < qk <  be a constant. We define qk-
derivative of a function f : Jk → R at a point t ∈ Jk as follows.

Definition . Assume f : Jk → R is a continuous function and let t ∈ Jk . Then the ex-
pression

Dqk f (t) =
f (t) – f (qkt + ( – qk)tk)

( – qk)(t – tk)
, t �= tk , Dqk f (tk) = lim

t→tk
Dqk f (t), (.)

is called the qk-derivative of function f at t.

We say that f is qk-differentiable on Jk provided Dqk f (t) exists for all t ∈ Jk . Note that if
tk =  and qk = q in (.), then Dqk f =Dqf , where Dq is the well-known q-derivative of the
function f (t) defined by

Dqf (t) =
f (t) – f (qt)
( – q)t

. (.)
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In addition, we should define the higher qk-derivative of functions.

Definition . Let f : Jk → R is a continuous function, we call the second-order qk-
derivative D

qk f provided Dqk f is qk-differentiable on Jk with D
qk f = Dqk (Dqk f ) : Jk → R.

Similarly, we define higher order qk-derivative Dn
qk : Jk →R.

The properties of qk-derivative are discussed in [].

Definition . Assume f : Jk → R is a continuous function. Then the qk-integral is de-
fined by

∫ t

tk
f (s)dqk s = ( – qk)(t – tk)

∞∑
n=

qnk f
(
qnk t +

(
 – qnk

)
tk

)
(.)

for t ∈ Jk . Moreover, if a ∈ (tk , t) then the definite qk-integral is defined by

∫ t

a
f (s)dqk s =

∫ t

tk
f (s)dqk s –

∫ a

tk
f (s)dqk s = ( – qk)(t – tk)

∞∑
n=

qnk f
(
qnk t +

(
 – qnk

)
tk

)

– ( – qk)(a – tk)
∞∑
n=

qnk f
(
qnka +

(
 – qnk

)
tk

)
.

Note that if tk =  and qk = q, then (.) reduces to q-integral of a function f (t), defined by∫ t
 f (s)dqs = ( – q)t

∑∞
n= qnf (qnt) for t ∈ [,∞).

The book by Kac and Cheung [] covers many of the fundamental aspects of the quan-
tum calculus. In recent years, the topic of q-calculus has attracted the attention of several
researchers and a variety of new results can be found in the papers [–] and the refer-
ences cited therein.
Impulsive differential equations, that is, differential equations involving the impulse ef-

fect, appear as a natural description of observed evolution phenomena of several real
world problems. For some monographs on the impulsive differential equations we refer
to [–].
Here, we remark that the classical q-calculus cannot be considered in problems with

impulses as the definition of q-derivative fails to work when there are impulse points
tk ∈ (qt, t) for some k ∈ N. On the other hand, this situation does not arise for impul-
sive problems on a q-time scale as the points t and qt = ρ(t) are consecutive points, where
ρ : T → T is the backward jump operator; see []. In [], quantum calculus on finite in-
tervals, the points t and qkt + ( – qk)tk are considered only in an interval [tk , tk+]. There-
fore, the problems with impulses at fixed times can be considered in the framework of
qk-calculus.
In this paper, continuing the study of [], we apply qk-calculus to establish existence

results for initial value problems for impulsive first- and second-order qk-difference in-
clusions. In Section , we consider the following initial value problem for the first-order
qk-difference inclusion:

Dqkx(t) ∈ F
(
t,x(t)

)
, t ∈ J := [,T], t �= tk ,

�x(tk) = Ik
(
x(tk)

)
, k = , , . . . ,m,

x() = x,

(.)
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where x ∈ R,  = t < t < t < · · · < tk < · · · < tm < tm+ = T , f : [,T] × R → P(R) is
a multivalued function, P(R) is the family of all nonempty subjects of R, Ik ∈ C(R,R),
�x(tk) = x(t+k ) – x(tk), k = , , . . . ,m and  < qk <  for k = , , , . . . ,m.
In Section , we study the existence of solutions for the following initial value problem

for second-order impulsive qk-difference inclusion:

D
qk x(t) ∈ F

(
t,x(t)

)
, t ∈ J , t �= tk ,

�x(tk) = Ik
(
x(tk)

)
, k = , , . . . ,m,

Dqkx
(
t+k

)
–Dqk–x(tk) = I∗k

(
x(tk)

)
, k = , , . . . ,m,

x() = α, Dqx() = β ,

(.)

where α,β ∈R and Ik , I∗k ∈ C(R,R).
We establish new existence results, when the right hand side is convex valued by using

the nonlinear alternative of Leray-Schauder type.
The paper is organized as follows. In Section , we recall some preliminary facts that

we need in the sequel. In Section  we establish the existence result for first-order qk-
difference inclusions, while the existence result for second-order qk-difference inclusions
is presented in Section . Some illustrative examples are also presented.

2 Preliminaries
In this section we recall some basic concepts of multivalued analysis [, ].
For a normed space (X,‖ · ‖), let Pcl(X) = {Y ∈P(X) : Y is closed}, Pcp(X) = {Y ∈P(X) :

Y is compact}, and Pcp,c(X) = {Y ∈P(X) : Y is compact and convex}.
A multivalued map G : X →P(X) is convex (closed) valued if G(x) is convex (closed) for

all x ∈ X; is bounded on bounded sets ifG(B) =
⋃

x∈BG(x) is bounded inX for allB ∈Pb(X)
(i.e. supx∈B{sup{|y| : y ∈G(x)}} < ∞); is called upper semicontinuous (u.s.c.) on X if for each
x ∈ X, the set G(x) is a nonempty closed subset of X, and if for each open set N of X
containing G(x), there exists an open neighborhood N of x such that G(N) ⊆ N ; is
said to be completely continuous if G(B) is relatively compact for every B ∈Pb(X).
In the sequel, we denote by C = C([,T],R) the space of all continuous functions from

[,T] →R with norm ‖x‖ = sup{|x(t)| : t ∈ [,T]}. By L([,T],R) we denote the space of
all functions f defined on [,T] such that ‖x‖L =

∫ T
 |x(t)|dt < ∞.

For each y ∈ C , define the set of selections of F by

SF ,y :=
{
v ∈ C : v(t) ∈ F

(
t, y(t)

)
on [,T]

}
.

Definition . A multivalued map F : J × R → P(R) is said to be Carathéodory (in the
sense of qk-calculus) if x �−→ F(t,x) is upper semicontinuous on J . Further a Carathéodory
function F is called L-Carathéodory if there exists ϕα ∈ L(J ,R+) such that ‖F(t,x)‖ =
sup{|v| : v ∈ F(t,x)} ≤ ϕα(t) for all ‖x‖ ≤ α on J for each α > .

We recall the well-known nonlinear alternative of Leray-Schauder for multivaluedmaps
and a useful result regarding closed graphs.

Lemma . (Nonlinear alternative for Kakutani maps) [] Let E be a Banach space, C a
closed convex subset of E, U an open subset of C and  ∈U . Suppose that F :U →Pcp,c(C)
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is a upper semicontinuous compact map. Then either
(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U and λ ∈ (, ) with u ∈ λF(u).

Lemma . ([, ]) Let X be a Banach space. Let F : J × R → Pcp,c(X) be an L-
Carathéodory multivalued map and let 	 be a linear continuous mapping from L(J ,R)
to C(J ,R). Then the operator

	 ◦ SF : C(J ,R) →Pcp,c
(
C(J ,R)

)
, x �→ (	 ◦ SF )(x) =	(SF ,x)

is a closed graph operator in C(J ,R)×C(J ,R).

Let J = [,T], J = [t, t], Jk = (tk , tk+] for k = , , . . . ,m. Let PC(J ,R) = {x : J →R : x(t) is
continuous everywhere except for some tk at which x(t+k ) and x(t–k ) exist and x(t–k ) = x(tk),
k = , , . . . ,m}. PC(J ,R) is a Banach space with the norms ‖x‖PC = sup{|x(t)|; t ∈ J}.

3 First-order impulsive qk-difference inclusions
In this section, we study the existence of solutions for the first-order impulsive qk-
difference inclusion (.).
The following lemma was proved in [].

Lemma . If y ∈ PC(J ,R), then for any t ∈ Jk , k = , , , . . . ,m, the solution of the problem

Dqkx(t) = y(t), t ∈ J , t �= tk ,

�x(tk) = Ik
(
x(tk)

)
, k = , , . . . ,m,

x() = x

(.)

is given by

x(t) = x +
∑
<tk<t

∫ tk

tk–
y(s)dqk–s +

∑
<tk<t

Ik
(
x(tk)

)
+

∫ t

tk
y(s)dqk s, (.)

with
∑

<(·) = .

Before studying the boundary value problem (.) let us begin by defining its solution.

Definition . A function x ∈ PC(J ,R) is said to be a solution of (.) if x() = x,�x(tk) =
Ik(x(tk)), k = , , . . . ,m, and there exists f ∈ L(J ,R) such that f (t) ∈ F(t,x(t)) on J and

x(t) = x +
∑
<tk<t

∫ tk

tk–
f (s)dqk–s +

∑
<tk<t

Ik
(
x(tk)

)
+

∫ t

tk
f (s)dqk s.

Theorem . Assume that:

(H) F : J ×R→P(R) is Carathéodory and has nonempty compact and convex values;

http://www.advancesindifferenceequations.com/content/2014/1/262
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(H) there exist a continuous nondecreasing function ψ : [,∞) → (,∞) and a function
p ∈ C(J ,R+) such that

∥∥F(t,x)∥∥P := sup
{|y| : y ∈ F(t,x)

} ≤ p(t)ψ
(‖x‖) for each (t,x) ∈ J ×R;

(H) there exist constants ck such that |Ik(y)| ≤ ck , k = , , . . . ,m for each y ∈R;
(H) there exists a constantM >  such that

M
|x| + Tψ(M)‖p‖ +∑m

k= ck
> .

Then the initial value problem (.) has at least one solution on J .

Proof Define the operatorH : PC(J ,R) →P(PC(J ,R)) by

H(x) = h ∈ PC(J ,R) : h(t) = x +
∑
<tk<t

∫ tk

tk–
f (s)dqk–s +

∑
<tk<t

Ik
(
x(tk)

)
+

∫ t

tk
f (s)dqk s,

for f ∈ SF ,x.
We will show that H satisfies the assumptions of the nonlinear alternative of Leray-

Schauder type. The proof consists of several steps. As a first step, we show thatH is convex
for each x ∈ PC(J ,R). This step is obvious since SF ,x is convex (F has convex values), and
therefore we omit the proof.
In the second step, we show that H maps bounded sets (balls) into bounded sets in

PC(J ,R). For a positive number ρ , let Bρ = {x ∈ C(J ,R) : ‖x‖ ≤ ρ} be a bounded ball in
C(J ,R). Then, for each h ∈H(x), x ∈ Bρ , there exists f ∈ SF ,x such that

h(t) = x +
∑
<tk<t

∫ tk

tk–
f (s)dqk–s +

∑
<tk<t

Ik
(
x(tk)

)
+

∫ t

tk
f (s)dqk s.

Then for t ∈ J we have

∣∣h(t)∣∣ ≤ |x| +
∑
<tk<t

∫ tk

tk–

∣∣f (s)∣∣dqk–s + ∑
<tk<t

∣∣Ik(x(tk))∣∣ +
∫ t

tk

∣∣f (s)∣∣dqk s

≤ |x| +
∑
<tk<t

∫ tk

tk–
p(s)ψ

(‖x‖)dqk–s +
m∑
k=

ck +
∫ t

tk
p(s)ψ

(‖x‖)dqk s

≤ |x| +ψ
(‖x‖) ∑

<tk<t

∫ tk

tk–
p(s)dqk–s +

m∑
k=

ck +ψ
(‖x‖)∫ t

tk
p(s)dqk s

≤ |x| + Tψ
(‖x‖)‖p‖ + m∑

k=

ck .

Consequently,

‖h‖ ≤ |x| + Tψ(ρ)‖p‖ +
m∑
k=

ck .
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Now we show that H maps bounded sets into equicontinuous sets of PC(J ,R). Let
τ, τ ∈ J , τ < τ with τ ∈ Jv, τ ∈ Ju, v ≤ u for some u, v ∈ {, , , . . . ,m} and x ∈ Bρ . For
each h ∈H(x), we obtain

∣∣h(τ) – h(τ)
∣∣ ≤

∣∣∣∣
∫ τ

tu
f (s)dqk s –

∫ τ

tv
f (s)dqk s

∣∣∣∣ +
∣∣∣∣ ∑
τ<tk<τ

Ik
(
x(tk)

)∣∣∣∣
+

∣∣∣∣ ∑
τ<tk<τ

∫ tk

tk–
f (s)dqk–s

∣∣∣∣
≤

∣∣∣∣
∫ τ

tu
f (s)dqk s –

∫ τ

tv
f (s)dqk s

∣∣∣∣ + ∑
τ<tk<τ

∣∣Ik(x(tk))∣∣

+
∑

τ<tk<τ

∫ tk

tk–

∣∣f (s)∣∣dqk–s.

Obviously the right hand side of the above inequality tends to zero independently of x ∈
Bρ as τ – τ → . Therefore it follows by the Arzelá-Ascoli theorem that H : PC(J ,R) →
P(PC(J ,R)) is completely continuous.
SinceH is completely continuous, in order to prove that it is upper semicontinuous it is

enough to prove that it has a closed graph. Thus, in our next step, we show that H has a
closed graph. Let xn → x∗, hn ∈H(xn) and hn → h∗. Thenwe need to show that h∗ ∈H(x∗).
Associated with hn ∈H(xn), there exists fn ∈ SF ,xn such that, for each t ∈ J ,

hn(t) = x +
∑
<tk<t

∫ tk

tk–
fn(s)dqk–s +

∑
<tk<t

Ik
(
xn(tk)

)
+

∫ t

tk
fn(s)dqk s.

Thus it suffices to show that there exists f∗ ∈ SF ,x∗ such that, for each t ∈ J ,

h∗(t) = x +
∑
<tk<t

∫ tk

tk–
f∗(s)dqk–s +

∑
<tk<t

Ik
(
x∗(tk)

)
+

∫ t

tk
f∗(s)dqk s.

Let us consider the linear operator 	 : L(J ,R)→ PC(J ,R) given by

f �→ 	(f )(t) = x +
∑
<tk<t

∫ tk

tk–
f (s)dqk–s +

∑
<tk<t

Ik
(
x(tk)

)
+

∫ t

tk
f (s)dqk s.

Observe that

∥∥hn(t) – h∗(t)
∥∥ =

∥∥∥∥∥
∑
<tk<t

∫ tk

tk–

(
fn(u) – f∗(u)

)
dqk–s +

∑
<tk<t

∣∣Ik(xn(tk)) – Ik
(
x∗(tk)

)∣∣

+
∫ t

tk

(
fn(u) – f∗(u)

)
dqk s

∥∥∥∥∥ → ,

as n→ ∞.
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Thus, it follows by Lemma . that 	 ◦ SF is a closed graph operator. Further, we have
hn(t) ∈ 	(SF ,xn ). Since xn → x∗, therefore, we have

h∗(t) = x +
∑
<tk<t

∫ tk

tk–
f∗(s)dqk–s +

∑
<tk<t

Ik
(
x∗(tk)

)
+

∫ t

tk
f∗(s)dqk s,

for some f∗ ∈ SF ,x∗ .
Finally, we show there exists an open setU ⊆ C(J ,R) with x /∈H(x) for any λ ∈ (, ) and

all x ∈ ∂U . Let λ ∈ (, ) and x ∈ λH(x). Then there exists v ∈ L(J ,R) with f ∈ SF ,x such
that, for t ∈ J , we have

x(t) = x +
∑
<tk<t

∫ tk

tk–
f (s)dqk–s +

∑
<tk<t

Ik
(
x(tk)

)
+

∫ t

tk
f (s)dqk s.

Repeating the computations of the second step, we have

∣∣x(t)∣∣ ≤ |x| + Tψ
(‖x‖)‖p‖ + m∑

k=

ck .

Consequently, we have

‖x‖
|x| + Tψ

(‖x‖)‖p‖ +∑m
k= ck

≤ .

In view of (H), there existsM such that ‖x‖ �=M. Let us set

U =
{
x ∈ PC(J ,R) : ‖x‖ <M

}
.

Note that the operatorH :U →P(PC(J ,R)) is upper semicontinuous and completely con-
tinuous. From the choice of U , there is no x ∈ ∂U such that x ∈ λH(x) for some λ ∈ (, ).
Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma .), we de-
duce thatH has a fixed point x ∈ U which is a solution of the problem (.). This completes
the proof. �

Example . Let us consider the following first-order initial value problem for impulsive
qk-difference inclusions:

D 
+k

x(t) ∈ F
(
t,x(t)

)
, t ∈ J = [, ], t �= tk =

k


,

�x(tk) =
|x(tk)|

 + |x(tk)| , k = , , . . . , ,

x() = .

(.)

Here qk = /( + k), k = , , , . . . , , m = , T = , and Ik(x) = |x|/( + |x|). We find that
|Ik(x) – Ik(y)| ≤ (/)|x – y| and |Ik(x)| ≤ .

(a) Let F : [, ]×R→P(R) be a multivalued map given by

x → F(t,x) =
[ |x|

|x| + sin x + 
+ t + , e–x


+


t + 

]
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/262


Ntouyas and Tariboon Advances in Difference Equations 2014, 2014:262 Page 8 of 16
http://www.advancesindifferenceequations.com/content/2014/1/262

For f ∈ F , we have

|f | ≤max

( |x|
|x| + sin x + 

+ t + , e–x

+ t + 

)
≤ , x ∈ R.

Thus,

∥∥F(t,x)∥∥P := sup
{|y| : y ∈ F(t,x)

} ≤  = p(t)ψ
(‖x‖), x ∈R,

with p(t) = , ψ(‖x‖) = . Further, using the condition (H) we find thatM > . Therefore,
all the conditions of Theorem . are satisfied. So, problem (.) with F(t,x) given by (.)
has at least one solution on [, ].
(b) If F : [, ]×R →P(R) is a multivalued map given by

x → F(t,x) =
[
(t + )x

x + 
,
t|x|(cos x + )

(|x| + )

]
. (.)

For f ∈ F , we have

|f | ≤max

(
(t + )x

x + 
,
t|x|(cos x + )

(|x| + )

)
≤ t + , x ∈R.

Here ‖F(t,x)‖P := sup{|y| : y ∈ F(t,x)} ≤ (t + ) = p(t)ψ(‖x‖), x ∈ R, with p(t) = t + ,
ψ(‖x‖) = . It is easy to verify that M > .. Then, by Theorem ., the problem (.)
with F(t,x) given by (.) has at least one solution on [, ].

4 Second-order impulsive qk-difference inclusions
In this section, we study the existence of solutions for the second-order impulsive qk-
difference inclusion (.).
We recall the following lemma from [].

Lemma . If y ∈ C(J ,R), then for any t ∈ J , the solution of the problem

D
qk x(t) = y(t), t ∈ J , t �= tk ,

�x(tk) = Ik
(
x(tk)

)
, k = , , . . . ,m,

Dqkx
(
t+k

)
–Dqk–x(tk) = I∗k

(
x(tk)

)
, k = , , . . . ,m,

x() = α, Dqx() = β ,

(.)

is given by

x(t) = α + βt

+
∑
<tk<t

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)
y(s)dqk–s + Ik

(
x(tk)

))

+ t
[ ∑
<tk<t

(∫ tk

tk–
fy(s)dqk–s + I∗k

(
x(tk)

))]

http://www.advancesindifferenceequations.com/content/2014/1/262
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–
∑
<tk<t

tk
(∫ tk

tk–
y(s)dqk–s + I∗k

(
x(tk)

))

+
∫ t

tk

(
t – qks – ( – qk)tk

)
y(s)dqk s, (.)

with
∑

<(·) = .

Definition . A function x ∈ PC(J ,R) is said to be a solution of (.) if x() = x,
Dqx() = β , �x(tk) = Ik(x(tk)), Dqkx(t

+
k ) – Dqk–x(tk) = I∗k (x(tk)), k = , , . . . ,m and there

exists f ∈ L(J ,R) such that f (t) ∈ F(t,x(t)) on J and

x(t) = α + βt

+
∑
<tk<t

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)
f (s)dqk–s + Ik

(
x(tk)

))

+ t
[ ∑
<tk<t

(∫ tk

tk–
f (s)dqk–s + I∗k

(
x(tk)

))]

–
∑
<tk<t

tk
(∫ tk

tk–
f (s)dqk–s + I∗k

(
x(tk)

))

+
∫ t

tk

(
t – qks – ( – qk)tk

)
f (s)dqk s, (.)

with
∑

<(·) = .

Theorem . Assume that (H), (H) hold. In addition we suppose that:

(A) there exist constants ck , c∗k such that |Ik(x)| ≤ ck , |I∗k (y)| ≤ c∗k , k = , , . . . ,m for each
x, y ∈R;

(A) there exists a constantM >  such that

M
|α| + |β|T + ‖p‖ψ(M)� +

∑m
k=[ck + c∗k(T + tk)]

> ,

where

� =
m+∑
k=

(tk – tk–)

 + qk–
+

m∑
k=

(T + tk)(tk – tk–). (.)

Then the initial value problem (.) has at least one solution on J .

Proof Define the operatorH : PC(J ,R) →P(PC(J ,R)) by

H(x) = h ∈ PC(J ,R) : h(t) = α + βt +
∑
<tk<t

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)
f (s)dqk–s

+ Ik
(
x(tk)

))
+ t

[ ∑
<tk<t

(∫ tk

tk–
f (s)dqk–s + I∗k

(
x(tk)

))]
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–
∑
<tk<t

tk
(∫ tk

tk–
f (s)dqk–s + I∗k

(
x(tk)

))

+
∫ t

tk

(
t – qks – ( – qk)tk

)
f (s)dqk s,

for f ∈ SF ,x.
We will show that H satisfies the assumptions of the nonlinear alternative of Leray-

Schauder type. The proof consists of several steps. As a first step, we show thatH is convex
for each x ∈ PC(J ,R). This step is obvious since SF ,x is convex (F has convex values), and
therefore we omit the proof.
In the second step, we show that H maps bounded sets (balls) into bounded sets in

PC(J ,R). For a positive number ρ , let Bρ = {x ∈ PC(J ,R) : ‖x‖ ≤ ρ} be a bounded ball
in PC(J ,R). Then, for each h ∈H(x), x ∈ Bρ , there exists f ∈ SF ,x such that

h(t) = α + βt

+
∑
<tk<t

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)
f (s)dqk–s + Ik

(
x(tk)

))

+ t
[ ∑
<tk<t

(∫ tk

tk–
f (s)dqk–s + I∗k

(
x(tk)

))]

–
∑
<tk<t

tk
(∫ tk

tk–
f (s)dqk–s + I∗k

(
x(tk)

))

+
∫ t

tk

(
t – qks – ( – qk)tk

)
f (s)dqk s.

Then for t ∈ J we have

∣∣h(t)∣∣ ≤ |α| + |β|t

+
∑
<tk<t

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)∣∣f (s)∣∣dqk–s + ∣∣Ik(x(tk))∣∣
)

+ t
[ ∑
<tk<t

(∫ tk

tk–

∣∣f (s)∣∣dqk–s + ∣∣I∗k (x(tk))∣∣
)]

+
∑
<tk<t

tk
(∫ tk

tk–

∣∣f (s)∣∣dqk–s + ∣∣I∗k (x(tk))∣∣
)

+
∫ t

tk

(
t – qks – ( – qk)tk

)∣∣f (s)∣∣dqk s
≤ |α| + |β|T

+
∑

<tk<T

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)
p(s)ψ

(‖x‖)dqk–s + ∣∣Ik(x(tk))∣∣
)

+ T
[ ∑
<tk<T

(∫ tk

tk–
p(s)ψ

(‖x‖)dqk–s + ∣∣I∗k (x(tk))∣∣
)]

+
∑

<tk<T

tk
(∫ tk

tk–
p(s)ψ

(‖x‖)dqk–s + ∣∣I∗k (x(tk))∣∣
)
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+
∫ T

tm

(
T – qms – ( – qm)tm

)
p(s)ψ

(‖x‖)dqms
= |α| + |β|T +

m∑
k=

(
(tk – tk–)

 + qk–
‖p‖ψ(‖x‖) + ck

)

+ T

[ m∑
k=

(‖p‖ψ(‖x‖)(tk – tk–) + c∗k
)]

+
m∑
k=

tk
(‖p‖ψ(‖x‖)(tk – tk–) + c∗k

)
+
(T – tm)

 + qm
‖p‖ψ(‖x‖)

= |α| + |β|T + ‖p‖ψ(‖x‖)
{m+∑

k=

(tk – tk–)

 + qk–
+

m∑
k=

(T + tk)(tk – tk–)

}

+
m∑
k=

[
ck + c∗k(T + tk)

]
.

Consequently,

‖h‖ ≤ |α| + |β|T + ‖p‖ψ(ρ)

{m+∑
k=

(tk – tk–)

 + qk–
+

m∑
k=

(T + tk)(tk – tk–)

}

+
m∑
k=

[
ck + c∗k(T + tk)

]
.

Now we show that H maps bounded sets into equicontinuous sets of PC(J ,R). Let
τ, τ ∈ J , τ < τ with τ ∈ Ju, τ ∈ Jv, u ≤ v for some u, v ∈ {, , , . . . ,m} and x ∈ Bρ . For
each h ∈H(x), we obtain

∣∣h(τ) – h(τ)
∣∣ ≤ |β||τ – τ|

+
∑

τ<tk<τ

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)∣∣f (s)∣∣dqk–s + ∣∣Ik(x(tk))∣∣
)

+ |τ – τ|
[ ∑
<tk<τ

(∫ tk

tk–

∣∣f (s)∣∣dqk–s + ∣∣I∗k (x(tk))∣∣
)]

+ τ

[ ∑
τ<tk<τ

(∫ tk

tk–

∣∣f (s)∣∣dqk–s + ∣∣I∗k (x(tk))∣∣
)]

+
∑

τ<tk<τ

tk
(∫ tk

tk–

∣∣f (s)∣∣dqk–s + ∣∣I∗k (x(tk))∣∣
)

+
∣∣∣∣
∫ τ

tv

(
τ – qks – ( – qk)tk

)∣∣f (s)∣∣dqk s
–

∫ τ

tu

(
τ – qks – ( – qk)tk

)∣∣f (s)∣∣dqk s
∣∣∣∣.

Obviously the right hand side of the above inequality tends to zero independently of x ∈
Bρ as τ – τ → . Therefore it follows by the Arzelá-Ascoli theorem that H : PC(J ,R) →
P(PC(J ,R)) is completely continuous.
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SinceH is completely continuous, in order to prove that it is upper semicontinuous it is
enough to prove that it has a closed graph. Thus, in our next step, we show that H has a
closed graph. Let xn → x∗, hn ∈H(xn) and hn → h∗. Thenwe need to show that h∗ ∈H(x∗).
Associated with hn ∈H(xn), there exists fn ∈ SF ,xn such that, for each t ∈ J ,

hn(t) = α + βt +
∑
<tk<t

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)
fn(s)dqk–s + Ik

(
x(tk)

))

+ t
[ ∑
<tk<t

(∫ tk

tk–
fn(s)dqk–s + I∗k

(
x(tk)

))]

–
∑
<tk<t

tk
(∫ tk

tk–
fn(s)dqk–s + I∗k

(
x(tk)

))

+
∫ t

tk

(
t – qks – ( – qk)tk

)
fn(s)dqk s.

Thus it suffices to show that there exists f∗ ∈ SF ,x∗ such that, for each t ∈ J ,

h∗(t) = α + βt +
∑
<tk<t

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)
f∗(s)dqk–s + Ik

(
x(tk)

))

+ t
[ ∑
<tk<t

(∫ tk

tk–
f∗(s)dqk–s + I∗k

(
x(tk)

))]

–
∑
<tk<t

tk
(∫ tk

tk–
f∗(s)dqk–s + I∗k

(
x(tk)

))

+
∫ t

tk

(
t – qks – ( – qk)tk

)
f∗(s)dqk s.

Let us consider the linear operator 	 : L(J ,R)→ PC(J ,R) given by

f �→ 	(f )(t) = α + βt +
∑
<tk<t

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)
f (s)dqk–s + Ik

(
x(tk)

))

+ t
[ ∑
<tk<t

(∫ tk

tk–
f (s)dqk–s + I∗k

(
x(tk)

))]

–
∑
<tk<t

tk
(∫ tk

tk–
f (s)dqk–s + I∗k

(
x(tk)

))

+
∫ t

tk

(
t – qks – ( – qk)tk

)
f (s)dqk s.

Observe that

∥∥hn(t) – h∗(t)
∥∥ =

∥∥∥∥ ∑
<tk<t

∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)(
fn(u) – f∗(u)

)
dqk–s

+
∑
<tk<t

∣∣Ik(xn(tk)) – Ik
(
x∗(tk)

)∣∣
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+ T
∑
<tk<t

∫ tk

tk–

(
fn(u) – f∗(u)

)
dqk–s

+ T
∑
<tk<t

∣∣I∗k (xn(tk)) – I∗k
(
x∗(tk)

)∣∣

+
∑
<tk<t

tk
∫ tk

tk–

(
fn(u) – f∗(u)

)
dqk–s

+
∑
<tk<t

∣∣I∗k (xn(tk)) – I∗k
(
x∗(tk)

)∣∣

+
∫ t

tk

(
t – qks – ( – qk)tk

)(
fn(u) – f∗(u)

)
dqk s

∥∥∥∥ → ,

as n→ ∞.
Thus, it follows by Lemma . that 	 ◦ SF is a closed graph operator. Further, we have

hn(t) ∈ 	(SF ,xn ). Since xn → x∗, therefore, we have

h∗(t) = α + βt +
∑
<tk<t

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)
f∗(s)dqk–s + Ik

(
x(tk)

))

+ t
[ ∑
<tk<t

(∫ tk

tk–
f∗(s)dqk–s + I∗k

(
x(tk)

))]

–
∑
<tk<t

tk
(∫ tk

tk–
f∗(s)dqk–s + I∗k

(
x(tk)

))

+
∫ t

tk

(
t – qks – ( – qk)tk

)
f∗(s)dqk s,

for some f∗ ∈ SF ,x∗ .
Finally, we show there exists an open setU ⊆ C(J ,R) with x /∈H(x) for any λ ∈ (, ) and

all x ∈ ∂U . Let λ ∈ (, ) and x ∈ λH(x). Then there exists f ∈ L(J ,R) with f ∈ SF ,x such
that, for t ∈ J , we have

x(t) = α + βt +
∑
<tk<t

(∫ tk

tk–

(
tk – qk–s – ( – qk–)tk–

)
f (s)dqk–s + Ik

(
x(tk)

))

+ t
[ ∑
<tk<t

(∫ tk

tk–
f (s)dqk–s + I∗k

(
x(tk)

))]

–
∑
<tk<t

tk
(∫ tk

tk–
f (s)dqk–s + I∗k

(
x(tk)

))

+
∫ t

tk

(
t – qks – ( – qk)tk

)
f (s)dqk s.

Repeating the computations of the second step, we have

∣∣x(t)∣∣ ≤ |α| + |β|T + ‖p‖ψ(‖x‖)
{m+∑

k=

(tk – tk–)

 + qk–
+

m∑
k=

(T + tk)(tk – tk–)

}

+
m∑
k=

[
ck + c∗k(T + tk)

]
.
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Consequently, we have

‖x‖
|α| + |β|T + ‖p‖ψ(‖x‖)� +

∑m
k=[ck + c∗k(T + tk)]

≤ .

In view of (A), there existsM such that ‖x‖ �=M. Let us set

U =
{
x ∈ PC(J ,R) : ‖x‖ <M

}
.

Note that the operatorH :U →P(PC(J ,R)) is upper semicontinuous and completely con-
tinuous. From the choice of U , there is no x ∈ ∂U such that x ∈ λH(x) for some λ ∈ (, ).
Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma .), we de-
duce thatH has a fixed point x ∈ U which is a solution of the problem (.). This completes
the proof. �

Example . Let us consider the following second-order impulsive qk-difference inclu-
sion with initial conditions:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D


+k
x(t) ∈ F(t,x(t)), t ∈ J = [, ], t �= tk = k

 ,

�x(tk) = |x(tk )|
(+|x(tk )|) , k = , , . . . , ,

D 
+k

x(t+k ) –D 
+k–

x(tk) = |x(tk )|
(+|x(tk )|) , k = , , . . . , ,

x() = , D 

x() = .

(.)

Here qk = /( + k), k = , , , . . . , , m = , T = , α = , β = , Ik(x) = |x|/(( + |x|)),
and I∗k (x) = |x|/(( + |x|)). We find that |Ik(x) – Ik(y)| ≤ (/)|x – y|, |I∗k (x) – I∗k (y)| ≤
(/)|x – y|, and Ik(x) ≤ /, I∗k (x)≤ /; and we have

� =
m+∑
k=

(tk – tk–)

 + qk–
+

m∑
k=

(T + tk)(tk – tk–) ≈ ..

(a) Let F : [, ]×R→P(R) be a multivalued map given by

x → F(t,x) =
[ |x|

|x| + sin x + 
+ t + , e–x


+


t + 

]
. (.)

For f ∈ F , we have

|f | ≤max

( |x|
|x| + sin x + 

+ t + , e–x

+ t + 

)
≤ , x ∈ R.

Thus,

∥∥F(t,x)∥∥P := sup
{|y| : y ∈ F(t,x)

} ≤  = p(t)ψ
(‖x‖), x ∈R,

with p(t) = , ψ(‖x‖) = . Further, using the condition (A) we find

M
� +

∑
k=[


 +


 ( + tk)]

> ,
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which impliesM > .. Therefore, all the conditions of Theorem . are satisfied.
So, problem (.) with F(t,x) given by (.) has at least one solution on [, ].
(b) If F : [, ]×R →P(R) is a multivalued map given by

x → F(t,x) =
[
(t + )x

x + 
,
t|x|(cos x + )

(|x| + )

]
. (.)

For f ∈ F , we have

|f | ≤max

(
(t + )x

x + 
,
t|x|(cos x + )

(|x| + )

)
≤ t + , x ∈R.

Here ‖F(t,x)‖P := sup{|y| : y ∈ F(t,x)} ≤ (t + ) = p(t)ψ(‖x‖), x ∈ R, with p(t) = t + ,
ψ(‖x‖) = . It is easy to verify that M > .. Then, by Theorem ., the problem
(.) with F(t,x) given by (.) has at least one solution on [, ].
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