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Abstract
In this paper, we study boundary-value problems for the following nonlinear
fractional differential equations involving the Caputo fractional derivative:
CDα

0+x(t) = f (t, x(t), CDβ
0+x(t)), t ∈ [0, 1], x(0) + x′(0) = y(x),

∫ 1
0 x(t)dt =m,

x′′(0) = x′′′(0) = · · · = x(n–1)(0) = 0, where CDα
0+,

CDβ
0+ are the Caputo fractional

derivatives, f : [0, 1]×R×R→R is a continuous function, y : C([0, 1],R)→ R is a
continuous function andm ∈ R, n – 1 < α < n (n ≥ 2), 0 < β < 1 is a real number. By
means of the Banach fixed-point theorem and the Schauder fixed-point theorem,
some solutions are obtained, respectively. As applications, some examples are
presented to illustrate our main results.
MSC: 34A08; 34B10

Keywords: fractional differential equation; boundary-value problem; fixed-point
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1 Introduction
Fractional differential equations have been of increasing importance in the past decades
due to their diverse applications in science and engineering, such as the memory of a vari-
ety of materials, signal identification and image processing, optical systems, thermal sys-
tem materials and mechanical systems, control system, etc., see [, ]. Many interesting
results on the existence of solutions of various classes of fractional differential equations
have been obtained, see [–], and the references therein.
Recently, much attention has been focused on the study of the existence and multiplic-

ity of solutions or positive solutions for boundary-value problems of fractional differential
equations with local boundary-value problems by the use of techniques of nonlinear anal-
ysis (fixed-point theorems, Leray-Schauder theory, the upper and lower solution method,
etc.), see [–].
On the other hand, integer-order differential equations boundary-value problems with

integral boundary conditions arise in a variety of different areas of applied mathematics
and physics. For example, blood flow problems, chemical engineering, thermo-elasticity,
underground water flow, population dynamics, and so forth can be reduced to nonlo-
cal problems with integral boundary conditions. For a detailed description of the integral
boundary conditions, we refer the reader to some recent papers [–] and the references
therein.
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In fact, there we have the same requirements for fractional differential equations.
Boundary-value problems for fractional-order differential equationswith nonlocal bound-
ary conditions constitute a very interesting and important class of problems. This type of
boundary-value problems has been investigated in [–]. Lately, Zhang et al. [] inves-
tigated the existence of solutions for a fractional nonlinear integro-differential equation
of mixed type on a semi-infinite interval in a Banach space E. Li et al. [] studied the
existence and uniqueness of a positive solution for nonlinear fractional differential equa-
tions. Anguraj et al. [] obtained new existence results for fractional integro-differential
equations with impulsive and integral conditions.
There were several definitions of fractional derivatives such as Riemann-Liouville, Ca-

puto, Weyl, etc. Applied problems require those definitions of fractional derivatives that
allow the utilization of physically interpretable initial and boundary conditions. The Ca-
puto fractional derivative fulfills these requirements.
Cabada et al. investigated the existence of positive solutions of the following nonlinear

fractional differential equations with integral boundary-value conditions []:

CDαu(t) + f
(
t,u(t)

)
= ,  < t < ,

u() = u′′() = , u() = λ

∫ 


u(s)ds,

where  < α < ,  < λ < , CDα is the Caputo fractional derivative and f : [, ]× [,∞) →
[,∞) is a continuous function.
In , Vong et al. studied the existence of positive solutions of a class of singular frac-

tional differential equations with nonlocal boundary conditions [],

CDα
+u(t) + f

(
t,u(t)

)
= ,

u′() = · · · = u(n–) = , u() =
∫ 


u(s)dμ(s),

where n ≥ , α ∈ (n – ,n), and μ(s) is a function of bounded variation, f may have a
singularity at t = , and

∫ 
 dμ(s) < .

Agarwal et al. investigated the existence of solutions for the singular fractional bounda-
ry-value problems []

Dαu(t) + f
(
t,u(t),Dμu(t)

)
= ,

u() = u() = ,

where  < α < ,  < μ ≤ α –  are real numbers, Dα is the standard Rieman-Liouville
fractional derivative, f satisfies the Caratheodory conditions on [, ]×B, B = (,∞)×R

(f ∈ Car([, ]×B)), f is positive, and f (t,x, y) is singular at x = .
Benchohra et al. studied the boundary-value problem for the fractional differential

equations with nonlocal conditions []

CDα
+y(t) = f

(
t, y(t)

)
, t ∈ J = [,T],  < α ≤ ,

y() = g(y), y(T) = yT ,
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where CDα
+ is the Caputo fractional derivative, f : [,T]×R→R is a continuous function,

g : C(J ,R) →R is a continuous function and yT ∈R.
Motivated by all the works above, this paper deals with the existence and uniqueness of

solutions for the boundary-value problem of the fractional differential equations

CDα
+x(t) = f

(
t,x(t), CDβ

+x(t)
)
, t ∈ [, ], (.)

x() + x′() = y(x),
∫ 


x(t)dt =m, (.)

x′′() = x′′′() = · · · = x(n–)() = , (.)

where CDα
+, CD

β
+ are the Caputo fractional derivatives, f : [, ] × R × R → R is a con-

tinuous function, y : C([, ],R) → R is a continuous function, and m ∈ R, n –  < α < n
(n≥ ),  < β <  is a real number.
The paper is organized as follows. In Section , we shall introduce some definitions and

lemmas to prove ourmain results. In Section , we establish some criteria for the existence
for the boundary problem (.) with nonlocal boundary conditions (.) and (.) by using
the Banach fixed-point theorem and the Schauder fixed-point theorem. Finally, we present
three examples to illustrate our main results.

2 Preliminaries
In this section, we introduce notations and definitions of fractional calculus, and we prove
a lemma before stating our main results.
Let X = {x : x ∈ C[, ],Dβx ∈ C[, ]}. We define ‖x‖ =maxt∈[,] |x(t)|, ‖x‖ =max{‖x‖,

‖Dβx‖}; then (X,‖ · ‖) is a Banach space.

Definition . ([]) For a continuous function y : (,∞) → R, the Riemann-Liouville
fractional integral of order α is defined as

Iα+y(t) =


�(α)

∫ t


(t – s)α–y(s)ds, α > ,

provided the right side integral is pointwise defined on [,∞).

Definition . ([]) The Caputo fractional derivative of order α for a continuous function
y(t) is defined by

CDα
+y(t) =


�(n – α)

∫ t


(t – s)n–α–y(n)(s)ds, α > ,

where � is the Gamma function, n = [α] + , and [α] denotes the integer part of number α,
and provided the right side integral is pointwise defined on [,∞).

Lemma . ([]) Let u ∈ Cm[,T] and q ∈ (m – ,m],m ∈N . Then for t ∈ [,T],

IqCDq
+u(t) = u(t) –

m–∑
k=

tk

k!
u(k)().
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Lemma . Let n –  < α < n; if x ∈ Cn[, ] is a solution of the following fractional differ-
ential equations:

CDα
+x(t) = h(s), t ∈ [, ],

x() + x′() = y(x),
∫ 


x(t)dt =m,

x′′() = x′′′() = · · · = x(n–)() = ,

then x(t) can be represented by

x(t) =


�(α)

∫ t


(t – s)α–h(s)ds + ( – t)m + (t – )y(x)

+
(t – )
�(α + )

∫ 


( – s)αh(s)ds. (.)

Proof By Lemma . and the boundary conditions x′′() = x′′′() = · · · = x(n–)() = , we
have

x(t) = Iα+h(t) + x() + x′()t +
x′′()
!

t + · · · + x(n–)()
(n – )!

tn–

=


�(α)

∫ t


(t – s)α–h(s)ds + x() + x′()t.

Hence

∫ 


x(t)dt =

∫ 



∫ t



(t – s)α–

�(α)
h(s)dsdt + x() +



x′().

By the boundary conditions x() + x′() = y(x),
∫ 
 x(t)dt =m, we obtain

x() = m – y(x) –


�(α + )

∫ 


( – s)αh(s)ds

and

x′() =


�(α + )

∫ 


( – s)αh(s)ds + y(x) – m.

Consequently

x(t) =


�(α)

∫ t


(t – s)α–h(s)ds + ( – t)m + (t – )y(x)

+
(t – )
�(α + )

∫ 


( – s)αh(s)ds. �

Lemma . (Schauder’s fixed point theorem) Let (E,d) be a complete metric space, let U
be a closed convex subset of E, and let A :U →U be amapping such that the set {Au : u ∈U}
is relatively compact in E. Then A has at least one fixed point.
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3 Main results
Now we are in the position to establish the main results.

Theorem . Assume that:
(H) There exists a constant l >  such that

|f (t,x, z) – f (t,x, z)| ≤ l(|x – x| + |z – z|), for each t ∈ [,T] and all
x,x, z, z ∈R.

(H) There exists a constant l >  such that |y(x) – y(x)| ≤ l‖x – x‖, for each
x,x ∈ C([,T],R).

(H) θ =max{( 
�(α+) +


�(α+) )l + l, 

�(–β) [(


�(α) +


�(α+) )l + l]} < .
Then the BVP (.)-(.) has a unique solution.

Proof Transform the BVP (.)-(.) into a fixed-point problem. Consider the operator

F : X → X,

defined by

F(x)(t) =


�(α)

∫ t


(t – s)α–f

(
s,x(s),CDβx(s)

)
ds + ( – t)m + (t – )y(x)

+
(t – )
�(α + )

∫ 


( – s)αf

(
s,x(s),CDβx(s)

)
ds.

Clearly, the fixed points of the operator F are solutions of the problem (.)-(.).
Let x,x ∈ X. Then

∣∣F(x)(t) – F(x)(t)
∣∣

≤ 
�(α)

∫ t


(t – s)α–

∣∣f (s,x(s),CDβx(s)
)
– f

(
s,x(s),CDβx(s)

)∣∣ds

+
( – t)
�(α + )

∫ 


( – s)α

∣∣f (s,x(s),CDβx(s)
)
– f

(
s,x(s),CDβx(s)

)∣∣ds
+

∣∣y(x) – y(x)
∣∣.

Consider the conditions (H) and (H), implying that

∣∣f (t,x(t),CDβx(t)
)
– f

(
t,x(t),CDβx(t)

)∣∣
≤ l

(∣∣x(t) – x(t)
∣∣ + ∣∣CDβx(t) – CDβx(t)

∣∣)
≤ l

(‖x – x‖ +
∥∥CDβx – CDβx

∥∥)
≤ l‖x – x‖

and

∣∣y(x) – y(x)
∣∣ ≤ l‖x – x‖ ≤ l‖x – x‖,
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thus, we have

∥∥F(x) – F(x)
∥∥ ≤ 

�(α)

∫ t


(t – s)α– ds · l‖x – x‖ + l‖x – x‖

+


�(α + )

∫ 


( – s)α ds · l‖x – x‖

≤
[(


�(α + )

+


�(α + )

)
l + l

]
‖x – x‖.

As

∣∣(Fx)′(t) – (Fx)′(t)
∣∣

≤ 
�(α – )

∫ t


(t – s)α–

∣∣f (s,x(s),CDβx(s)
)
– f

(
s,x(s),CDβx(s)

)∣∣ds

+


�(α + )

∫ 


( – s)α

∣∣f (s,x(s),CDβx(s)
)
– f

(
s,x(s),CDβx(s)

)∣∣ds
+ 

∣∣y(x) – y(x)
∣∣

≤ 
�(α – )

∫ t


(t – s)α– ds · l‖x – x‖ + l‖x – x‖

+


�(α + )

∫ 


( – s)α ds · l‖x – x‖

≤
[(


�(α)

+


�(α + )

)
l + l

]
‖x – x‖,

we obtain

∣∣CDβ (Fx)(t) – CDβ (Fx)(t)
∣∣ ≤ 

�( – β)

∫ t


(t – s)–β

∣∣(Fx)′(s) – (Fx)′(s)
∣∣ds

≤ 
�( – β)

[(


�(α)
+


�(α + )

)
l + l

]
‖x – x‖.

Consequently

‖Fx – Fx‖ =max
{∥∥F(x) – F(x)

∥∥,∥∥CDβ (Fx) – CDβ (Fx)
∥∥} ≤ θ‖x – x‖,

then F is a contraction with θ < . As a consequence of the Banach fixed-point theorem,
we deduce that F has a fixed point which is the unique solution of the problem (.)-(.).
The proof is complete. �

Next, we will use the Schauder’ fixed-point theorem to prove our result. For the sake of
convenience, we set

M = max
t∈[,]

∣∣f (t,x(t),CDβx(t)
∣∣, M = max

t∈[,]
∣∣y(x(t))∣∣,

A =
(


�(α + )

+


�(α + )

)
M +M + |m|,

B =
(


�(α – β + )

+


�( – β)�(α + )

)
M +


�( – β)

(
M + |m|).

http://www.advancesindifferenceequations.com/content/2014/1/25
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Theorem . Assume f : [, ]×R×R → R is continuous, y : (C[, ],R) → R is contin-
uous. Then the BVP (.)-(.) has a solution.

Proof Let E = {x : x ∈ X,‖x‖ ≤ r}, where r =max{A,B}. First, we prove that F : E → E.
In fact, for each t ∈ [, ], we have

∣∣F(x)(t)∣∣ ≤ 
�(α)

∫ t


(t – s)α–

∣∣f (s,x(s),CDβx(s)
)∣∣ds + |m| + ∣∣y(x)∣∣

+


�(α + )

∫ 


( – s)α

∣∣f (s,x(s),CDβx(s)
)∣∣ds

≤ 
�(α)

∫ t


(t – s)α–Mds + |m| +M +


�(α + )

∫ 


( – s)αMds

≤
(


�(α + )

+


�(α + )

)
M +M + |m| = A,

∥∥F(x)∥∥ = max
t∈[,]

∣∣F(x)(t)∣∣ ≤
(


�(α + )

+


�(α + )

)
M +M + |m| = A.

Considering

F ′(x)(t) =


�(α – )

∫ t


(t – s)α–f

(
s,x(s),CDβx(s)

)
ds – m + y(x)

+


�(α + )

∫ 


( – s)αf

(
s,x(s),CDβx(s)

)
ds,

and
∫ t


(t – s)–βsα– ds = tα–βB(α,  – β),

B(α,n – β) =
�(α)�(n – β)

(α – β + n – )�(α – β + n – )
,

we obtain

CDβ (Fx)(t) =


�( – β)

∫ t


(t – s)–β

(


�(α – )

∫ s


(s – τ )α–f

(
τ ,x(τ ),CDβx(τ )

)
dτ – m

+ y(x) +


�(α + )

∫ 


( – τ )αf

(
τ ,x(τ ),CDβx(τ )

)
dτ

)
ds

=


�(α – β)

∫ t


(t – s)α––β f

(
s,x(s),CDβx(s)

)
ds +

t–β

�( – β)
(
y(x) –m

)

+
t–β

�( – β)�(α + )

∫ 


( – s)αf

(
s,x(s),CDβx(s)

)
ds,

thus

∥∥CDβ (Fx)
∥∥ ≤ 

�(α – β)

∫ t


(t – s)α––β

∣∣f (s,x(s),CDβx(s)
)∣∣ds + 

�( – β)
(∣∣y(x)∣∣ + |m|)

+


�( – β)�(α + )

∫ 


( – s)α

∣∣f (s,x(s),CDβx(s)
)∣∣ds

≤
(


�(α – β + )

+


�( – β)�(α + )

)
M +


�( – β)

(
M + |m|) = B.
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Hence, we can conclude that

‖Fx‖ =max
{‖Fx‖,∥∥CDβ (Fx)

∥∥} ≤ r.

From the expression of (Fx)(t) and CDβ (Fx)(t), it is easy to see that (Fx)(t) ∈ C[, ],
CDβ (Fx)(t) ∈ C[, ]. Consequently F : E → E.
In what follows we show that F is completely continuous.
(a) For each t ∈ [, ], we have

‖Fx‖ ≤
(


�(α + )

+


�(α + )

)
M +M + |m| = A,

∥∥CDβ (Fx)
∥∥ ≤

(


�(α – β + )
+


�( – β)�(α + )

)
M +


�( – β)

(
M + |m|) = B,

which shows that F is uniform bounded.
(b) For each t, t ∈ [, ], t < t, and it implies that

∣∣F(x)(t) – F(x)(t)
∣∣

≤
∣∣∣∣ 
�(α)

∫ t



[
(t – s)α– – (t – s)α–

]
f
(
s,x(s),CDβx(s)

)
ds

+


�(α)

∫ t

t
(t – s)α–f

(
s,x(s),CDβx(s)

)
ds

∣∣∣∣
+ 

(
|m| + ∣∣y(x)∣∣ + 

�(α + )

∫ 


( – s)α

∣∣f (s,x(s),CDβx(s)
)∣∣ds

)
(t – t)

≤ M
�(α)

∫ t



[
(t – s)α– – (t – s)α–

]
ds +

M
�(α)

∫ t

t
(t – s)α– ds

+
(
|m| + M +

M
�(α + )

)
(t – t)

=
M

�(α + )
(
tα – tα

)
+

(
|m| + M +

M
�(α + )

)
(t – t) (.)

and

∣∣CDβ (Fx)(t) – CDβ (Fx)(t)
∣∣ ≤

∣∣∣∣ 
�(α – β)

∫ t


(t – s)α––β f

(
s,x(s),CDβx(s)

)
ds

–


�(α – β)

∫ t


(t – s)α––β f

(
s,x(s),CDβx(s)

)
ds

∣∣∣∣
+


�( – β)

(∣∣y(x)∣∣ + |m|)(t–β
 – t–β


)

+
(t–β

 – t–β
 )

�( – β)�(α + )

∫ 


( – s)α

∣∣f (s,x(s),CDβx(s)
)∣∣ds

≤ M
�(α – β + )

(
tα–β
 – tα–β


)
+
(M + |m|)

�( – β)
(
t–β
 – t–β


)

+
M

�(α + )�( – β)
(
t–β
 – t–β


)
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/25
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The right-hand sides of equations (.) and (.) tend to zero when t → t, so F is com-
pact as consequence of the Arzela-Ascoli theorem, and F is continuous. We claim that F
is completely continuous. Combing the two steps above with lemma ., we deduce that
the problem (.)-(.) has a solution on E. �

Theorem . Assume that f : [, ] × R × R → R is continuous, y : (C[, ],R) → R is
continuous, and they satisfy
(H) |f (t,x, z)| ≤ k(t) + c|x|ρ + c|z|ρ , x, z ∈R;
(H) |y(x)| ≤ c‖x‖ρ , x ∈ C([, ],R);

where k(t) ≥  ∈ L[, ],  < ρi < , and ci ≥  for i = , , . Then the BVP (.)-(.) has a
solution.

Proof First, we define

U =
{
x : x ∈ X,‖x‖ ≤ R

}
,

where

R ≥ max

{
(Pc)


–ρ , (Pc)


–ρ , (c)


–ρ ,

(Qc)


–ρ , (Qc)


–ρ ,
(

c
�( – β)

) 
–ρ

, δ, η

}

and

P =


�(α + )
+


�(α + )

,

Q =


�(α – β + )
+


�( – β)�(α + )

,

δ =


�(α)

∫ t


(t – s)α–k(s)ds +


�(α + )

∫ 


( – s)αk(s)ds + |m|,

η =


�(α – β)

∫ t


(t – s)α––βk(s)ds +


�( – β)�(α + )

∫ 


( – s)αk(s)ds +

|m|
�( – β)

.

Now we prove that F :U → U . For any x ∈U , we have

‖Fx‖ ≤ 
�(α)

∫ t


(t – s)α–

∣∣f (s,x(s),CDβx(s)
)∣∣ds + |m| + ∣∣y(x)∣∣

+


�(α + )

∫ 


( – s)α

∣∣f (s,x(s),CDβx(s)
)∣∣ds

≤ δ +


�(α)

∫ t


(t – s)α– ds

(
cRρ + cRρ

)
+ cRρ

+


�(α + )

∫ 


( – s)α ds

(
cRρ + cRρ

)

≤ δ +
(
cRρ + cRρ

)
P + cRρ ,

∥∥CDβ (Fx)
∥∥ ≤ 

�(α – β)

∫ t


(t – s)α––β

∣∣f (s,x(s),CDβx(s)
)∣∣ds + 

�( – β)
(∣∣y(x)∣∣ + |m|)

http://www.advancesindifferenceequations.com/content/2014/1/25
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+


�( – β)�(α + )

∫ 


( – s)α

∣∣f (s,x(s),CDβx(s)
)∣∣ds

≤ η +


�(α – β)

∫ t


(t – s)α––β ds

(
cRρ + cRρ

)
+

cRρ

�( – β)

+


�( – β)�(α + )

∫ 


( – s)α ds

(
cRρ + cRρ

)

≤ η +
(
cRρ + cRρ

)
Q +

cRρ

�( – β)
.

Considering ‖Fx‖ =max{‖Fx‖,‖CDβ (Fx)‖}, we can conclude that

‖Fx‖ ≤ max

{
δ +

(
cRρ + cRρ

)
P + cRρ ,η +

(
cRρ + cRρ

)
Q +

cRρ

�( – β)

}

≤ R

+
R

+
R

+
R


≤ R.

Considering that f , y are continuous functions, we takeM =maxt∈[,] |f (t,x(t),CDβx(t))|,
M =maxt∈[,] |y(x(t))|, and we can see that F is completely continuous by considering the
second step of Theorem ..
As a consequence of Schauder’s fixed-point theorem, we claim that the problem

(.)-(.) has a solution on U . �

4 Examples
In this section, in order to illustrate our results, we consider three examples.

Example . Consider the following boundary-value problem:

CD.
+x(t) = .tx(t) + .tCD.

+ x(t) + t, (.)

x() + x′() =
n∑
i=

cix(ti),
∫ 


x(t)dt = , (.)

x′′() = x′′′() = · · · = x(n–)() = , (.)

where  < t < t < · · · < tn < , ci, i = , , . . . ,n, are given positive constants with
∑n

i= ci <

 .

Set α = . (n = ), β = ., f (t,x(t), CD.
+ x(t)) = .tx(t) + .tCD.

+ x(t) + t, y(x) =∑n
i= cix(ti),m = . Let t ∈ [, ] and x,x, y, y ∈R,

∣∣f (t,x, z) – f (t,x, z)
∣∣ = ∣∣.tx – .tx + .tz + .tz

∣∣
≤ .

(|x – x| + |z – z|
)
.

Hence the condition (H) holds with l = .. Also we have

∣∣y(x) – y(x)
∣∣ =

∣∣∣∣∣
n∑
i=

cix(ti) –
n∑
i=

cix(ti)

∣∣∣∣∣

≤
n∑
i=

ci‖x – x‖.

http://www.advancesindifferenceequations.com/content/2014/1/25
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Hence (H) is satisfied with l =
∑n

i= ci <

 . As to (H), we can show that

(


�(α + )
+


�(α + )

)
l + l =

(


�(.)
+


�(.)

)
× . + .	 . < ,


�( – β)

[(


�(α)
+


�(α + )

)
l + l

]
	 . < .

Then by Theorem ., the problem (.)-(.) has a unique solution.

Example . Consider the following boundary-value problem:

CD.
+x(t) = (t – .)

(
x(t)ρ +

(CD.x(t)
)ρ), (.)

x() + x′() = (t – .)x(t)ρ ,
∫ 


x(t)dt = , (.)

x′′() = x′′′() = · · · = x(n–)() = , (.)

where ρi, t are given positive constants with  < ρi, t < .
Set α = . (n = ), β = ., f (t,x(t), CD.

+ x(t)) = (t –.)(x(t)ρ + (CD.x(t))ρ ), y(x) =
(t – .)x(t)ρ ,m = .
Note that

∣∣f (t,x, z)∣∣ = ∣∣(t – .)
(
xρ + zρ

)∣∣ ≤ 


(|x|ρ + |z|ρ),
∣∣y(x)∣∣ = ∣∣(t – .)x(t)ρ

∣∣ ≤ 


‖x‖ρ .

Hence the conditions (H) and (H) hold with k(t) = , c = c = c = 
 . Then by Theo-

rem ., the problem (.)-(.) has a solution.

Example . Consider the following boundary-value problem:

CD.
+x(t) = t + .tx(t)ρ + .t

(CD.x(t)
)ρ , (.)

x() = (t – .)x(t)ρ ,
∫ 


x(t)dt = , (.)

x′′() = x′′′() = · · · = x(n–)() = , (.)

where ρi, t are given positive constants with  < ρi, t < .
Set α = . (n = ), β = ., f (t,x(t), CD.

+ x(t)) = t + .tx(t)ρ + .t(CD.x(t))ρ ,
y(x) = (t – .)x(t)ρ ,m = .
Note that

∣∣f (t,x, z)∣∣ ≤  + .
(|x|ρ + |z|ρ), ∣∣y(x)∣∣ ≤ 


‖x‖ρ .

Hence the conditions (H) and (H) hold with k(t) = , c = c = ., c = 
 . Then by

Theorem ., the problem (.)-(.) has a solution.

http://www.advancesindifferenceequations.com/content/2014/1/25
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