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Abstract
This paper studies the finite-time stability of fractional singular time-delay systems.
First, by the method of the steps, we discuss the existence and uniqueness of the
solutions for the equivalent systems to the fractional singular time-delay systems.
Furthermore, we give the Mittag-Leffler estimation of the solutions for the equivalent
systems and obtain the sufficient conditions of the finite-time stability for the original
systems.
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1 Introduction
In the past  years or so, fractional calculus has attracted many physicists, mathemati-
cians, and engineers, and notable contributions have been made to both the theory and
the applications of fractional differential equations (see [–]). Moreover, the different
techniques have been applied to investigate the stability of various fractional dynamical
systems, such as the principle of contraction mappings [], the Lyapunov direct method
[], linear matrix inequalities [], Gronwall inequalities [–] and fixed-point theo-
rems [].
At the same time, we notice that large numbers of practical systems, such as economic

systems, power systems and so on, are singular differential systems which are also named
differential-algebraic systems or descriptor systems. Such systems have some particular
properties including regularity and impulse behavior which does not need to be consid-
ered in normal systems. In [–], the authors discuss singular systems with or without
delay and obtain some important results. However, in the previous literature, there are
few results on the stability of fractional singular systems, especially the fractional singular
systems with time delay. In this regard, it is necessary and important to study the stability
problems for fractional singular dynamical systems. Motivated by this consideration, in
this paper, we investigate the stability of fractional singular dynamical systems with state
delay via the generalized Gronwall approach.
In this paper, we consider the following fractional singular time-delay system:

{
E(cDαx(t)) = Ax(t) + Bx(t – τ ), t ∈ [,T],
x(t) = ϕ(t), t ∈ [–τ , ],

(.)
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where cDα denotes the Caputo fractional derivative of order  < α ≤ ; the vector function
x(t) ∈ Rn is a state vector;A,B,E ∈ Rn×n are constantmatrices; E ∈ Rn×n is a singularmatrix
i.e. rank(E) = q < n; the constant parameter τ >  represents the delay argument and ϕ(t)
is a given sufficiently often differentiable function on [–τ , ].
The organization of this paper is as follows. In Section , we summarize some notations

and give preliminary results which will be used in this paper. In Section , we present our
main results.

2 Preliminaries and lemmas
For completeness, in this section, we firstly demonstrate and study the definitions and
some fundamental results of fractional calculus which can be found in [–].

Definition . (see []) The Euler gamma function is defined as

�(z) =
∫ ∞


e–ttz– dt, z ∈C, (.)

where C denotes the complex plane.

Definition . (see []) The fractional integral of order α with the lower limit zero for
any function f (t) ∈ C([, +∞),R), t ≥  is defined as

Iαf (t) = lim
h→
nh=t

hα

n∑
r=

[
α

r

]
f (t – rh) =


�(α)

∫ t


(t – θ )α–f (θ )dθ , α > , (.)

where
[ α

r
]
= α(α+)···(α+r–)

r! , �(·) is the gamma function.

Definition . (see []) The Riemann-Liouville derivative of order α with the lower limit
zero for any function f (t) ∈ C([, +∞),R), t ≥  is defined as

lDαf (t) =


�(n – α)
dn

dtn

∫ t


(t – θ )n–α–f (θ )dθ , n –  < α < n. (.)

Definition . (see []) The Caputo derivative of order α for any function f (t) ∈
Cn([, +∞),R), t ≥ , is defined as

cDαf (t) =


�(n – α)

∫ t


(t – θ )n–α–f (n)(θ )dθ = In–αf (n)(t), n –  < α < n. (.)

Remark . (see [])
(i) The Laplace transform of the Caputo derivative is

L
{cDαf (t); s

}
= sαF(s) –

n–∑
k=

sα–k–f (k)() (n –  < α ≤ n); (.)

(ii) The Caputo fractional derivative is a linear operator satisfying the relation

cDα
(
λf (t) +μg(t)

)
= λcDαf (t) +μcDαg(t), (.)

where λ and μ are scalars.
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Lemma . (see []) Let  < α < , then we have

Iα
(cDαx(t)

)
= x(t) – x(). (.)

Definition . (see []) The Mittag-Leffler function in two parameters is defined as

Eα,β (z) =
∞∑
k=

zk

�(αk + β)
, z ∈C, (.)

where α > , β > , and z ∈C.

Remark . (see [])
(i) For β = , Eα,(λzα) = Eα(λzα) =

∑∞
k=

λk (zα )k
�(αk+) , and E,(z) = ez , z ∈C;

(ii) for β = , the matrix extension of the aforementioned Mittag-Leffler function has
the following representation: Eα(Atα) =

∑∞
k=

Ak (tα )k
�(αk+) , z ∈C and

cDαEα(Atα) = AEα(Atα);
(iii) we have the Laplace transform of the Mittag-Leffler function in two parameters

L
{
tαk+β–E(k)

α,β
(±atα

)
; s

}
=

k!sα–β

(sα ∓ a)k+
(
Re(s) > |a|/α)

, (.)

where Re(s) denotes the real parts of s.

Next, we introduce some fundamental definitions and lemmas about singular systems.

Definition . (see []) For any given twomatrices E,A ∈ Rn×n, the pencil (E,A) is called
regular if there exists a constant scalar λ ∈ C such that |λE + A| �= , or the polynomial
|sE –A| �≡ .

Lemma . (see []) The pencil (E,A) is regular if and only if two nonsingular matrices
Q, P may be chosen such that

QEP = diag(In ,N), QAP = diag(A, In ), (.)

where n + n = n; A ∈ Rn×n ; N ∈ Rn×n is nilpotent; In , In are identity matrices.

Remark . (see [])
(i) N ∈ Rn×n is nilpotent (the nilpotent index is denoted by h), and we have

Nh =  and Nh– �= , (.)

where h is also called the index of the matrix pair (E,A);
(ii) the system (.) will be termed regular if the pencil (E,A) is regular.

In the following, we present the first equivalent form (FE) of system (.) by the coordi-
nate transformation, which is also called the standard decomposition of a singular system.
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For convenience, we denote cDαx(t) by x(α)(t), from Lemma . and Remark ., we de-
duce the following statement. Assume that the system (.) is regular throughout this pa-
per, there exist two nonsingular matrices Q and P such that the system (.) is a restricted
system equivalent to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
x(α) (t) = Ax(t) + Bx(t – τ ) + Bx(t – τ ), t ≥ ,
x(t) = ϕ(t), –τ ≤ t ≤ ;

(a)

{
Nx(α) (t) = x(t) + Bx(t – τ ) + Bx(t – τ ), t ≥ ,
x(t) = ϕ(t), –τ ≤ t ≤ ,

(b)

(.)

with the coordinate transformation

x̄ = [x/x] = P–x, ϕ̄ = [ϕ/ϕ] = P–ϕ; x,ϕ ∈ Rn ;x,ϕ ∈ Rn , (.)

and

QEP = diag(In ,N), QAP = diag(A, In ), QBP =

[
B B

B B

]
, (.)

where ϕ ∈ Rn ; ϕ ∈ Rn ; n + n = n; A,B ∈ Rn×n ; N ,B ∈ Rn×n ; B ∈ Rn×n ; N is
nilpotent.
The following definitions and lemmas will play important roles in our next analysis.

Definition . (see []) If X and Y are normed linear spaces, an operator T : X → Y is
linear if

T(αx + βx) = αT(x) + βT(x), (.)

for all x, x in X and scalars α and β .

Remark . (see []) We say the linear operator T is a bounded linear operator from X
to Y if there is a finite constant C such that ‖Tx‖Y ≤ C‖x‖X for all x in X.

Lemma . (see []) If T : X → Y is a linear operator from a normed linear space X to a
normed linear space Y , the following are equivalent:

(i) T is bounded;
(ii) T is continuous;
(iii) T is continuous at .

Lemma. (see []; GeneralizedGronwall Inequality) Suppose x(t), a(t) are nonnegative
and local integrable on  ≤ t < T ; some T ≤ ∞, and g(t) is a nonnegative, nondecreasing
continuous function defined on  ≤ t < T ; g(t) ≤ C, where C is a constant, α >  with

x(t)≤ a(t) + g(t)
∫ t


(t – s)α–x(s)ds (.)
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on this interval. Then

x(t)≤ a(t) + g(t)
∫ t



∞∑
n=

[g(t)�(α)]n

�(nα)
(t – s)nα–a(s)ds,  ≤ t < T . (.)

Lemma . (see []) Under the hypothesis of Theorem ., let a(t) be a nondecreasing
function on [,T). Then

x(t)≤ a(t)Eα

(
g(t)�(α)tα

)
, (.)

where Eα is the Mittag-Leffler function.

3 Main results
In this section, we discuss some problems of the singular fractional time-delay system (.).
Let Dα be the Caputo fractional differential operator of order  < α ≤ , Dnαf (t) =

DαDα · · ·Dα︸ ︷︷ ︸
n

f (t) and T = (NDα – I)–. It is not difficult to verify the following:

T = –
(
I +NDα +NDα + · · · +Nh–D(h–)α)

, (.)

where I ∈ Rn×n is an identity matrix.

Theorem . The fractional differential operator T is bounded i.e. there exists a positive
constant M such that for ∀x(t) we have

∥∥Tx(t)∥∥ ≤M
∥∥x(t)∥∥. (.)

Proof Obviously, the fractional differential operator T is linear. According to Lemma .,
we are only necessary to show that T is continuous at . Let any sequences xn(t) → ,
yn(t) → y(t), and yn(t) = Txn(t), all we finally need to do is to show that y(t) = .
According to yn(t) = Txn(t) = (NDα – I)–xn(t), we have

(
NDα – I

)
yn(t) = xn(t), (.)

and for n→ ∞,

(
NDα – I

)
y(t) =  ⇒ NDαy(t) = y(t)

⇒ y(t) =NDαy(t) =NDαy(t) = · · · =Nh–D(h–)αy(t) =NhDhαy(t).
(.)

Combining Remark . and (.) yields

y(t) = . (.)

Therefore, the operator T is bounded. �

To give the solution of systems (.), let us define a new function.
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Definition . (see []) Let α obey (≤ α < ), the function

δα(t) =


�( – α)

∫ t



δ(θ )
(t – θ )α

dθ (.)

is called an α – δ function, where δ(t) is the Dirac delta function.

Remark. (see []) The Laplace transformation of theα–δ function is L{δα(t); s} = sα–.

Theorem. If the system (.) is regular, the solution for the system (.) exists uniquely.

Proof From Remark ., we know that the pencil (E,A) is regular if the system (.) is
regular. By the coordinate transformation, the system (.) is equivalent to the system
(.). For t ∈ [, τ ], then t – τ ∈ [–τ , ], the system (.)(a) may be written as

x(α) (t) = Ax(t) + Bϕ(t – τ ) + Bϕ(t – τ ), t ∈ [, τ ]. (.)

Let f(t) = Bϕ(t – τ ) + Bϕ(t – τ ). Obviously, if f(t) is the known function, then (.)
may be written as

x(α) (t) = Ax(t) + f(t). (.)

Applying the Laplace transformation on both sides of (.) and using (.) yield

sαX(s) – sα–x() = AX(s) + F(s),

X(s) =
(
sαI –A

)–sα–x() + (
sαI –A

)–F(s). (.)

Applying the Laplace inverse transformation on both sides of (.) and using (.) yield

x(t) = Eα,
(
Atα

)
x() +

∫ t


(t – θ )α–Eα,α

(
A(t – θ )α

)
f(θ )dθ , t ∈ [, τ ]. (.)

As for the system (.)(b), it may be rewritten as

Nx(α) (t) = x(t) + Bϕ(t – τ ) + Bϕ(t – τ ), t ∈ [, τ ]. (.)

Similarly, let f(t) = Bϕ(t – τ ) + Bϕ(t – τ ), and f(t) is the known sufficiently often
differentiable function, then (.) may be written as

Nx(α) (t) = x(t) + f(t). (.)

Taking the Laplace transformation on both sides of (.), we have

(
sαN – I

)
X(s) = sα–Nx() + F(s),

http://www.advancesindifferenceequations.com/content/2014/1/259
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X(s) =
(
sαN – I

)–(sα–Nx() + F(s)
)

= –
h–∑
i=

Ni(sα)i(sα–Nx() + F(s)
)

= –
h∑
i=

Ni–siα–x() –
h–∑
i=

NisiαF(s). (.)

According to Remark ., the inverse Laplace transformation of X(s) yields

x(s) = –
h∑
i=

Ni–δiαx() –
h–∑
i=

NiDiαf(t), t ∈ [, τ ]. (.)

Obviously, by the method of steps, once the solution x̄(t) of the system (.) on [, τ ] is
known, continuing the above process, we can easily obtain the solution x̄(t) of the system
(.) on [τ , τ ], [τ , τ ], . . . . Thus the solution x̄(t) of the system (.) on [,T] exists
uniquely. �

Furthermore, we give the following theorems as regards the Mittag-Leffler estimation
of the solution and finite-time stability for this singular system.
Let us denote by C([a,b]) the space of all continuous real functions defined on [a,b] and

by C([a,b],Rn) the Banach space of continuous functions mapping the interval [a,b] into
Rn with the topology of uniform convergence. Let C = C([–τ , ],Rn), [a,b] = [–τ , ], and
designate the norm of an element ϕ in C by

‖ϕ‖ = sup
–τ≤t≤

∥∥ϕ(t)
∥∥. (.)

Let X = C([–τ ,T],Rn) and x(t) = ϕ(t), t ∈ [–τ , ] be equipped with the norm

∥∥x(t)∥∥ := sup
≤t≤T

x(t), ‖xt‖ :=
∥∥x(t + θ )

∥∥ := sup
–τ≤θ≤

∥∥x(t + θ )
∥∥, ∀x ∈ X. (.)

Definition . (see []) The system given by (.) satisfying the initial condition x(t) =
ϕ(t), for t ∈ [–τ , ] is finite-time stable w.r.t. {t, δ, ε, J}, δ < ε, J = [t, t + T] if and only if

‖ϕ‖ < δ (.)

implies

∥∥x(t)∥∥ < ε, ∀t ∈ J . (.)

Theorem. If x̄(t) = [x(t)/x(t)] is a solution of the system (.), then there exist positive
constants a and b such that

(i) a =  +M‖B‖ +M‖B‖;
(ii) b > ‖A‖ + ‖B‖ + ‖B‖;
(iii) ‖x̄(t)‖ ≤ a‖ϕ̄‖Eα(btα), ∀t ∈ J = [,T].

http://www.advancesindifferenceequations.com/content/2014/1/259
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Proof According to Lemma ., the system (.)(a) may be rewritten in the form of the
equivalent Volterra integral equation

x(t) = x() +


�(α)

∫ t


(t – s)α–

[
Ax(s) + Bx(s – τ ) + Bx(s – τ )

]
ds

= ϕ() +


�(α)

∫ t


(t – s)α–Ax(s)ds

+


�(α)

∫ t


(t – s)α–

[
Bx(s – τ ) + Bx(s – τ )

]
ds, t ≥ . (.)

Using the appropriate property of the norm ‖ · ‖ on (.), it follows that

∥∥x(t)∥∥ ≤ ∥∥ϕ()
∥∥ +


�(α)

∫ t


|t – s|α–‖A‖

∥∥x(s)∥∥ds
+


�(α)

∫ t


|t – s|α–[‖B‖

∥∥x(s – τ )
∥∥ + ‖B‖

∥∥x(s – τ )
∥∥]

ds

≤ ‖ϕ̄‖ + 
�(α)

∫ t


|t – s|α–‖A‖

∥∥x̄(s)∥∥ds
+


�(α)

∫ t


|t – s|α–[‖B‖

∥∥x̄(s – τ )
∥∥ + ‖B‖

∥∥x̄(s – τ )
∥∥]

ds, t ≥ . (.)

As for the system (.)(b), we have

NDαx(t) = x(t) + Bx(t – τ ) + Bx(t – τ ),

x(t) =
(
NDα – I

)–[Bx(t – τ ) + Bx(t – τ )
]

= TBx(t – τ ) +TBx(t – τ ). (.)

Applying the appropriate property of the norm ‖ · ‖ and Theorem ., we have

∥∥x(t)∥∥ ≤M‖B‖
∥∥x(t – τ )

∥∥ +M‖B‖
∥∥x(t – τ )

∥∥
≤ (

M‖B‖ +M‖B‖
)∥∥x̄(t – τ )

∥∥, t ≥ . (.)

Combining (.) and (.) yields

∥∥x̄(t)∥∥ ≤ ∥∥x(t)∥∥ +
∥∥x(t)∥∥

≤ ‖ϕ̄‖ + (
M‖B‖ +M‖B‖

)∥∥x̄(t – τ )
∥∥

+


�(α)

∫ t


|t – s|α–‖A‖

∥∥x̄(s)∥∥ds
+


�(α)

∫ t


|t – s|α–(‖B‖ + ‖B‖

)∥∥x̄(s – τ )
∥∥ds, t ≥ . (.)

http://www.advancesindifferenceequations.com/content/2014/1/259
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For  ≤ t ≤ τ , ‖x̄(t – τ )‖ ≤ ‖ϕ̄‖, (.) can be written as

∥∥x̄(t)∥∥ ≤ (
 +M‖B‖ +M‖B‖

)‖ϕ̄‖

+


�(α)

∫ t


|t – s|α–‖A‖

∥∥x̄(s)∥∥ds
+


�(α)

∫ t


|t – s|α–(‖B‖ + ‖B‖

)∥∥x̄(s – τ )
∥∥ds,  ≤ t ≤ τ . (.)

From Definition ., we know that Iαf (t) is an increasing function of t, if f (t) > . So


�(α)
∫ t
 |t – s|α–‖A‖‖x̄(s)‖ds and 

�(α)
∫ t
 |t – s|α–[‖B‖ + ‖B‖]‖x̄(s – τ )‖ds are both in-

creasing functions with regard to t. Taking into account (.) and (.) yields

‖x̄t‖ ≤ (
 +M‖B‖ +M‖B‖

)‖ϕ̄‖

+


�(α)

∫ t


|t – s|α–‖A‖‖x̄s‖ds

+


�(α)

∫ t


|t – s|α–(‖B‖ + ‖B‖

)‖x̄s‖ds
≤(

 +M‖B‖ +M‖B‖
)‖ϕ̄‖

+


�(α)

∫ t


|t – s|α–(‖A‖ + ‖B‖ + ‖B‖

)‖x̄s‖ds,  ≤ t ≤ τ . (.)

Let a = +M‖B‖+M‖B‖ and b = ‖A‖+‖B‖+‖B‖, we can see the function a(t)
in Lemma . to be

a(t) =
(
 +M‖B‖ +M‖B‖

)‖ϕ̄‖ = a‖ϕ̄‖, (.)

obviously, it is nondecreasing.
An application of the corollary of the generalized Gronwall inequality (.) yields

‖x̄t‖ ≤ a‖ϕ̄‖Eα

(
btα

)
,  ≤ t ≤ τ . (.)

Similarly, the same argument implies the following estimate:

‖x̄t‖ ≤ a‖x̄τ‖Eα

(
b(t – τ)α

)
, τ ≤ t ≤ τ + τ , τ ≥ . (.)

From Definition ., we know that the Mittag-Leffler function Eα(t) is an increasing
function with regard to t. Therefore, there exists b > b such that Eα(bτα) > Eα(bτα) and
Eα (b(t–τ )α )Eα (bτα )

Eα (btα ) < 
a .

Equations (.) and (.) suggest the following general expression:

‖x̄t‖ ≤ a‖ϕ̄‖Eα

(
btα

)
,  ≤ t ≤ nτ ≤ T . (.)

To prove (.) by induction we have to show that it holds for n =  because of (.)
and if it holds for n = k, then it also holds for n = k + . Indeed, for t ∈ [τ , (k + )τ ], so that
t – τ ∈ [,kτ ], on the one hand, using (.), we have

‖x̄t‖ ≤ a‖x̄t–τ‖Eα

(
bτα

)
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/259
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On the other hand, using (.) we obtain

‖x̄t–τ‖ ≤ a‖ϕ̄‖Eα

(
b(t – τ )α

)
. (.)

Taking into account (.) and (.) we conclude that

‖x̄t‖ ≤ a
[
a‖ϕ̄‖Eα

(
b(t – τ )α

)]
Eα

(
bτα

)
= a‖ϕ̄‖Eα

(
btα

)aEα(b(t – τ )α)Eα(bτα)
Eα(btα)

≤ a‖ϕ̄‖Eα

(
btα

)
. (.)

That is,

∥∥x̄(t)∥∥ ≤ ‖x̄t‖ ≤ a‖ϕ̄‖Eα

(
btα

)
. (.)

The proof is completed. �

Theorem . The fractional singular time-delay system given by (.) is finite-time stable
w.r.t. {, δ, ε, J}, δ < ε, if the following condition is satisfied:

a‖P‖Eα

(
btα

) ≤ ε

δ
, ∀t ∈ J = [,T]. (.)

Proof From the coordinate transformation (.), we have

x(t) = Px̄(t) = P
[
x(t)/x(t)

]
, ϕ(t) = Pϕ̄(t) = P

[
ϕ(t)/ϕ(t)

]
. (.)

From Theorem . we obtain

∥∥x(t)∥∥ ≤ ‖P‖∥∥x̄(t)∥∥ ≤ a‖P‖‖ϕ‖Eα

(
btα

)
. (.)

Hence, using Definition . and the basic condition of Theorem ., it follows that

∥∥x(t)∥∥ < ε, ∀t ∈ J = [,T]. (.)

The proof is completed. �
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