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Abstract
This paper is concerned with the existence of positive solutions to a discrete fractional
boundary value problem. By using the Krasnosel’skii and Schaefer fixed point
theorems, the existence results are established. Additionally, examples are provided to
illustrate the effectiveness of the main results.
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1 Introduction
Fractional differential equations have received increasing attention within the last ten
years or so. The theory of fractional differential equations has been a new importantmath-
ematical branch due to its wide applications in different research areas and engineering,
such as physics, chemistry, economics, control of dynamical etc. For more details, see [–
] and the references therein. On the other hand, accompanied with the development of
the theory for fractional calculus, fractional difference equations have attracted increas-
ing attention slowly but steadily in the past three years or so. Some research papers have
appeared, see [–]. For example, Atici and Eloe [] analyzed the conjugate discrete
fractional boundary value problem (FBVP) with delta derivative:

{
–�vy(t) = f (t + v – , y(t + v – )), t ∈ [,b]N ,
y(v – ) = y(v + b + ) = ,  < v ≤ .

Goodrich [] studied the discrete fractional boundary value problems:

{
�vy(t) = λf (t + v – , y(t + v – )), t ∈ [,T]Z ,
y(v – ) = y(v + T) +

∑N
i= F(ti, y(ti)),  < v < .

In [], Lv discussed the existence of solutions for discrete fractional boundary value
problems with a p-Laplacian operator:

⎧⎪⎨
⎪⎩

�
β
c [φp(�α

c u)](t) = f (t + α + β – ,u(t + α + β – )), t ∈ [,b]N ,
�α

c u(t)|t=β– +�α
c u(t)|t=β+b = ,

u(α + β – ) + u(α + β + b) = ,  < α,β ≤ ,  < α + β ≤ .
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They obtained a series of excellent results of discrete fractional boundary value problems.
Motivated by the aforementioned works, in this paper we consider a discrete fractional
boundary value problem (FBVP):

{
�vy(t) = f (t + v – , y(t + v – )), t ∈ [,b]N ,
y(v – ) = , �y(v – ) = �y(v + b – ),

(.)

where  < v ≤ , �v denotes the Riemann-Liouville fractional difference operator, Na =
{a,a + ,a + , . . .} and INa = I ∩Na for any number a ∈ R and each interval I of R, b ∈ N.
We appeal to the convention that

∑k–
s=k y(s) =  for any k ∈Na, where y is a function defined

onNa. By using the Krasnosel’skii and Schaefer fixed point theorems, the existence results
are established and two examples are also provided to illustrate the effectiveness of the
main results.
The rest of the paper is organized as follows. In Section , we introduce some lemmas

and definitions which will be used later. In Section , the existence of positive solutions for
the boundary value problem (.) is investigated. In Section , two examples are provided
to illustrate the effectiveness of the main results.

2 Basic definitions and preliminaries
Firstly we present here some necessary definitions and lemmaswhich are used throughout
this paper.

Definition . [, ] Define tv := �(t+)
�(t+–v) for any t and v for which the right-hand side is

defined. If t +  – v is a pole of the gamma function and t +  is not a pole, then tv = .

Definition . [] The vth fractional sum of a function f , for v > , is defined to be

�–vf (t) =�–vf (t;a) :=


�(v)

t–v∑
s=a

(t – s – )v–f (s) (.)

for t ∈ {a+ v,a+ v+, . . .} :=Na+v. Define the vth fractional difference for v >  by�vf (t) :=
�N�v–Nf (t), t ∈Na+v and N ∈N satisfies ≤N –  < v ≤N .

Lemma . [] Let t and v be any numbers for which tv and tv– are defined. Then �tv =
vtv–.

Lemma . [] Assume that  ≤N –  < v ≤N . Then

�–v�vy(t) = y(t) +Ctv– +Ctv– + · · · +CNtv–N (.)

for some Ci ∈ R, with ≤ i ≤N .

Lemma . (The nonlinear alternative of Leray and Schauder []) Let E be a Banach
space with C ⊆ E closed and convex. Let U be a relatively open subset of C with  ∈U and
T :U → C be a continuous and compact mapping. Then either
(a) the mapping T has a fixed point in U ; or
(b) there exist u ∈ ∂U and λ ∈ (, ) with u = λTu.
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Lemma . [] Let B be a Banach space and let K ⊆ B be a cone. Assume that 	 and
	 are bounded open sets contained in B such that  ∈ 	 and 	 ⊆ 	. Assume further
that T :K∩ (	 \ 	) →K is a completely continuous operator. If either

(i) ‖Ty‖ ≤ ‖y‖ for y ∈K∩ ∂	 and ‖Ty‖ ≥ ‖y‖ for y ∈K∩ ∂	; or
(ii) ‖Ty‖ ≥ ‖y‖ for y ∈K∩ ∂	 and ‖Ty‖ ≤ ‖y‖ for y ∈K∩ ∂	;

then T has at least one fixed point in K∩ (	 \ 	).

We state next the structural assumptions that we impose on (.).

(H) Assume that the nonlinearity function f : [v – , v + b – ]Nv– × R → [, +∞) is con-
tinuous.

(H) Assume that there exist nonnegative continuous functions a(t), a(t), t ∈ [v – , v +
b – ]Nv– such that |f (t, y)| ≤ a(t) + a(t)|y|, ∀t ∈ [v – , v + b – ]Nv– , y ∈ R.

(H) Assume that limy→+
f (t,y)
y =  uniformly for t ∈ [v – , v + b – ]Nv– .

(H) Assume that limy→+∞ f (t,y)
y = +∞ uniformly for t ∈ [v – , v + b – ]Nv– .

3 Existence results
In this section, we will establish the existence of at least one positive solution for problem
(.). At first, we state and prove some preliminary lemmas.

Lemma. Let h : [v–, v+b–]Nv– → R be given.Then the unique solution of the discrete
fractional boundary value problem

{
�vy(t) = h(t + v – ), t ∈ [,b]N ,
y(v – ) = , �y(v – ) = �y(v + b – ),

(.)

is

y(t) =


�(v)

b∑
s=

G(t, s)h(s + v – ). (.)

Here, for (t, s) ∈ [v – , v + b]Nv– × [,b]N , G(t, s) is defined by

G(t, s) =

{ (b+v–s–)v–tv–
�(v–)–(b+v–)v– + (t – s – )v–, ≤ s ≤ t – v ≤ b,
(b+v–s–)v–tv–
�(v–)–(b+v–)v– , ≤ t – v < s≤ b.

(.)

Proof Suppose that y(t) defined on [v–, v+b]Nv– is a solution of (.). Using Lemma .,
for some constants C,C ∈ R, we have

y(t) =


�(v)

t–v∑
s=

(t – s – )v–h(s + v – ) +Ctv– +Ctv–, t ∈ [v – , v + b]Nv– . (.)

By y(v – ) =  and Definition ., we obtain C = .
Then, for all t ∈ [v – , v + b – ]Nv– , we obtain []

�y(t) =


�(v – )

t–(v–)∑
s=

(t – s – )v–h(s + v – ) +C(v – )tv–. (.)

http://www.advancesindifferenceequations.com/content/2014/1/253
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In view of �y(v – ) = �y(v + b – ), we have

C =


�(v – )[�(v) – (v – )(b + v – )v–]

b∑
s=

(b + v – s – )v–h(s + v – ).

Substituting the values of C and C in (.), we have

y(t) =


�(v)

t–v∑
s=

(t – s – )v–h(s + v – )

+
b∑
s=

(b + v – s – )v–tv–

�(v – )[�(v) – (v – )(b + v – )v–]
h(s + v – )

=


�(v)

b∑
s=

G(t, s)h(s + v – ), t ∈ [v – , v + b – ]Nv– . �

Lemma . The function G(t, s) given in (.) satisfies the following:
()  ≤G(t, s)≤ D(v+b)v–

(s+v–)v–G(s + v – , s), (t, s) ∈ [v – , v + b]Nv– × [,b]N ;
() mint∈[v–,v+b]Nv–

G(t, s)≥ �(v)
(s+v–)v–G(s + v – , s) > .

Here,

D = max
s∈[,b]

{
 +

�(v – ) – (v + b – )v–

(v + b – s – )v–

}

=  +
�(v – ) – (v + b – )v–

(v + b – )v–
. (.)

Proof First of all, (.) implies that G(s + v – , s) = (v+b–s–)v–(s+v–)v–
�(v–)–(v+b–)v– . Note that �(v – ) –

(v + b – )v– > , we know G(s + v – , s) > .
Second of all, by (.) and the definition of D in (.), we obtain

 ≤ G(t, s)≤ (b + v – s – )v–(v + b)v–

�(v – ) – (b + v – )v–
+ (v + b)v–

≤ D(b + v)v–

(s + v – )v–
G(s + v – , s). (.)

On the other hand,

min
t∈[v–,v+b]Nv–

G(t, s) = min
t∈[v–,v+b]Nv–

(b + v – s – )v–tv–

�(v – ) – (b + v – )v–

≥ (v – )v–

(s + v – )v–
· (b + v – s – )v–(s + v – )v–

�(v – ) – (v + b – )v–

=
�(v)

(s + v – )v–
G(s + v – , s) > . (.)

The proof of Lemma . is completed. �

Let B be the collection of all functions y : [v – , v + b]Nv– → R with the norm ‖y‖ =
max{|y(t)| : t ∈ [v – , v + b]Nv–}.

http://www.advancesindifferenceequations.com/content/2014/1/253
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Define the operator T : B→ B by

Ty(t) =


�(v)

b∑
s=

G(t, s)f
(
s + v – , y(s + v – )

)
. (.)

In view of the continuity of f , it is easy to know that T is continuous. Furthermore, it is
not difficult to verify that T maps bounded sets into bounded sets and equi-continuous
sets. Therefore, in the light of the well-known Arzelá-Ascoli theorem, we know that T is
a compact operator (see [, ]).
Let E = {y ∈ B|y(t) ≥ , t ∈ [v – , v + b]Nv–} and set

A =
b∑
s=

D(v + b)v–G(s + v – , s)
�(v)(s + v – )v–

‖a‖,

B =
b∑
s=

D(v + b)v–G(s + v – , s)
�(v)(s + v – )v–

‖a‖.

We have the following theorem.

Theorem . Assume that (H) and (H) hold. Then system (.) has at least one positive
solution provided that

b∑
s=

D(v + b)v–G(s + v – , s)
�(v)(s + v – )v–

‖a‖ < . (.)

Proof Let 	 = {y ∈ E|‖y‖ < r} with r = B
–A > . If y ∈ 	, that is, ‖y‖ ≤ r. From (H), (H)

and (.), we have

∥∥Ty(t)∥∥ = max
t∈[v–,v+b]Nv–

∣∣∣∣∣ 
�(v)

b∑
s=

G(t, s)f
(
s + v – , y(s + v – )

)∣∣∣∣∣
≤ 

�(v)

b∑
s=

D(v + b)v–

(s + v – )v–
G(s + v – , s)

(∣∣a(t)∣∣ + ∣∣a(t)∣∣∣∣y(t)∣∣)

≤
b∑
s=

(v + b)v–

�(v)
DG(s + v – , s)
(s + v – )v–

‖a‖

+
b∑
s=

(v + b)v–

�(v)
DG(s + v – , s)
(s + v – )v–

‖a‖‖y‖

= B +A‖y‖ ≤ r,

which shows that Ty ∈ 	.
Consider the eigenvalue problem

y = λTy, λ ∈ (, ). (.)

http://www.advancesindifferenceequations.com/content/2014/1/253
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Assume that y is a solution of (.), we obtain

‖y‖ = ‖λTy‖ < ‖Ty‖ ≤ r. (.)

It shows that y /∈ ∂	. By Lemma ., T has a fixed point in 	. The proof is completed.
�

We define the cone K ⊆ B by

K =
{
y ∈ E : min

t∈[v–,v+b]Nv–
y(t) ≥ �(v)

D(v + b)v–
‖y‖

}
. (.)

Lemma . Let T be the operator defined in (.) andK be the cone defined in (.).Then
T :K →K.

Proof Note that for each t ∈ [v – , v + b]Nv– , we have

∥∥Ty(t)∥∥ = max
t∈[v–,v+b]Nv–

∣∣∣∣∣ 
�(v)

b∑
s=

G(t, s)f
(
s + v – , y(s + v – )

)∣∣∣∣∣
≤ 

�(v)

b∑
s=

D(v + b)v–

(s + v – )v–
G(s + v – , s)

∣∣f (s + v – , y(s + v – )
)∣∣

=
b∑
s=

D(v + b)v–G(s + v – , s)
�(v)(s + v – )v–

∣∣f (s + v – , y(s + v – )
)∣∣.

Therefore, it holds that

min
t∈[v–,v+b]Nv–

(Ty)(t)

= min
t∈[v–,v+b]Nv–


�(v)

b∑
s=

G(t, s)f
(
s + v – , y(s + v – )

)

≥ 
�(v)

b∑
s=

�(v)
(s + v – )v–

G(s + v – , s)f
(
s + v – , y(s + v – )

)

=
�(v)

D(v + b)v–

b∑
s=

D(v + b)v–G(s + v – , s)
�(v)(s + v – )v–

f
(
s + v – , y(s + v – )

)

≥ �(v)
D(v + b)v–

‖Ty‖.

The conclusion of Lemma . holds. �

Theorem . Suppose that conditions (H), (H) and (H) hold. Then problem (.) has
at least one positive solution.

Proof We have already shown T(K) ⊆ K in Lemma .. By condition (H), we can select
η >  sufficiently small so that both |f (t, y)| ≤ η‖y‖ and η

∑b
s=

(v+b)v–
�(v)

DG(s+v–,s)
(s+v–)v– <  hold

for all t ∈ [v – , v + b – ]Nv– and  < y < r, where r := r(η).

http://www.advancesindifferenceequations.com/content/2014/1/253
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Let 	 = {y ∈ B : ‖y‖ < r}. Then, for y ∈ ∂	 ∩K, we have

∥∥Ty(t)∥∥ = max
t∈[v–,v+b]Nv–

∣∣∣∣∣ 
�(v)

b∑
s=

G(t, s)f
(
s + v – , y(s + v – )

)∣∣∣∣∣
≤ 

�(v)

b∑
s=

D(v + b)v–

(s + v – )v–
G(s + v – , s)

∣∣f (s + v – , y(s + v – )
)∣∣

≤
b∑
s=

D(v + b)v–G(s + v – , s)
�(v)(s + v – )v–

η‖y‖ < ‖y‖.

It implies that T is a cone contraction on y ∈ ∂	 ∩K.
On the other hand, from condition (H), we may select a number η >  such that both

|f (t, y)| > η‖y‖ and η
∑b

s=
G(s+v–,s)
(s+v–)v– >  hold for all t ∈ [v – , v + b – ]Nv– and  < y < r,

where r := r(η) and r > r > . Define 	 = {y ∈ B : ‖y‖ < r}, we obtain

∥∥Ty(t)∥∥ = max
t∈[v–,v+b]Nv–


�(v)

b∑
s=

G(t, s)
∣∣f (s + v – , y(s + v – )

)∣∣

≥ 
�(v)

b∑
s=

min
t∈[v–,v+b]Nv–

G(t, s)
∣∣f (s + v – , y(s + v – )

)∣∣

>
b∑
s=

G(s + v – , s)
(s + v – )v–

η‖y‖ > ‖y‖,

whenever y ∈ ∂	 ∩K, so that T is a cone expansion on ∂	 ∩K.
In summary, we may invoke Lemma . to deduce the existence of a function y ∈ K ∩

(	 \ 	) such that Ty = y, where y is a positive solution to problem (.). The proof is
completed. �

4 Example
Example . Consider the fractional difference boundary value problem

{
�


 y(t) = f (t + 

 , y(t +

 )), t ∈ [, ]N ,

y(– 
 ) = , �y(– 

 ) = �y(  ).
(.)

Set a(t) = , a(t) = t
 , f (t, y) =

t|y|
 + | sin t|, t ∈ [  ,


 ]N 


. We have

∣∣f (t, y)∣∣ ≤  +
t


|y|.

By a simple computation, we can obtain D ≈ .,
∑

s=
(  )


 G(s+ 

 ,s)

�(  )(s+

 )




≈ ., ‖a‖ =


 . Therefore, A ≈ . < . The conditions of Theorem . hold, the boundary value
problem (.) has at least one positive solution.

http://www.advancesindifferenceequations.com/content/2014/1/253
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Example . Consider the fractional difference boundary value problem

{
�


 y(t) = f (t + 

 , y(t +

 )), t ∈ [, ]N ,

y(– 
 ) = , �y(– 

 ) = �y(  ).
(.)

Set f (t, y) = ty, t ∈ [  ,

 ]N 


. We have

() lim
y→+

f (t, y)
y

= lim
y→+

ty

y
= , () lim

y→+∞
f (t, y)
y

= lim
y→+∞

ty

y
= +∞.

The conditions of Theorem . hold, the boundary value problem (.) has at least one
positive solution.
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