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Abstract
In this paper, we employ the complex method to first obtain all meromorphic exact
solutions of complex Petviashvili equation, and then find all exact solutions of
Petviashvili equation. The idea introduced in this paper can be applied to other
non-linear evolution equations. Our results show that the complex method is simpler
than other methods. Finally, we give some computer simulations to illustrate our
main results.
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1 Introduction andmain results
In  and , Zhang et al. [, ] obtained abundant exact solutions of the Petviashvili
equation by using the modified mapping method and the availability of symbolic compu-
tation. These solutions include the Jacobi elliptic function solutions, triangular function
solutions, and soliton solutions. In this paper, we employ the complex method to obtain
first all traveling meromorphic exact solutions of complex Petviashvili equation, and then
find all exact solutions of the Petviashvili equation.
In order to state our main result, we need some concepts and some notation. A mero-

morphic function w(z) means that w(z) is holomorphic in the complex plane C except for
poles. α, b, c, ci, and cij are constants, which may be different from each other in different
places. We say that a meromorphic function f belongs to the class W if f is an elliptic
function, or a rational function of eαz (α ∈C), or a rational function of z.
The Petviashvili equation [, ] is

∂

∂t
(∇φ – φ

)
+CR( + φ)

∂φ

∂t
+ J

(
φ,∇φ

)
= ,

where

∇ =
∂

∂x
+

∂

∂y
, J(A,B) =

∂A
∂x

∂B
∂y

–
∂A
∂y

∂B
∂x

,

CR =
βLR√
gH

are two-dimensional Laplace and Jacobian operators, respectively, CR is the linear zero-
dimensional phase velocity of Rossby wave, LR is the characteristic length about x and y,

©2014Huang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2014/1/24
mailto:wjyuan1957@126.com
http://creativecommons.org/licenses/by/2.0


Huang et al. Advances in Difference Equations 2014, 2014:24 Page 2 of 9
http://www.advancesindifferenceequations.com/content/2014/1/24

H is the average thickness of the fluid, and g is the acceleration of gravity; β = ∂f
∂y , and


f is

the characteristic value about t.
Substituting the traveling wave transformation

φ = w(z), z = kx + ly –ωt

into the Petviashvili equation gives a non-linear ordinary differential equation

–ω
(
k + l

)
w′′′ + kCRww′ + (ω + kCR)w′ = ,

and integrating it yields the auxiliary ordinary differential equation

–ω
(
k + l

)
w′′ +



kCRw + (ω + kCR)w + d = , ()

where ω, k, l, CR are constants.
Our main result is Theorem .

Theorem  Equation () is integrable if and only if dkCR = –ω(k + l)g + (ω+kCk),
F = E – gE– g, g, and E are arbitrary. Furthermore, the general solutions of the Eq. ()
are of the following form.

(I) The elliptic general solutions are

wd(z) =
ω(k + l)

kCR

{
–℘(z) +




[
℘ ′(z) + F
℘(z) – E

]}

–
ω(k + l)E

kCR
–  –

ω

kCR
, ()

if dkCR = –ω(k + l)g + (ω + kCk), F = E – gE – g, g and E are
arbitrary.

(II) The simply periodic solutions are

ws(z) =
ω(k + l)

kCR
α coth

α


(z – z) –

ω(k + l)
kCR

α –  –
ω

kCR
, ()

if dkCR = –ω(k + l)α + (ω + kCk), α �= , z ∈C.
(III) The rational function solutions are

wR(z) =
ω(k + l)
kCR(z – z)

–  –
ω

kCR
, ()

if dkCR = (ω + kCk), z ∈C.

2 Preliminary lemmas and the complexmethod
In order to explain our complex method and give the proof of Theorem , we need some
lemmas and results.
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Lemma  [, ] Let k ∈ N, then any meromorphic solution w with at least one pole of the
kth order Briot-Bouquet equation,

F
(
w(k),w

)
=

n∑
i=

Pi(w)
(
w(k))i = ,

belongs to W , where Pi(w) are polynomials in w with constant coefficients.

Setm ∈N := {, , , . . .}, rj ∈ N =N∪ {}, r = (r, r, . . . , rm), j = , , . . . ,m. Define

Mr[w](z) :=
[
w(z)

]r[w′(z)
]r[w′′(z)

]r · · · [w(m)(z)
]rm .

p(r) := r + r + · · · + rm is called the degree of Mr[w]. The differential polynomial
P(w,w′, . . . ,w(m)) is defined as follows:

P
(
w,w′, . . . ,w(m)) :=∑

r∈I
arMr[w],

where ar are constants, and I is a finite index set. The total degree of P(w,w′, . . . ,w(m)) is
defined by degP(w,w′, . . . ,w(m)) :=maxr∈I{p(r)}.
We will consider the following complex ordinary differential equations:

P
(
w,w′, . . . ,w(m)) = bwn + c, ()

where b �= , c are constants, n ∈N.

Definition  Let p,q ∈ N. Suppose that Eq. () has a meromorphic solution w with at
least one pole; then we say that Eq. () satisfies the weak 〈p,q〉 condition if substituting the
Laurent series

w(z) =
∞∑

k=–q

ckzk , q > , c–q �=  ()

into Eq. () we can determine p distinct Laurent singular parts in the form below:

–∑
k=–q

ckzk .

Lemma  [–] Let p, l,m,n ∈ N, degP(w,w(m)) < n. Suppose that the mth order Briot-
Bouquet equation

P
(
w(m),w

)
= bwn + c ()

satisfies the weak 〈p,q〉 condition; then all meromorphic solutions w belong to the class W .
If for some values of parameters such a solution w exists, then other meromorphic solutions
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form a one-parametric family w(z – z), z ∈ C. Furthermore each elliptic solution with a
pole at z =  can be written as

w(z) =
l–∑
i=

q∑
j=

(–)jc–ij
(j – )!

dj–

dzj–

(



[
℘ ′(z) + Bi

℘(z) –Ai

]

–℘(z)
)

+
l–∑
i=

c–i


℘ ′(z) + Bi

℘(z) –Ai
+

q∑
j=

(–)jc–lj
(j – )!

dj–

dzj–
℘(z) + c, ()

where c–ij are given by Eq. (), B
i = A

i – gAi – g, and
∑l

i= c–i = .
Each rational function solution w := R(z) is of the form

R(z) =
l∑

i=

q∑
j=

cij
(z – zi)j

+ c, ()

with l (≤ p) distinct poles of multiplicity q.
Each simply periodic solution is a rational function R(ξ ) of ξ = eαz (α ∈ C). R(ξ ) has l

(≤ p) distinct poles of multiplicity q, and it is of the form

R(ξ ) =
l∑

i=

q∑
j=

cij
(ξ – ξi)j

+ c. ()

In order to give the representations of the elliptic solutions, we need some notation and
results concerning the elliptic function [].
Let ω, ω be two given complex numbers such that Im ω

ω
> , let L = L[ω, ω] be dis-

crete subset L[ω, ω] = {ω | ω = nω + mω,n,m ∈ Z}, which is isomorphic to Z×Z.
The discriminant is 	 =	(c, c) := c – c and

sn = sn(L) :=
∑

n≥,n∈N


ωn .

The Weierstrass elliptic function ℘(z) := ℘(z, g, g) is a meromorphic function with
double periods ω, ω, and satisfying the equation

(
℘ ′(z)

) = ℘(z) – g℘(z) – g, ()

where g = s, g = s and 	(g, g) �= .
On changing Eq. () to the form

(
℘ ′(z)

) = 
(
℘(z) – e

)(
℘(z) – e

)(
℘(z) – e

)
, ()

we have e = ℘(ω), e = ℘(ω), e = ℘(ω +ω).
Inversely, given two complex numbers g and g such that 	(g, g) �= , there exists a

Weierstrass elliptic function ℘(z) with double periods ω, ω such that the above holds.

Lemma  [, ] The Weierstrass elliptic functions ℘(z) := ℘(z, g, g) have two successive
degeneracies and in addition we have the following.
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(I) Degeneracy to simply periodic functions (i.e., rational functions of one exponential
ekz) occurs according to

℘
(
z, d, –d) = d –

d


coth
√
d

z ()

if one root ej is double (	(g, g) = ).
(II) Degeneracy to rational functions of z occurs according to

℘(z, , ) =

z

if one root ej is triple (g = g = ).
(III) The addition formula holds according to

℘(z – z) = –℘(z) –℘(z) +



[
℘ ′(z) +℘ ′(z)
℘(z) –℘(z)

]

. ()

By the above lemmas, we can give a new method below, called, say, the complex method,
to find exact solutions of some PDEs.
Step . Substituting the transform T : u(x, y, t) → w(z), (x, y, t) → z into a given PDE

gives a non-linear ordinary differential equation () or ().
Step . Substitute Eq. () into Eq. () or () to determine whether the weak 〈p,q〉

condition holds.
Step . By the indeterminate relations ()-() we find the elliptic, rational, and simply

periodic solutions w(z) of Eq. () or () with pole at z = , respectively.
Step . By Lemmas  and  we obtain all meromorphic solutions w(z – z).
Step . Substituting the inverse transform T– into these meromorphic solutions

w(z – z), we get all exact solutions u(x, t) of the originally given PDE.

3 Proof of Theorem 1
Substituting () into Eq. () we have q = , p = , c– = ω(k+l)

kCR
, c– = , c = – – ω

kCR
,

c = , c = (ω+kCR)–dkCR
ω(k+l)kCR

, c = , c is arbitrary.
Hence, Eq. () satisfies the weak 〈, 〉 condition and is a second-order Briot-Bouquet

differential equation. Obviously, Eq. () satisfies the dominant condition. So, by Lemma ,
we know that all meromorphic solutions of Eq. () belong to W . Now we will give the
forms of all meromorphic solutions of Eq. ().
By Eq. (), we infer that the indeterminate rational solutions of Eq. () with pole at z = 

have the form of

R(z) =
c
z

+
c
z
+ c.

Substituting R(z) into Eq. (), we get

R(z) =
ω(k + l)

kCRz
–  –

ω

kCR
.
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Here dkCR = (ω + kCR). Thus for all rational solutions of Eq. ()

R(z) =
ω(k + l)
kCR(z – z)

–  –
ω

kCR
, ()

where dkCR = (ω + kCR), z ∈C.
In order to have simply periodic solutions, set ξ = eαz , put w = R(ξ ) into Eq. (); then

–ω
(
k + l

)[
ξR′ + ξ R′′] + (w + kCR)R +



kCRR + d = . ()

Substituting

R(ξ ) =
c

(ξ – )
+

c
ξ – 

+ c

into Eq. (), we obtain

R(z) =
ω(k + l)α

kCR(ξ – )
+
ω(k + l)α

kCR(ξ – )
+

ω(k + l)α

kCR
–  –

ω

kCR
.

Here dkCR = (ω + kCR) –ω(k – l)α. Substituting ξ = eαz into the above relation, and
then we get simply periodic solutions of Eq. () with pole at z = :

ws(z) =
ω(k + l)α

kCR(eαz – )
+
ω(k + l)α

kCR(eαz – )
+

ω(k + l)α

kCR
–  –

ω

kCR

=
ω(k + l)αeαz

kCR(eαz – )
+

ω(k + l)α

kCR
–  –

ω

kCR

= ws(z) =
ω(k + l)

kCR
α coth

α


(z) –

ω(k + l)
kCR

α –  –
ω

kCR
.

So all simply periodic solutions of Eq. () are obtained by

ws(z) =
ω(k + l)

kCR
α coth

α


(z – z) –

ω(k + l)
kCR

α –  –
ω

kCR
, ()

where dkCR = –ω(k + l)α + (ω + kCk), α �= , z ∈C.
From Eq. () of Lemma , we have indeterminate relations of the elliptic solutions of

Eq. () with pole at z = ,

wd(z) = c–℘(z) + c.

Putting wd(z) into Eq. (), we obtain

wd(z) =
ω(k + l)

kCR
℘(z) –  –

ω

kCR
.

Here dkCR = –ω(k + l)g + (ω+ kCk). Therefore, for all elliptic solutions of Eq. ()

wd(z) =
ω(k + l)

kCR
℘(z – z) –  –

ω

kCR
,
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Figure 1 The solution of the Petviashvili equation corresponding to wR , (a) t = –5, (b) t = 0, (c) t = 5.

where z ∈C. Making use of the addition formula of Lemma , we rewrite it in the form

wd(z) =
ω(k + l)

kCR

{
–℘(z) +




[
℘ ′(z) + F
℘(z) – E

]}

–
ω(k + l)E

kCR
–  –

ω

kCR
. ()

Here, dkCR = –ω(k + l)g + (ω + kCk), F = E – gE – g, g, and E are arbitrary.

4 Computer simulations for new solutions
In this section, we give some computer simulations to illustrate our main results. Here
we take the new rational solutions wR(z) and simply periodic solutions ws(z) to further
analyze their properties by Figures  and .
() Take k = l = , ω = CR = –, d = , z =  in wR(z).
() Take k = l = , ω = CR = –, d = , z = , α =  in ws(z).

http://www.advancesindifferenceequations.com/content/2014/1/24
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Figure 2 The solution of the Petviashvili equation corresponding to ws , (a) t = –5, (b) t = 0, (c) t = 5.

5 Conclusions
The complex method is a very important tool in finding the traveling wave exact solu-
tions of non-linear evolution equations such as the Petviashvili equation. In this paper, we
employ the complex method to obtain all meromorphic exact solutions of the complex
variant Eq. (); then we find all traveling wave exact solutions of the Petviashvili equation.
The idea introduced in this paper can be applied to other non-linear evolution equations.
Our result shows that the complex method is simpler than other methods.
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