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Abstract
In this article, we study Riemann-Stieltjes integral boundary value problems of
nonlinear fractional functional differential coupling system involving higher-order
Caputo fractional derivatives. Some sufficient criteria are obtained for the existence,
multiplicity, and nonexistence of positive solutions by applying fixed-point theorems
on a convex cone. As applications, some examples are provided to illustrate our main
results.
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1 Introduction
Fractional differential equations arise in many engineering and scientific disciplines as
the mathematical modeling of systems and processes in the fields of physics, chemistry,
aerodynamics, electrodynamics of complex medium, polymer rheology, Bode’s analysis
of feedback amplifiers, capacitor theory, electrical circuits, electron-analytical chemistry,
biology, control theory, fitting of experimental data, and so forth, and involves derivatives
of fractional order. Fractional derivatives provide an excellent tool for the description of
memory and hereditary properties of various materials and processes. This is the main
advantage of fractional differential equations in comparison with classical integer-order
models. In consequence, the subject of fractional differential equations is gaining much
importance and attention. Especially, there have been many papers focused on bound-
ary value problems of fractional ordinary differential equations (see [–]). Moreover,
the boundary value problems with Riemann-Stieltjes integral boundary condition arise in
a variety of different areas of applied mathematics and physics (for more comments on
Stieltjes integral boundary condition and its importance, we refer the reader to the pa-
pers by Webb and Infante [, ] and their other related works). For example, blood flow
problems, chemical engineering, thermo-elasticity, underground water flow, population
dynamics, and so on can be reduced to nonlocal integral boundary problems. Nonlocal
boundary value problems of fractional-order differential equations constitute a class of
very interesting and important problems. This type of boundary value problems has been
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investigated in [, , –]. To the best of our knowledge, there are only few papers deal-
ing with the existence, multiplicity, and nonexistence of positive solutions of Riemann-
Stieltjes integral boundary problems for high-order nonlinear fractional differential cou-
pling system. Therefore, we study the existence, multiplicity, and nonexistence of positive
solutions for the following high-order nonlinear fractional differential coupling system
(abbreviated by BVPs (.)-(.) throughout this paper):

{
Dα

+u(t) + f (t,u(t), v(t),u′(t), v′(t)) = , t ∈ (, ),n –  < α ≤ n,
Dβ

+v(t) + g(t,u(t),u′(t)) = , t ∈ (, ),m –  < β ≤m,
(.)

subject to the integral boundary conditions

{
u() = u′′() = · · · = u(n–)() = , u′() =

∫ 
 u(s)dH(s),

v() = v′′() = · · · = v(m–)() = , v′() =
∫ 
 v(s)dK (s),

(.)

where n,m ∈ N, n,m ≥ . Dα
+, D

β
+ are the Caputo fractional derivatives of order n –  <

α ≤ n, m –  < β ≤ m. f : [, ] × [, +∞)  → [, +∞), g : [, ] × [
,+∞)  → [, +∞)

are continuous functions. The integrals from (.) are Riemann-Stieltjes integrals. H ,K :
[, ] → R are the function of bounded variation with � �  –

∫ 
 s dH(s) �=  and � �

–
∫ 
 s dK (s) �= . To the best of our knowledge, the study of existence of positive solutions

of nonlinear fractional differential system (.)-(.) has not been done.
The rest of this paper is organized as follows. In Section , we recall some useful defi-

nitions and properties, and present the properties of the Green’s functions. In Section ,
we give some sufficient conditions for the existence and nonexistence of positive solutions
for boundary value problem (.)-(.). Some examples are also provided to illustrate our
main results in Section .

2 Preliminaries
For the convenience of the reader, we present here the necessary definitions from frac-
tional calculus theory. These definitions and properties can be found in the recent litera-
ture.

Definition . (see [, ]) The Riemann-Liouville fractional integral of order α >  of a
function f : (,∞)→R is given by

Iα+f (t) =


�(α)

∫ t


(t – s)α–f (s)ds,

provided that the right-hand side is pointwise defined on (,∞).

Definition . (see [, ]) The Caputo fractional derivative of order α >  of a continu-
ous function f : (,∞)→R is given by

Dα
+f (t) =


�(n – α)

∫ t



f (n)(s)
(t – s)α–n+

ds,

where n –  < α ≤ n, provided that the right-hand side is pointwise defined on (,∞).

http://www.advancesindifferenceequations.com/content/2014/1/254


Zhao and Gong Advances in Difference Equations 2014, 2014:254 Page 3 of 18
http://www.advancesindifferenceequations.com/content/2014/1/254

Lemma . (see []) Assume that u ∈ C(, )∩L(, )with a Caputo fractional derivative
of order α >  that belongs to u ∈ Cn[, ], then

Iα+D
α
+u(t) = u(t) +C +Ct + · · · +Cn–tn–,

for some Ci ∈R, i = , , . . . ,n– , where n is the smallest integer greater than or equal to α.

Here we introduce the following useful fixed-point theorems.

Lemma . (see []) Let E be a Banach space, P ⊆ E a cone, and �, � are two bounded
open balls of E centered at the origin with  ∈ � and � ⊂ �. Suppose that T : P ∩ (� \
�) → P is a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂� and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂�, or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂� and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂�

holds. Then T has at least one fixed point in P ∩ (� \ �).

Let E be a real Banach space with a cone P ⊂ E. Define a partial order ≺ in E as v ≺ u if
u – v ∈ P. For u – v ∈ E, the order interval 〈v,u〉 is defined as 〈v,u〉 = {x ∈ E : v≺ x ≺ u}.

Lemma . (see []) Let P be a normal cone in a real Banach space E, 〈v,u〉 ⊂ P and
T : 〈v,u〉 → 〈v,u〉 be an increasing operator. If T is completely continuous, then T has
a fixed point u∗ ∈ 〈v,u〉.

Now we present the Green’s functions for system associated with BVPs (.)-(.).

Lemma. If H : [, ] →R is a function of bounded variationwith� � –
∫ 
 s dH(s) �= 

and y ∈ C([, ]), then the unique solution of

{
Dα

+u(t) + y(t) = , t ∈ (, ),n –  < α ≤ n,n ≥ ,
u() = u′′() = · · · = u(n–)() = , u′() =

∫ 
 u(s)dH(s),

(.)

is given by

u(t) =
∫ 


Gα(t, s)y(s)ds,

where

Gα(t, s) = gα(t, s) +
t

�

∫ 


gα(τ , s)dH(τ ), (.)

and

gα(t, s) =

{
(α–)t(–s)α––(t–s)α–

�(α) , ≤ s≤ t ≤ ,
(α–)t(–s)α–

�(α) ,  ≤ t ≤ s≤ .
(.)

Proof Applying Lemma ., Eq. (.) is translated into an equivalent integral equation

u(t) = –


�(α)

∫ t


(t – s)α–y(s)ds +C +Ct + · · · +Cn–tn–.
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In the light of u() = u′′() = · · · = u(n–)() = , we have C = C = · · · = Cn– = . From
u′() =

∫ 
 u(s)dH(s), we deduce

–


�(α)

∫ 


(α – )( – s)α–y(s)ds +C

=
∫ 



[
–


�(α)

∫ s


(s – τ )α–y(τ )dτ +Cs

]
dH(s),

namely,

C

(
 –

∫ 


s dH(s)

)

=
α – 
�(α)

∫ 


( – s)α–y(s)ds –


�(α)

∫ 



(∫ s


(s – τ )α–y(τ )dτ

)
dH(s),

which implies

C =
α – 

��(α)

∫ 


( – s)α–y(s)ds –


��(α)

∫ 



(∫ s


(s – τ )α–y(τ )dτ

)
dH(s)

=
α – 

��(α)

∫ 


( – s)α–y(s)ds –


��(α)

∫ 



(∫ 

τ

(s – τ )α– dH(s)
)
y(τ )dτ

=
α – 

��(α)

∫ 


( – s)α–y(s)ds –


��(α)

∫ 



(∫ 

s
(τ – s)α– dH(τ )

)
y(s)ds.

Therefore, the solution of BVPs (.) is

u(t) = –


�(α)

∫ t


(t – s)α–y(s)ds +

t
��(α)

[∫ 


(α – )( – s)α–y(s)ds

–
∫ 



(∫ 

s
(τ – s)α– dH(τ )

)
y(s)ds

]

=


�(α)

{∫ t



[
(α – )t( – s)α– – (t – s)α–

]
y(s)ds +

∫ 

t
(α – )t( – s)α–y(s)ds

–
∫ 


(α – )t( – s)α–y(s)ds +

t
�

[∫ 


(α – )( – s)α–y(s)ds

–
∫ 



(∫ 

s
(τ – s)α– dH(τ )

)
y(s)ds

]}

=


�(α)

{∫ t



[
(α – )t( – s)α– – (t – s)α–

]
y(s)ds

+
∫ 

t
(α – )t( – s)α–y(s)ds –


�

(
 –

∫ 


τdH(τ )

)∫ 


(α – )t( – s)α–y(s)ds

+
t

�

[∫ 


(α – )( – s)α–y(s)ds –

∫ 



(∫ 

s
(τ – s)α– dH(τ )

)
y(s)ds

]}

=


�(α)

{∫ t



[
(α – )t( – s)α– – (t – s)α–

]
y(s)ds +

∫ 

t
(α – )t( – s)α–y(s)ds

+
t

�

[∫ 



(∫ 


(α – )τ ( – s)α– dH(τ )

)
y(s)ds
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–
∫ 



(∫ 

s
(τ – s)α– dH(τ )

)
y(s)ds

]}

=


�(α)

{∫ t



[
(α – )t( – s)α– – (t – s)α–

]
y(s)ds +

∫ 

t
(α – )t( – s)α–y(s)ds

+
t

�

[∫ 



(∫ s


(α – )τ ( – s)α– dH(τ )

)
y(s)ds

+
∫ 



(∫ 

s

[
(α – )τ ( – s)α– – (τ – s)α–

]
dH(τ )

)
y(s)ds

]}

=
∫ 


gα(t, s)y(s)ds +

t
�

∫ 



(∫ 


gα(τ , s)dH(τ )

)
y(s)ds

=
∫ 


Gα(t, s)y(s)ds,

where Gα(t, s) and gα(t, s) are defined by (.) and (.).
Now, we will prove the uniqueness of solution for BVPs (.). In fact, let u(t), u(t)

are any two solutions of (.). Denote w(t) = u(t) – u(t), then (.) is changed into the
following system:

{
Dα

+w(t) = , t ∈ (, ),n –  < α ≤ n,n≥ ,
w() = w′′() = · · · = w(n–)() = , w′() = .

Similar to the above argument, we get w(t) = , that is u(t) = u(t), which mean that the
solution for BVPs (.) is unique. The proof is complete. �

Lemma . If H : [, ] →R is a nondecreasing function and � > , we also let G′
α(t, s)�

∂
∂t Gα(t, s), g ′

α(t, s)� ∂
∂t gα(t, s), then we have the following properties:

() gα(t, s)≥ tα–gα(, s) ≥ tα–gα(t, s), for all (t, s) ∈ [, ]× [, ].
() Gα(t, s)≥ tα–Jα(s)≥ tα–Gα(t, s), for all (t, s) ∈ [, ]× [, ], where Jα(s) = gα(, s) +


�

∫ 
 gα(τ , s)dH(τ ), s ∈ [, ].

() G′
α(t, s) ≥  for all (t, s) ∈ [, ]× [, ], and for every θ ∈ (,  ), we have

min
t∈[θ ,–θ ]

g ′
α(t, s) ≥ γgα(, s) ≥ γg ′

α

(
t′, s

)
, ∀t′, s ∈ [, ],

min
t∈[θ ,–θ ]

G′
α(t, s)≥ γJα(s)≥ γG′

α

(
t′, s

)
, ∀t′, s ∈ [, ],

where γ �  – ( – θ )α–, γ � α–
α– γ.

Proof () For t, s ∈ [, ], from (.), we have

g ′
α(t, s) =

{
(α–)(–s)α––(α–)(t–s)α–

�(α) , ≤ s ≤ t ≤ ,
(α–)(–s)α–

�(α) ,  ≤ t ≤ s≤ .
(.)

Clearly, g ′
α(t, s) ≥  for t, s ∈ [, ] which indicates gα(t, s) is increasing with respect to t ∈

[, ]. Therefore, gα(t, s)≤ gα(, s) for t, s ∈ [, ].

http://www.advancesindifferenceequations.com/content/2014/1/254
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On the other hand, for t ≥ s, then

gα(t, s)
gα(, s)

=
(α – )t( – s)α– – (t – s)α–

(α – )( – s)α– – ( – s)α–

≥ (α – )tα–( – s)α– – (t – s)α–

(α – )( – s)α– – ( – s)α–

=
tα–[(α – )( – s)α– – ( – s

t )
α–]

(α – )( – s)α– – ( – s)α–

≥ tα–[(α – )( – s)α– – ( – s)α–]
(α – )( – s)α– – ( – s)α–

= tα–.

Thus, for t ≤ s, we have

gα(t, s)
gα(, s)

=
(α – )t( – s)α–

(α – )( – s)α– – ( – s)α–
≥ (α – )t( – s)α– – (t – s)α–

(α – )( – s)α– – ( – s)α–
≥ tα–.

Therefore, gα(t, s) ≥ tα–gα(, s)≥ tα–gα(t, s), for all (t, s) ∈ [, ]× [, ].
() From (.), we have

Gα(t, s) = gα(t, s) +
t

�

∫ 


gα(τ , s)dH(τ )

≥ tα–gα(, s) +
tα–

�

∫ 


gα(τ , s)dH(τ )

= tα–Jα(s),

where

Jα(s) = gα(, s) +


�

∫ 


gα(τ , s)dH(τ )

≥ gα(t, s) +
t

�

∫ 


gα(τ , s)dH(τ )

=Gα(t, s).

Therefore, Gα(t, s) ≥ tα–Jα(s)≥ tα–Gα(t, s), for all (t, s) ∈ [, ]× [, ].
() From (.), for t ∈ [, ], we have ∂gα (t,s)

∂t ≤ . Thus, g ′
α(t, s) is decreasing with respect

to t ∈ [, ]. Therefore, for θ ∈ (,  ), we have

min
t∈[θ ,–θ ]

g ′
α(t, s)≥ g ′

α( – θ , s)≥ (α – )( – s)α– – (α – )( – θ – s)α–

�(α)
.

For any s ∈ [, ], we get

g ′
α( – θ , s)
g ′
α(s, s)

≥ (α – )( – s)α– – (α – )( – θ – s)α–

(α – )( – s)α–

=  –
(
 –

θ

 – s

)α–

≥  – ( – θ )α– � γ.

http://www.advancesindifferenceequations.com/content/2014/1/254
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By

g ′
α(s, s)
gα(, s)

=
(α – )( – s)α–

(α – )( – s)α– – ( – s)α–
=

α – 
α + s – 

,

we derive

min
t∈[θ ,–θ ]

g ′
α(t, s)≥ g ′

α( – θ , s) ≥ γg ′
α(s, s) =

α – 
α + s – 

γgα(, s)≥ γgα(, s),

g ′
α(t, s)≤ g ′

α(s, s) =
(α – )( – s)α–

�(α)
=

α – 
α + s – 

gα(, s)≤ α – 
α – 

gα(, s).

Therefore,

min
t∈[θ ,–θ ]

g ′
α(t, s)≥ γgα(, s)≥ α – 

α – 
γg ′

α

(
t′, s

)
� γg ′

α

(
t′, s

)
, ∀t′, s ∈ [, ].

From (.), for ∀t, s ∈ [, ], we have

G′
α(t, s) = g ′

α(t, s) +


�

∫ 


gα(τ , s)dH(τ )

≤ α – 
α – 

gα(, s) +


�

∫ 


gα(τ , s)dH(τ )

≤ α – 
α – 

[
gα(, s) +


�

∫ 


gα(τ , s)dH(τ )

]

=
α – 
α – 

Jα(s).

According to g ′
α(t, s) ≥ , � > , it is clearly that G′

α(t, s)≥ . For ∀t′, s ∈ [, ], we obtain

min
t∈[θ ,–θ ]

G′
α(t, s) = min

t∈[θ ,–θ ]
g ′
α(t, s) +


�

∫ 


gα(τ , s)dH(τ )

≥ γgα(, s) +


�

∫ 


gα(τ , s)dH(τ )

≥ γ

[
gα(, s) +


�

∫ 


gα(τ , s)dH(τ )

]

= γJα(s)≥ α – 
α – 

γG′
α

(
t′, s

)
= γG′

α

(
t′, s

)
.

The proof of Lemma . is complete. �

From Lemma ., we have the following lemma.

Lemma. If H : [, ] →R is a nondecreasing function and� > , then theGreen’s func-
tions Gα ,G′

α of BVPs (.) are continuous on [, ]×[, ] and satisfy Gα(t, s),G′
α(t, s)≥  for

all (t, s) ∈ [, ]× [, ].Moreover, if y ∈ C([, ]) satisfies y(t) ≥  for all t ∈ [, ], then the
unique solution u(t) of BVPs (.) satisfies u(t) ≥ , mint∈[θ ,–θ ] u(t) ≥ θα–maxt′∈[,] u(t′),
u′(t) =

∫ 
 G

′
α(t, s)y(s)ds≥  for all t ∈ [, ] and mint∈[θ ,–θ ] u′(t) ≥ γmaxt′∈[,] u′(t′).

http://www.advancesindifferenceequations.com/content/2014/1/254
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We can also formulate similar results as Lemmas .-. above for the fractional differ-
ential equation

{
Dβ

+v(t) + h(t) = , t ∈ (, ),m –  < β ≤m,m≥ ,
v() = v′′() = · · · = v(m–)() = , v′() =

∫ 
 v(s)dK (s),

(.)

where m ∈ N, m ≥ , K : [, ] → R is a nondecreasing function and h ∈ C([, ]). In a
similar manner as �, γ, γ, gα , g ′

α , Gα , G′
α and Jα , we introduce �, γ ′

 , γ ′
, gβ , g ′

β , Gβ ,
G′

β and Jβ the corresponding constants and functions for BVPs (.) defined by � �
 –

∫ 
 s dK (s) �= , γ ′

 �  – ( – θ )β–, γ ′
 � β–

β– γ
′
 , Gβ (t, s) = gβ (t, s) + t

�

∫ 
 gβ (τ , s)dK (τ ),

G′
β (t, s)� ∂

∂t Gβ (t, s), g ′
β (t, s)� ∂

∂t gβ (t, s), Jβ (s) = gβ (, s) + 
�

∫ 
 gβ (τ , s)dK (τ ),

gβ (t, s) =

{
(β–)t(–s)β––(t–s)β–

�(β) , ≤ s ≤ t ≤ ,
(β–)t(–s)β–

�(β) ,  ≤ t ≤ s ≤ .

3 Existence and nonexistence of positive solutions
In this section, we will discuss the existence and nonexistence of positive solutions to the
BVPs (.)-(.) under various assumptions on f and g .
We present the assumptions that we shall use in the sequel.

(H) H ,K : [, ] → R are nondecreasing functions, � =  –
∫ 
 s dH(s) > , � =  –∫ 

 s dK (s) > .
(H) The functions f : [, ]× [,∞)  → [,∞), g : [, ]× [,∞)  → [,∞) are contin-

uous and f (t, , , , ) = g(t, , ) =  for all t ∈ [, ].

For simplicity, we introduce some important notations as follows:

f  = lim sup
x+y+z+w→+

max
t∈[,]

f (t,x, y, z,w)
x + y + z +w

, g = lim sup
x+y→+

max
t∈[,]

g(t,x, y)
x + y

,

f = lim inf
x+y+z+w→+

min
t∈[θ ,–θ ]

f (t,x, y, z,w)
x + y + z +w

, g = lim inf
x+y→+

min
t∈[θ ,–θ ]

g(t,x, y)
x + y

,

f ∞ = lim sup
x+y+z+w→+∞

max
t∈[,]

f (t,x, y, z,w)
x + y + z +w

, g∞ = lim sup
x+y→+∞

max
t∈[,]

g(t,x, y)
x + y

,

f∞ = lim inf
x+y+z+w→+∞ min

t∈[θ ,–θ ]

f (t,x, y, z,w)
x + y + z +w

, g∞ = lim inf
x+y→+∞ min

t∈[θ ,–θ ]

g(t,x, y)
x + y

,

A =
α – 
α – 

∫ 


Jα(s)ds, A =

(
θα– + γ

)∫ –θ

θ

Jα(s)ds,

B =
β – 
β – 

∫ 


Jβ (s)ds, B = γ

(
θβ– + γ ′


)∫ –θ

θ

Jβ (s)ds,

where γ =min{θα–,γ}.
Let E = C[, ] be endowed with the norm

‖u‖ = max
t∈[,]

∣∣u(t)∣∣ + max
t∈[,]

∣∣u′(t)
∣∣ = ‖u‖ +

∥∥u′∥∥
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/254
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Let the cone P ⊂ E and the operators T : P → P be, respectively, defined by

P =
{
u ∈ E : u(t),u′(t) ≥ , min

t∈[θ ,–θ ]
u(t)≥ θα–‖u‖, min

t∈[θ ,–θ ]
u′(t) ≥ γ

∥∥u′∥∥


}
(.)

and

(Tu)(t) =
∫ 


Gα(t, s)f

(
s,u(s),

∫ 


Gβ (s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,u′(s),

∫ 


G′

β (s, τ )g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds, t ∈ [, ]. (.)

It is easy to see that if x(t) is a fixed point of T , then BVPs (.)-(.) have a pair of solution
(u, v) expressed as

{
u(t) = x(t), t ∈ [, ],
v(t) =

∫ 
 Gβ (t, s)g(s,x(s),x′(s))ds, t ∈ [, ].

Theorem . Assume that (H)-(H) hold. Assume Af  < 
 < Af∞, and Bg <  < Bg∞.

Then BVPs (.)-(.) have at least a pair of positive solutions (u(t), v(t)).

Proof In view of Af  < 
 and Bg < , there exists ε >  such that

A
(
f  + ε

) ≤ 

, B

(
g + ε

) ≤ . (.)

By the definition of f , g, we may choose σ >  such that, for t ∈ [, ], ≤ x+ y≤ x+ y+
z +w≤ σ, we have

f (t,x, y, z,w) ≤ (
f  + ε

)
(x + y + z +w), g(t,x, y)≤ (

g + ε
)
(x + y). (.)

Let � = {u ∈ P : ‖u‖ < σ}. Define the operator T : � → � the same as (.). We shall
prove the theorem through two steps.
Step .We assert that T :� → � is completely continuous. In fact, by the definition T ,

it is easy to see that T is continuous in �. It follows from (.), (.), and Lemma . that,
for any u ∈ �, s ∈ [, ],

∫ 



(
Gβ (s, τ ) +G′

β (s, τ )
)
g
(
τ ,u(τ ),u′(τ )

)
dτ

≤
∫ 



(
Jβ (τ ) +

β – 
β – 

Jβ (τ )
)(

g + ε
)(
u(τ ) + u′(τ )

)
dτ

≤ (β – )(g + ε)‖u‖
β – 

∫ 


Jβ (τ )dτ < σ,

which implies that

‖Tu‖ = max
≤t≤

∣∣Tu(t)∣∣ + max
≤t≤

∣∣(Tu)′(t)∣∣
=

∫ 



(
Gα(t, s) +G′

α(t, s)
)
f
(
s,u(s),

∫ 


Gβ (s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,u′(s),

http://www.advancesindifferenceequations.com/content/2014/1/254
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∫ 


G′

β (s, τ )g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

≤
∫ 



(
Jα(s) +

α – 
α – 

Jα(s)
)(

f  + ε
)(∫ 


Gβ (s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ

+
∫ 


G′

β (s, τ )g
(
τ ,u(τ ),u′(τ )

)
dτ + u(s) + u′(s)

)
ds

≤ (α – )(f  + ε)
α – 

∫ 


Jα(s)

(
(β – )(g + ε)

β – 

×
∫ 


Jβ (τ )

(
u(τ ) + u′(τ )

)
dτ + ‖u‖

)
ds

≤ α – 
α – 

∫ 


Jα(s)ds

(
f  + ε

)[β – 
β – 

∫ 


Jβ (s)ds

(
g + ε

)
+ 

]
‖u‖

= A
(
f  + ε

)[
B

(
g + ε

)
+ 

]‖u‖ ≤ ‖u‖ < σ. (.)

Thus, we show that T(�) ⊂ � and T(�) is uniformly bounded.
Next, we prove that T : � → � is equicontinuous in [, ], that is, for any u ∈ �,

t, t ∈ [, ], ∀ε > , ∃δ = δ(ε) > , when |t – t| < δ, then |(Tu)(t) – (Tu)(t)| < ε. Indeed,
take δ = δ(ε) = (α–)ε

(α–)σ
, we have

∣∣(Tu)(t) – (Tu)(t)
∣∣

=
∣∣∣∣
∫ 



(
Gα(t, s) –Gα(t, s)

)
f
(
s,u(s),

∫ 


Gβ (s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,u′(s),

∫ 


G′

β (s, τ )g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

∣∣∣∣
≤

∫ 



∣∣G′
α(ξ , s)

∣∣|t – t|
∣∣∣∣f

(
s,u(s),

∫ 


Gβ (s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,u′(s),

∫ 


G′

β (s, τ )g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

∣∣∣∣
=

[∫ 


G′

α(ξ , s)f
(
s,u(s),

∫ 


Gβ (s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,u′(s),

∫ 


G′

β (s, τ )g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

]
|t – t|

≤
[
(α – )(f  + ε)

α – 

∫ 


Jα(s)

(∫ 


Gβ (s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ

+
∫ 


G′

β (s, τ )g
(
τ ,u(τ ),u′(τ )

)
dτ + u(s) + u′(s)

)
ds

]
|t – t|

≤ α – 
α – 

∫ 


Jα(s)ds

(
f  + ε

)

×
[
β – 
β – 

∫ 


Jβ (s)ds

(
g + ε

)
+ 

]
‖u‖ α – 

α – 
|t – t|

= A
(
f  + ε

)[
B

(
g + ε

)
+ 

]‖u‖ α – 
α – 

|t – t| < (α – )σ

α – 
|t – t| < ε.
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Step . Now we verify condition (i) or (ii) of Lemma .. In fact, for all u ∈ P ∩ ∂�,
s ∈ [, ], similar to the argument of (.), we get

‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂�. (.)

On the other hand, since 
 < Af∞ and  < Bg∞, there exists ε >  such that

A(f∞ – ε) ≥ 

, B(g∞ – ε) ≥ . (.)

By the definition of f∞, g∞, we can choose σ ′
 > σ such that, for t ∈ [θ ,  – θ ], σ ′

 ≤ x + y ≤
x + y + z +w <∞, we have

f (t,x, y, z,w) ≥ (f∞ – ε)(x + y), g(t,x, y) ≥ (g∞ – ε)(x + y). (.)

Let σ =max{σ,
σ ′


γ
} = σ ′


γ
, where γ =min{θα–,γ}. Set � = {u ∈ P : ‖u‖ < σ}. Define the

operator T : � → � as (.). Similar to the above discussion of T : � → �, we know
that T : � → � is completely continuous. Then for t ∈ [θ ,  – θ ], u ∈ P ∩ ∂� implies
that

u(t) + u′(t) ≥ θα–‖u‖ + γ
∥∥u′∥∥

 ≥min
{
θα–,γ

}(‖u‖ +
∥∥u′∥∥



)
= γ‖u‖ ≥ σ ′

.

It follows from (.), (.), and Lemma . that, for any u ∈ P∩ ∂�, s ∈ [θ ,  – θ ], we have

∫ 



(
Gβ (s, τ ) +G′

β (s, τ )
)
g
(
τ ,u(τ ),u′(τ )

)
dτ

≥
∫ –θ

θ

(
θβ–Jβ (τ ) + γ ′

 Jβ (τ )
)
(g∞ – ε)

(
u(τ ) + u′(τ )

)
dτ

≥ (g∞ – ε)γ‖u‖(θβ– + γ ′

)∫ –θ

θ

Jβ (τ )dτ

= B(g∞ – ε)‖u‖ ≥ ‖u‖. (.)

Then, for t ∈ [θ ,  – θ ], by (.)-(.) and Lemma ., we get

‖Tu‖ = max
≤t≤

∣∣Tu(t)∣∣ + max
≤t≤

∣∣(Tu)′(t)∣∣
=

∫ 



(
Gα(t, s) +G′

α(t, s)
)
f
(
s,u(s),

∫ 


Gβ (s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,u′(s),

∫ 


G′

β (s, τ )g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

≥
∫ –θ

θ

(
θα–Jα(s) + γJα(s)

)
(f∞ – ε)

(∫ 


Gβ (s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ

+
∫ 


G′

β (s, τ )g
(
τ ,u(τ ),u′(τ )

)
dτ + u(s) + u′(s)

)
ds

≥ A(f∞ – ε)
[
B(g∞ – ε) + 

]‖u‖ ≥ ‖u‖,
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which implies that

‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂�. (.)

By (.), (.), and condition (i) of Lemma ., we know that T has at least one fixed
point u ∈ P∩ (�\�). Consequently, BVPs (.)-(.) have at least a pair of positive solu-
tion (u, v) ∈ P × P, here u(t) = u(t), v(t) =

∫ 
 Gβ (t, s)g(s,u(s),u′

(s))ds. The proof is com-
plete. �

Similarly, we can get the following theorem.

Theorem . Assume that (H)-(H) hold. Assume Af ∞ < 
 < Af and Bg∞ <  < Bg.

Then BVPs (.)-(.) have at least a pair of positive solution.

Theorem . Assume that (H)-(H) hold. If Af > 
 , Bg > , Af∞ > 

 , Bg∞ > ,
Bg < , and there exists a constant μ >  such that

max
{
g(t,x, y) : t ∈ [, ],x + y ∈ [,μ]

}
<

μ

B
; (.)

max
{
f (t,x, y, z,w) : t ∈ [, ],x + y + z +w ∈ [,μ]

}
<

μ

A
. (.)

Then BVPs (.)-(.) have at least two pairs of positive solutions.

Proof In view of Af >  and Bg > , there exists ε >  such that

A(f – ε) ≥ 

, B(g – ε) ≥ . (.)

By the definition of f, g, we may choose σ̂ >  such that, for t ∈ [θ ,  – θ ],  ≤ x + y ≤
x + y + z +w ≤ σ̂, we have

f (t,x, y, z,w) ≥ (f – ε)(x + y + z +w), g(t,x, y) ≥ (g – ε)(x + y). (.)

Moreover, from Bg < , take ρ satisfying  < ρ < B
B

σ̂ < μ such that

g(t,x, y) ≤ g × (x + y) ≤ ρ

B
, ∀t ∈ [, ],x + y ∈ [,ρ].

Set� = {u ∈ P : ‖u‖ < ρ}. Define the operator T :� → � as (.). Similar to the discus-
sion of Theorem ., we know that T : � → � is completely continuous. It follows from
(.)-(.) and Lemma . that, for any u ∈ P ∩ ∂�, s ∈ [, ],

∫ 



(
Gβ (s, τ ) +G′

β (s, τ )
)
g
(
τ ,u(τ ),u′(τ )

)
dτ

≤ ρ

B

∫ 



(
Jβ (τ ) +

β – 
β – 

Jβ (τ )
)
dτ =

B

B
ρ < σ̂. (.)

http://www.advancesindifferenceequations.com/content/2014/1/254
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Then, for t ∈ [θ ,  – θ ], by (.)-(.) and Lemma ., we obtain

‖Tu‖ = max
≤t≤

∣∣Tu(t)∣∣ + max
≤t≤

∣∣(Tu)′(t)∣∣
=

∫ 



(
Gα(t, s) +G′

α(t, s)
)
f
(
s,u(s),

∫ 


Gβ (s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,u′(s),

∫ 


G′

β (s, τ )g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

≥
∫ –θ

θ

(
θα–Jα(s) + γJα(s)

)
(f – ε)

(∫ 


Gβ (s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ

+
∫ 


G′

β (s, τ )g
(
τ ,u(τ ),u′(τ )

)
dτ + u(s) + u′(s)

)
ds

≥ (
θα– + γ

)∫ –θ

θ

Jα(s)(f – ε)

×
(∫ –θ

θ

(
Gβ (s, τ ) +G′

β (s, τ )
)
g
(
τ ,u(τ ),u′(τ )

)
dτ + u(s) + u′(s)

)
ds

≥ (
θα– + γ

)∫ –θ

θ

Jα(s)(f – ε)

×
((

θβ– + γ ′

)∫ –θ

θ

Jβ (τ )(g – ε)
(
u(τ ) + u′(τ )

)
dτ + u(s) + u′(s)

)
ds

≥ (
θα– + γ

)∫ –θ

θ

Jα(s)ds(f – ε)

×
[(

θβ– + γ ′

)∫ –θ

θ

Jβ (s)ds(g – ε)γ + 
]
‖u‖

= A(f – ε)
[
B(g – ε) + 

]‖u‖ ≥ ‖u‖.

Therefore,

‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂�. (.)

Secondly, according to Af∞ > 
 and Bg∞ > , similar to the proof of (.), choosing

σ > μ, setting � = {u ∈ P : ‖u‖ < σ} and defining the operator T : � → � as (.), we
easily get

‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂�. (.)

On the other hand, let � = {u ∈ P : ‖u‖ < μ}. Define the operator T :� → � as (.).
Similar to the discussion of Theorem ., we know that T : � → � is completely con-
tinuous. Then, for any u ∈ P ∩ ∂�, it follows from (.) and (.) that

∫ 



(
Gβ (s, τ ) +G′

β (s, τ )
)
g
(
τ ,u(τ ),u′(τ )

)
dτ <

μ

B

∫ 



(
Jβ (τ ) +

β – 
β – 

Jβ (τ )
)
dτ = μ,
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and

‖Tu‖ = max
≤t≤

∣∣Tu(t)∣∣ + max
≤t≤

∣∣(Tu)′(t)∣∣
=

∫ 



(
Gα(t, s) +G′

α(t, s)
)
f
(
s,u(s),

∫ 


Gβ (s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,u′(s),

∫ 


G′

β (s, τ )g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

<
∫ 



(
Jα(s) +

α – 
α – 

Jα(s)
)
ds

μ

A
= μ = ‖u‖.

So

‖Tu‖ < ‖u‖, u ∈ P ∩ ∂�. (.)

By (.), (.), and condition (ii) of Lemma ., we know that T has at least a fixed point
in u ∈ P ∩ (�\�), that is, ρ ≤ ‖u‖ ≤ μ. Equations (.) and (.) together with con-
dition (i) of Lemma . imply that T has at least one fixed point u ∈ P∩ (�\�), namely,
μ ≤ ‖u‖ ≤ σ. It is worth noting that ρ < μ < σ, and (.) is a strict inequality, that is
to say, the operator T has not the fixed point on the boundary ∂�. So we conclude that
BVPs (.)-(.) have at least two pairs of positive solutions (u, v) and (u, v) with the
properties of ρ ≤ ‖u‖ < μ < ‖u‖ ≤ σ and vi(t) =

∫ 
 Gβ (t, s)g(s,ui(s),u′

i(s))ds (i = , ).
The proof is complete. �

Similarly, we get the following theorem.

Theorem . Assume that (H)-(H) hold. Assume Af  < 
 , Bg < , Af ∞ < 

 , Bg∞ >
γ, and there is a η >  such that

min
{
g(t,x, y) : t ∈ [θ ,  – θ ],x + y ∈ [γη,∞)

}
>

γ 
 η

B
; (.)

min
{
f (t,x, y, z,w) : t ∈ [θ ,  – θ ],x + y + z +w ∈ [γη,∞)

}
>

η

A
. (.)

Then BVPs (.)-(.) have at least two pairs of positive solutions.

Theorem . Assume that (H)-(H) hold. Further suppose that f (t,x, y, z,w) and g(t,x, y)
are nondecreasing functions with respect to each variable x, y, z, w for each t ∈ [, ], and
there exist u, w satisfying Tu ≥ u, Tw ≤ w for  ≤ u ≤ w,  ≤ u′

 ≤ w′
,  ≤ t ≤ .

Then BVPs (.)-(.) have at least a pair of positive solution (u∗, v∗) such that u(t) ≤
u∗(t)≤ w(t), v∗(t) =

∫ 
 Gβ (t, s)g(s,u∗(s),u∗(s))ds.

Proof Define the normal cone P ⊂ E as (.) and the operator T : P → P as (.). By
the definition of T , it is easy to show that T is continuous. For any bounded subset
� = {u ∈ P : ‖u‖ < R} of P, similar to the proof of (.) in Theorem ., we know that
T(�) ⊂ � ⊂ P which implies that P is relatively compact set in E. Hence T : P → P is
completely continuous.
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For any ū, v̄ ∈ P defined by (.), we define the relationship ≤ on P as v̄ ≤ ū. It is easy
to verify that ≤ is a partial order on P. Let u,w ∈ P be such that u ≤ w, u′ ≤ w′, then
g(t,u(t),u′(t)) ≤ g(t,w(t),w′(t)), for t ∈ [, ]. Thus we have

(Tu)(t) =
∫ 


Gα(t, s)f

(
s,u(s),

∫ 


Gβ (s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,u′(s),

∫ 


G′

β (s, τ )g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

≤
∫ 


Gα(t, s)f

(
s,w(s),

∫ 


Gβ (s, τ )g

(
τ ,w(τ ),w′(τ )

)
dτ ,w′(s),

∫ 


G′

β (s, τ )g
(
τ ,w(τ ),w′(τ )

)
dτ

)
ds

= (Tw)(t).

Hence T is an increasing operator. By the assumptions Tu ≥ u, Tw ≤ w, we have T :
〈u,w〉 → 〈u,w〉. Since T : P → P is completely continuous, by Lemma ., T has one
fixed point u∗ ∈ 〈u,w〉. Thus BVPs (.)-(.) have at least a pair of positive solution
(u∗, v∗) such that u(t) ≤ u∗(t) ≤ w(t), v∗(t) =

∫ 
 Gβ (t, s)g(s,u∗(s),u∗(s))ds. The proof is

complete. �

Theorem . Assume that (H)-(H) hold. Assume Af (t,x, y, z,w) < 
 (x + y + z + w) and

Bg(t,x, y) < x + y for t ∈ [, ], ≤ x + y≤ x + y + z +w <∞. Then BVPs (.)-(.) have no
monotone positive solution.

Proof Define the cone P ∈ E as (.), the operator T : P → P as (.) and the partial order
≤ on P as the proof of Theorem .. By the definition of T , it is easy to show that T is
continuous. For any bounded subset� = {u ∈ P : ‖u‖ < R} of P, similar to the proof of (.)
in Theorem ., we know that T(�) ⊂ � ⊂ P, which implies that P is relatively compact
set in E. Hence T : P → P is completely continuous.
Suppose on the contrary that u is amonotone positive solution of BVPs (.)-(.). Then,

for t ∈ [, ], we obtain u(t) ≥ , u′(t) ≥ , and

‖u‖ = max
≤t≤

∣∣u(t)∣∣ + max
≤t≤

∣∣u′(t)
∣∣

=
∫ 



[
Gα(t, s) +G′

α(t, s)
]
f
(
s,u(s),

∫ 


Gβ (s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,u′(s),

∫ 


G′

β (s, τ )g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

<


A

∫ 



(
Jα(s) +

α – 
α – 

Jα(s)
)(∫ 



[
Gβ (s, τ ) +G′

β (s, τ )
]

× g
(
τ ,u(τ ),u′(τ )

)
dτ + u(s) + u′(s)

)
ds

<


A

α – 
α – 

∫ 


Jα(s)ds

[

B

∫ 



(
Jβ (τ ) +

β – 
β – 

Jβ (τ )
)[

u(τ ) + u′(τ )
]
dτ + ‖u‖

]

<


A

α – 
α – 

∫ 


Jα(s)ds

[

B

β – 
β – 

∫ 


Jβ (τ )dτ + 

]
‖u‖ < ‖u‖,

http://www.advancesindifferenceequations.com/content/2014/1/254


Zhao and Gong Advances in Difference Equations 2014, 2014:254 Page 16 of 18
http://www.advancesindifferenceequations.com/content/2014/1/254

which is a contradiction. Then BVPs (.)-(.) have no monotone positive solution. The
proof is complete. �

Similarly, we obtain the following theorem.

Theorem . Assume that (H)-(H) hold. If Af (t,x, y, z,w) > 
 (x + y + z + w) and

Bg(t,x, y) > x + y for t ∈ [θ ,  – θ ],  ≤ x + y ≤ x + y + z + w < ∞. Then BVPs (.)-(.)
have no monotone positive solution.

4 Illustrative examples
Consider the following coupling system of fractional differential equations:

⎧⎨
⎩D



+u(t) + f (t,u(t), v(t),u′(t), v′(t)) = , t ∈ (, ),n = ,

D


+v(t) + g(t,u(t),u′(t)) = , t ∈ (, ),m = ,

(.)

subject to the integral boundary conditions
{
u() = u′′() = , u′() =

∫ 
 u(s)dH(s),

v() = v′′() = v′′′() = , v′() =
∫ 
 v(s)dK (s),

(.)

where H(t) = t, K (t) = t for all t ∈ [, ]. Then we obtain

� =  –
∫ 


s dH(s) =  – 

∫ 


s ds =



> ,

� =  –
∫ 


s dK (s) =  – 

∫ 


s ds =



> .

Take θ = 
 , for the functions Jα and Jβ , we obtain

Jα(s) = gα(, s) +


�

∫ 


gα(τ , s)dH(τ )

=


�(α)

{
(α – )( – s)α– – ( – s)α–

+ 
(∫ 


(α – )τ ( – s)α– dτ –

∫ 

s
τ (τ – s)α– dτ

)}

=



√

π

[


( – s)


 – ( – s)


 –

s + 


( – s)



]
, s ∈ [, ],

and

Jβ (s) = gβ (, s) +


�

∫ 


gβ (τ , s)dK (τ )

=


�(β)

{
(β – )( – s)β– – ( – s)β–

+ 
(∫ 


(β – )τ ( – s)β– dτ –

∫ 

s
τ (τ – s)β– dτ

)}

=



√

π

[
( – s)


 – ( – s)


 –

(s + s + )


( – s)



]
, s ∈ [, ].
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A simple calculation shows that

A =
α – 
α – 

∫ 


Jα(s)ds≈ ., A =

(
θα– + γ

)∫ –θ

θ

Jα(s)ds≈ .,

B =
β – 
β – 

∫ 


Jβ (s)ds≈ ., B = γ

(
θβ– + γ ′


)∫ –θ

θ

Jβ (s)ds≈ ..

Case . Let

f
(
t,u, v,u′, v′) = 

( + t)

[
u + v + u′ + v′

eu+v+u′+v′ +
(u + v + u′ + v′)

 + u + v + u′ + v′

]
,

g
(
t,u,u′) = 

 + t

[
u + u′

 ln[e + u + u′]
+
(u + u′)

 + u + u′

]
.

Clearly, f (t, , , , ) = g(t, , ) = . By a simple computation, we get f  = 
 , f∞ = 

 ,
g = 

 , and g∞ = ,
 , which implies that Af  ≈ . < 

 < . ≈ Af∞ and
Bg ≈ . <  < . ≈ Bg∞. Hence BVPs (.)-(.) have at least a pair of posi-
tive solutions by Theorem ..
Case . Let

f
(
t,u, v,u′, v′) = 

 + t

[
u + v + u′ + v′

eu+v+u′+v′ +
(u + v + u′ + v′)

 + u + v + +u′ + v′

]
,

g
(
t,u,u′) = 

 + t

[
u + u′

eu+u′ +
(u + u′)

 + u + u′

]
.

Clearly, f (t, , , , ) = g(t, , ) = . By a simple computation, we obtain f = f∞ = ,
g = g∞ = 

 , and g = , which shows that Af ≈ . > 
 , Af∞ ≈ . > 

 , Bg ≈
. > , Bg∞ ≈ . > , and Bg ≈ . < .
Choose μ = , we get

max
{
g(t,x, y) : t ∈ [, ],x + y ∈ [

, 
]}

< 
(

e
+



 + 

)
≈ .

<
μ

B
≈ .,

max
{
f (t,x, y, z,w) : t ∈ [, ],x + y + z +w ∈ [

, 
]}

< 
(

e
+



 + 

)
≈ .

<
μ

A
≈ ..

Hence BVPs (.)-(.) have at least two pairs of positive solutions by Theorem ..
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