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Abstract
In this paper, we deal with the zeros of the q-shift difference-differential polynomials
[P(f )

∏d
j=1 f (qjz + cj)sj ](k) – α(z) and (P(f )

∏d
j=1[f (qjz + cj) – f (z)]sj )(k) – α(z), where P(f ) is a

nonzero polynomial of degree n, qj , cj ∈ C \ {0} (j = 1, . . . ,d) are constants,
n,d, sj (j = 1, . . . ,d) ∈ N+ and α(z) is a small function of f . The results of this paper are
an extension of the previous theorems given by Chen and Chen and Qi. We also
investigate the value sharing for q-shift difference polynomials of entire functions and
obtain some results which extend the recent theorem given by Liu, Liu and Cao.
MSC: 39A50; 30D35
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1 Introduction andmain results
The purpose of this paper is to study some properties of zeros and uniqueness of com-
plex q-shift difference polynomials of meromorphic functions. A polynomial Qq(z, f ) can
be called a q-shift difference-differential polynomial in f whenever Qq(z, f ) is a polyno-
mial in f (z), its q-shift f (qz + c) and their derivatives, with small functions of f (z) as the
coefficients. The fundamental results and the standard notations of the Nevanlinna value
distribution theory of meromorphic functions will be used (see [, ]). A meromorphic
function f means f is meromorphic in the complex plane. If no poles occur, then f re-
duces to an entire function. Given a meromorphic function f (z), a meromorphic function
a(z) is called a small function with respect to f if T(r,a(z)) = S(r, f ), where S(r, f ) is used
to denote any quantity satisfying S(r, f ) = o(T(r, f )) for all r outside a possible exceptional
set E of finite logarithmic measure limr→∞

∫
[,r)∩E

dt
t < ∞. We also use S(r, f ) to denote

any quantity satisfying S(r, f ) = o(T(r, f )) for all r on a set F of logarithmic density ; the
logarithmic density of a set F is defined by

lim sup
r→∞


log r

∫
[,r]∩F


t
dt.

In addition, for some a ∈ C ∪ {∞}, if the zeros of f (z) – a and g(z) – a (if a = ∞, zeros of
f (z) – a and g(z) – a are the poles of f (z) and g(z), respectively) coincide in locations and
multiplicities we say that f (z) and g(z) share the value a CM (counting multiplicities) and
if they coincide in locations only we say that f (z) and g(z) share a IM (ignoring multiplic-
ities).
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Definition . (see [, ]) Let l be a nonnegative integer or infinity. For a ∈ C ∪ {∞}, we
denote by El(a; f ) the set of all a-points of f where an a-point of multiplicity k is counted
k times if k ≤ l and l +  times if k > l. If El(a; f ) = El(a; g), we say that f , g share the value
a with weight l.

Definition . (see []) When f and g share  IM, we denote by NL(r, 
f – ) the counting

function of the -points of f whose multiplicities are greater than -points of g , where
each zero is counted only once; similarly, we have NL(r, 

g– ). Let z be a zero of f –  of
multiplicity p and a zero of g– ofmultiplicity q, we also denote byN(r, 

f – ) the counting
function of those -points of f where p = q = .

In recent years, there has been an increasing interest in studying difference equations,
difference products and q-differences in the complex plane C, and a number of papers
(including [–]) have focused on the value distribution and uniqueness of differences
and differences operator analogs of Nevanlinna theory.
For a transcendentalmeromorphic function f of finite order, herein and hereinafter, c is a

nonzero complex constant and a(z) is small function with respect to f , Liu et al. [], Chen
et al. [], and Luo and Lin [] studied the zeros distributions of difference polynomials
of meromorphic functions and obtained: if n ≥ , then f (z)nf (z + c) – α(z) has infinitely
many zeros [, Theorem .]; if n >m, then P(f )f (z + c) – a(z) has infinitely many zeros
(see [, Theorem ]), where P(z) = anzn +an–zn– + · · ·+az+a is a nonzero polynomial,
where a,a, . . . ,an ( 	= ) are complex constants, andm is the number of the distinct zeros
of P(z).
For transcendental meromorphic (resp. entire) function f of zero order and nonzero

complex constant q, Zhang and Korhonen [] studied the value distribution of q-
difference polynomials of meromorphic functions and obtained the result that if n ≥ 
(resp. n ≥ ), then f (z)nf (qz) assumes every nonzero value a ∈ C infinitely often (see [,
Theorem .]).
Recently, Liu and Qi [] firstly investigated the value distributions for q-shift of mero-

morphic function and obtained the following result.

Theorem A (see [, Theorem .]) Let f be a zero-order transcendental meromorphic
function, n ≥ , q ∈ C \ {}, η ∈ C, and let R(z) be a rational function. Then the q-shift
difference polynomial f (z)nf (qz + η) – R(z) has infinitely many zeros.

In this paper, we assume qj, cj ∈ C \ {} (j = , . . . ,d) are constants, n,d, sj (j = , . . . ,d) ∈
N+, λ = s +s + · · ·+sd , and a(z) is a small function of f .Wewill study the value distribution
of difference polynomials of more general form,

F(z) = P(f )
d∏
j=

f (qjz + cj)sj , ()

F(z) = P(f )
d∏
j=

[
f (qjz + cj) – f (z)

]sj , ()

where P(f ) is a nonzero polynomial of degree n, m is the number of the distinct zeros of
P(z), and we obtain the following results.
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Theorem . Let f be a transcendental meromorphic (resp. entire) function of zero order
and F(z) be stated as in (). If k ∈N and n >m(k +)+d++λ (resp. n >m(k +)+d–λ).
Then (F(z))(k) – a(z) has infinitely many zeros, where (F(z))(k) = F(z), if k = .

Theorem . Let f be a transcendental meromorphic (resp. entire) function of zero order
and F(z) be stated as in ().Assume k ∈N and n > (m+d)(k +)+λ+d+ (resp. n > (m+
d)(k + )). Then (F(z))(k) – a(z) has infinitely many zeros, provided that f (qjz + cj) 	= f (z),
j = , , . . . ,d.

Recently, there were obtained some results on the existence and growth of solutions of
difference-differential equations (see [, ]). Here, from Theorem . and Theorem .,
we get the following result on some nonlinear q-shift difference-differential equations.

Corollary . Let p(z), q(z) be nonzero polynomials and F(z) be stated as in (). Then the
nonlinear q-shift difference-differential equation

[
F(z)

](k) – p(z) = q(z) ()

has no transcendental meromorphic solution of zero order, provided that n≥ λ + .

Corollary . Let p(z), q(z) be nonzero polynomials and F(z) be stated as in (). Then the
nonlinear q-shift difference-differential equation

[
F(z)

](k) – p(z) = q(z) ()

has no transcendental meromorphic solution of zero order, provided that f (qjz + cj) 	= f (z),
j = , , . . . ,d, and n≥ λ + .

For the uniqueness of difference and q-difference of meromorphic functions, some re-
sults had been obtained (see [, –]). Here, we only state some of the latest theorems
as follows.

Theorem B (see [, Theorem ]) Let f and g be transcendental entire functions of finite
order, c be a nonzero complex constant, P(z) be stated as in Theorem ., and let n > � +
be an integer, where � =m + m, m is the number of the simple zero of P(z), and m is
the number of multiple zeros of P(z). If P(f )f (z + c) and P(g)g(z + c) share  CM, then one
of the following results holds:

(i) f ≡ tg for a constant t such that tl = , where l =GCD{λ,λ, . . . ,λn} and

λi =

{
i + , ai 	= ,
n + , ai = ,

i = , , , . . . ,n.

(ii) f and g satisfy the algebraic equation R(f , g) ≡ , where
R(ω,ω) = P(ω)ω(z + c) – P(ω)ω(z + c);

(iii) f (z) = eα(z), g(z) = eβ(z), where α(z) and β(z) are two polynomials, b is a constant
satisfying α + β ≡ b and ane(n+)b = .

http://www.advancesindifferenceequations.com/content/2014/1/249
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In this paper, we will investigated the uniqueness problem of q-shifts of entire functions
and obtain the following results.

Theorem . Let f , g be transcendental entire functions of zero order, F(z) be stated as in
() and

G(z) = P(g)
d∏
j=

g(qjz + cj)sj ,

where � is stated as in Theorem B. If F(z) and G(z) share  CM and n >max{(� + d) –
λ,λ}, then one of the following cases holds:

(i) f ≡ tg for a constant t such that tκ =  where κ =GCD{λ + λ,λ + λ, . . . ,λn + λ} and

λi =

{
i + , ai 	= ,
n + , ai = ,

i = , , , . . . ,n.

(ii) f and g satisfy the algebraic equation R(f , g) ≡ , where

R(ω,ω) = P(ω)
d∏
j=

ω(qjz + cj)sj – P(ω)
d∏
j=

ω(qjz + cj)sj .

Theorem . Under the assumptions of Theorem ., if

El

(
;P(f )

d∏
j=

f (qjz + cj)sj
)
= El

(
;P(g)

d∏
j=

g(qjz + cj)sj
)

and l, n,m are integers satisfying one of the following conditions:
(I) l ≥ , n >max{� + d – λ,λ};
(II) l = , n >max{� + d +m – λ – dχ ,λ};
(III) l = , n >max{� + d + m – λ – dχ ,λ};
(IV) l = , n >max{� + d + m – λ – dχ ,λ}.

Then the conclusions of Theorem . hold, where χ =min{
(, f ),
(, g)}.

2 Some lemmas
In the following, we explain some definitions and notations which are used in this paper.
For a ∈C∪ {∞}, we define


(a, f ) =  – lim sup
r→∞

N(r, 
f –a )

T(r, f )
.

For a ∈ C∪ {∞} and k is a positive integer, we denote by N (k(r, 
f –a ) the counting function

of those a-points of f whose multiplicities are not less than k in counting the a-points
of f we ignore the multiplicities (see []) and Nk(r, 

f –a ) = N(r, 
f –a ) + N ((r, 

f –a ) + · · · +
N (k(r, 

f –a ).

Lemma . (see []) Let f and g be two meromorphic functions. If f and g share  CM,
then one of the following three cases holds:

http://www.advancesindifferenceequations.com/content/2014/1/249
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(i) T(r, f ) + T(r, g) ≤ N(r, f ) + N(r, g) + N(r, f ) + N(r, g ) + S(r, f ) + S(r, g);
(ii) f ≡ g ;
(iii) f · g = .

Lemma . (see []) Let f and g be two meromorphic functions, and let l be a positive
integer. If El(; f ) = El(; g), then one of the following cases must occur:

(i)

T(r, f ) + T(r, g) ≤ N(r, f ) +N(r, g) +N

(
r,

f

)
+N

(
r,

g

)
+N

(
r,


f – 

)

+N
(
r,


g – 

)
–N

(
r,


f – 

)
+N (l+

(
r,


f – 

)

+N (l+

(
r,


g – 

)
+ S(r, f ) + S(r, g);

(ii) f = (b+)g+(a–b–)
bg+(a–b) , where a ( 	= ), b are two constants.

Lemma . (see []) Let f and g be two meromorphic functions. If f and g share  IM,
then one of the following cases must occur:

(i)

T(r, f ) + T(r, g) ≤ 
[
N(r, f ) +N

(
r,

f

)
+N(r, g) +N

(
r,

g

)]

+ NL

(
r,


f – 

)
+ NL

(
r,


g – 

)
+ S(r, f ) + S(r, g);

(ii) f = (b+)g+(a–b–)
bg+(a–b) , where a ( 	= ), b are two constants.

By combining [] and [], we get the following lemma easily.

Lemma . Let f (z) be a transcendental meromorphic function of zero order and q, η be
two nonzero complex constants. Then

T
(
r, f (qz + η)

)
= T

(
r, f (z)

)
+ S(r, f ),N

(
r,


f (qz + η)

)
=N

(
r,

f

)
+ S(r, f ),

N
(
r, f (qz + η)

)
=N(r, f ) + S(r, f ),N

(
r,


f (qz + η)

)
=N

(
r,

f

)
+ S(r, f ),

N
(
r, f (qz + η)

)
=N(r, f ) + S(r, f ).

Lemma . (see [, Theorem .]) Let f (z) be a nonconstant zero-order meromorphic
function and q ∈C \ {}. Then

m
(
r,
f (qz + η)

f (z)

)
= S(r, f ),

on a set of logarithmic density .
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Lemma . Let f be a transcendental meromorphic function of zero order, and F(z) be
stated as in (). Then we have

(n – λ)T(r, f ) + S(r, f ) ≤ T
(
r,F(z)

) ≤ (n + λ)T(r, f ) + S(r, f ). ()

If f is a transcendental entire function of zero order, we have

T
(
r,F(z)

)
= T

(
r,P(f )f λ

)
+ S(r, f ) = (n + λ)T(r, f ) + S(r, f ), ()

where λ = s + s + · · · + sd .

Proof If f is a transcendental entire function of zero order, from the Valiron-Mohon’ko
lemma and Lemma ., we have

T
(
r,F(z)

)
=m

(
r,F(z)

) ≤ m
(
r,P(f )f λ(z)

)
+m

(
r,

∏d
j= f (qjz + cj)sj

f λ(z)

)

≤ m
(
r,P(f )f λ(z)

)
+ S(r, f ) = T

(
r,P(f )f λ(z)

)
+ S(r, f )

= (n + λ)T(r, f ) + S(r, f ).

On the other hand, from Lemma ., we have

(n + λ)T(r, f ) = T
(
r,P(f )f λ(z)

)
+ S(r, f ) =m

(
r,P(f )f λ(z)

)
+ S(r, f )

≤ m
(
r,F(z)

)
+m

(
r,

f λ(z)∏d
j= f (qjz + cj)sj

)

= T
(
r,F(z)

)
+ S(r, f ).

Thus, we get ().
If f is a meromorphic function of zero order, from the Valiron-Mohon’ko lemma and

Lemma ., we have

T

(
r,P(f )

d∏
j=

f (qjz+cj)sj
)

≤ T
(
r,P(f )

)
+T

(
r,

d∏
j=

f (qjz+cj)sj
)

≤ (n+λ)T(r, f )+S(r, f ).

On the other hand, from the Valiron-Mo’honko lemma and Lemma ., we have

(n + λ)T(r, f ) = T
(
r,P(f )f λ

)
+ S(r, f ) =m

(
r,P(f )f λ

)
+N

(
r,P(f )f λ

)
+ S(r, f )

≤ m
(
r,F(z)

f λ(z)∏d
j= f (qjz + cj)sj

)

+N
(
r,F(z)

f λ(z)∏d
j= f (qjz + cj)sj

)
+ S(r, f )

≤ T
(
r,F(z)

)
+ λT(r, f ) + S(r, f ).

Thus, we get (). �

Using the same method as in Lemma ., we get the following lemma easily.

http://www.advancesindifferenceequations.com/content/2014/1/249
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Lemma . Let f be a transcendental meromorphic function of zero order, and F(z) be
stated as in (). Then we have

(n – λ)T(r, f ) + S(r, f ) ≤ T
(
r,F(z)

) ≤ (n + λ)T(r, f ) + S(r, f ).

If f is a transcendental entire function of zero order, we have

T
(
r,F(z)

)
= T

(
r,P(f )

d∏
j=

[
f (qjz + cj) – f (z)

]sj) ≥ nT(r, f ) + S(r, f ).

Lemma . (see [] and [, Lemma .]) Let f be a nonconstant meromorphic function,
and p, k be positive integers. Then

T
(
r, f (k)

) ≤ T(r, f ) + kN(r, f ) + S(r, f ),

Np

(
r,


f (k)

)
≤ T

(
r, f (k)

)
– T(r, f ) +Np+k

(
r,

f

)
+ S(r, f ),

Np

(
r,


f (k)

)
≤ kN(r, f ) +Np+k

(
r,

f

)
+ S(r, f ).

Lemma. Let f (z) and g(z) be transcendental entire functions of zero order, P(z) be stated
as in Theorem .. If n > λ, then for any complex constant t 	= , we have

P(f )
d∏
j=

f (qjz + cj)sjP(g)
d∏
j=

g(qjz + cj)sj 	≡ t.

Proof For any complex constant t 	= , suppose that

P(f )
d∏
j=

f (qjz + cj)sjP(g)
d∏
j=

g(qjz + cj)sj ≡ t. ()

Suppose that the roots of P(z) =  are b,b, . . . ,bm with multiplicities l, l, . . . , lm. Then
we have l + l + · · · + lm = n. From (), we have

(f – b)l (f – b)l · · · (f – bm)lm
d∏
j=

f (qjz + cj)sj

× (g – b)l (g – b)l · · · (g – bm)lm
d∏
j=

g(qjz + cj)sj ≡ t. ()

Since f , g are nonconstant entire functions, from (), we deduce that b = b = · · · = bm = .
If fact, from (), we get that b,b, . . . ,bm are the Picard exceptional values. If m ≥  and
bj 	=  (j = , , . . . ,m), by Picard’s theorem of entire function, we can see that the Picard
exceptional values of f are at least three. Thus, we get a contradiction. Hence, m =  and
l = n, that is, there exists a complex constant γ satisfying P(f ) = an(f – γ )n and P(g) =

http://www.advancesindifferenceequations.com/content/2014/1/249
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an(g – γ )n. Then

an(f – γ )n
d∏
j=

f (qjz + cj)sjan(g – γ )n
d∏
j=

g(qjz + cj)sj ≡ t. ()

Since f , g are transcendental entire functions, by the Picard theorem, we can see that f –
γ =  and g – γ =  do not have zeros. Then we obtain f (z) = eα(z) + γ , g(z) = eβ(z) + γ

where α(z), β(z) are two nonconstant functions. From (), we see that f (qjz + cj) 	=  and
g(qjz + cj) 	= . Thus, we get γ = , that is,

anf (z)
n

d∏
j=

f (qjz + cj)sj g(z)n
d∏
j=

g(qjz + cj)sj ≡ t. ()

SetM(z) = f (z)g(z). IfM(z) is nonconstant, from (), we have

anM(z)n
d∏
j=

M(qjz + cj)sj ≡ t,

that is,

anM(z)n ≡ t∏d
j=M(qjz + cj)sj

. ()

Since f , g are transcendental entire functions of zero order, from (), Lemma . and
n > λ, we get a contradiction.
Thus,M(z) is a constant. From (), we get f (z)g(z) ≡ μ, where μ is a complex constant

satisfying anμn+λ ≡ t. Since f , g are entire functions of zero order, then f , g are constants,
which is a contradiction with f , g being transcendental. Hence,

P(f )
d∏
j=

f (qjz + cj)sjP(g)
d∏
j=

g(qjz + cj)sj 	≡ t.

This completes the proof of Lemma .. �

3 Proofs of Theorems 1.1 and 1.2

Proof of Theorem . From (), by the Valiron-Mohon’ko lemma and Lemma ., we find
that F(z) is not constant and S(r,F (k)) = S(r,F) = S(r, f ). Next, we will consider the fol-
lowing two cases when k ≥ .
Case . If f is a transcendental meromorphic function of zero order, we first suppose that

(P(f )
∏d

j= f (qjz+cj)
sj )(k) = a(z) has finitely solutions. By the Second Fundamental Theorem

for three small functions (see [, Theorem .]) and the Valiron-Mohon’ko lemma, we

http://www.advancesindifferenceequations.com/content/2014/1/249


Wang et al. Advances in Difference Equations 2014, 2014:249 Page 9 of 16
http://www.advancesindifferenceequations.com/content/2014/1/249

have

T
(
r,F (k)) ≤ N

(
r,F (k)) +N

(
r,


F (k)

)
+N

(
r,


F (k) – a(z)

)
+ S

(
r,F (k))

≤ N(r, f ) +
d∑
j=

N
(
r, f (qjz + cj)

)
+N

(
r,


F (k)

)
+ S

(
r,F (k))

≤ (d + )T(r, f ) + T
(
r,F (k)) – T(r,F) +Nk+

(
r,


F (k)

)
+ S

(
r,F (k)).

By Lemma . and Lemma ., we obtain

(n – λ)T(r, f ) + S(r, f )

≤ T(r,F) ≤ (d + )T(r, f ) +Nk+

(
r,


F (k)

)
+ S(r, f )

≤ (d + )T(r, f ) +m(k + )N
(
r,

f

)
+

d∑
j=

N
(
r,


f (qjz + cj)

)
+ S(r, f ) + S(r, f )

≤ [
m(k + ) + d + 

]
T(r, f ) + S(r, f ) + S(r, f ). ()

From the definitions of S(r, f ), S(r, f ) and n >m(k + ) + d +  + λ, we get a contradiction
to (). Then F(z)(k) – a(z) has infinitely many zeros.
Case . If f is a transcendental entire function. Suppose that (P(f )

∏d
j= f (qjz + cj)sj )(k) =

a(z) has finitely solutions. By using the same argument as in Case  and (), we have

(n + λ)T(r, f ) + S(r, f )≤
[
m(k + ) + d

]
T(r, f ) + S(r, f ) + S(r, f ),

which is a contradiction with n >m(k + ) + d – λ.
For k = , similar to the proofs of Case  and Case , and by the Second Fundamental

Theorem and Lemma ., we get the conclusions of Theorem ..
Thus, we complete the proof of Theorem .. �

Proof of Theorem . Similar to the proof of Theorem ., and using Lemma ., we can
prove Theorem . easily. �

4 Proofs of Corollaries 1.1 and 1.2
The proofs of Corollaries . and . are similar. Here, we just give the proof of Corol-
lary ..

Proof of Corollary . Assume that f is a transcendental meromorphic solution of zero
order of (), provided that f (qjz + cj) 	= f (z), j = , , . . . ,d, then

[
P(f )

d∏
j=

[
f (qjz + cj) – f (z)

]sj](k)

= p(z) + q(z).
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Integrating above equation k times, it follows

H(z)
P(f )f λ

=
∏d

j=[f (qjz + cj) – f (z)]sj

f λ
,

where H(z) is a polynomial. From Lemma . and since f is a meromorphic function of
zero order, we have

(n + λ)T(r, f ) = T
(
r,

∏d
j=[f (qjz + cj) – f (z)]sj

f λ

)

=N
(
r,

∏d
j=[f (qjz + cj) – f (z)]sj

f λ

)
+ S(r, f )

≤ λT(r, f ) + S(r, f ),

which is contradiction with n > λ.
This completes the proof of Corollary .. �

5 Proofs of Theorems 1.3 and 1.4

Proof of Theorem . From the assumptions of Theorem ., we see that F(z), G(z) share
 CM. Then the following three cases will be considered.
Case . Suppose that F(z), G(z) satisfy Lemma .(i). Since f (z), g(z) are entire func-

tions of zero order, from the Valiron-Mohon’ko lemma and Lemma ., we have S(r,F) =
S(r, f ), S(r,G) = S(r, g),

N

(
r,

F

)
≤ N

(
r,


P(f )

)
+

d∑
j=

N

(
r,


f (qjz + cj)sj

)

≤ �T(r, f ) + 
d∑
j=

N
(
r,


f (qjz + cj)

)
≤ (� + d)T(r, f ) + S(r, f ), ()

and

N

(
r,


G

)
≤ (� + d)T(r, g) + S(r, g). ()

Then, from Lemma .(i) and Lemma ., since f , g are entire, we have

T
(
r,F(z)

)
+ T

(
r,G(z)

) ≤ N

(
r,

F

)
+ N

(
r,


G

)
+ S(r, f ) + S(r, g)

≤ (� + d)
[
T(r, f ) + T(r, g)

]
+ S(r, f ) + S(r, g). ()

From Lemma . and (), we have

(n + λ)
[
T(r, f ) + T(r, g)

] ≤ (� + d)
[
T(r, f ) + T(r, g)

]
+ S(r, f ) + S(r, g),
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that is,

(n + λ – � – d)
[
T(r, f ) + T(r, g)

] ≤ S(r, f ) + S(r, g). ()

Since n > (� + d) – λ and f , g are transcendental functions, we get a contradiction.
Case . If F(z) ≡G(z), that is,

P(f )
d∏
j=

f (qjz + cj)sj ≡ P(g)
d∏
j=

g(qjz + cj)sj . ()

Set h = f
g . If h is not a constant, from (), we find that f and g satisfy the algebraic

equation R(f , g) ≡ , where

R(ω,ω) = P(ω)
d∏
j=

ω(qjz + cj)sj – P(ω)
d∏
j=

ω(qjz + cj)sj .

If h is a constant. Substituting f = gh into (), we get

d∏
j=

g(qjz + cj)sj
[
angn

(
hn+λ – 

)
+ an–gn–

(
hn+λ– – 

)
+ · · · + a

(
hλ – 

)] ≡ , ()

where an (	= ),an–, . . . ,a are constants.
Since g is transcendental entire function, we have

∏d
j= g(qjz + cj)sj 	≡ . Then, from (),

we have

angn
(
hn+λ – 

)
+ an–gn–

(
hn+λ– – 

)
+ · · · + a

(
hλ – 

) ≡ . ()

If an 	=  and an– = an– = · · · = a = , then from () and g is transcendental function,
we get hn+λ = .
If an 	=  and there exists ai 	=  (i ∈ {, , , . . . ,n–}). Suppose that hn+λ 	= , from (), we

have T(r, g) = S(r, g) which is contradiction with transcendental function g . Then hn+λ = .
Similar to this discussion, we can see that hj+λ =  when aj 	=  for some j = , , . . . ,n.
Thus, from the definition of l, we can see that f ≡ tg where t is a constant such that

tκ = , κ =GCD{λ + λ,λ + λ, . . . ,λn + λ}.
Case . If F(z)G(z) ≡ . From Lemma ., we get that fg = μ for a constant μ such that

anμn+λ ≡ .
Thus, this completes the proof of Theorem .. �

Proof of Theorem . From the assumptions of Theorem ., we have El(;F(z)) =
El(;G(z)).
(I) l ≥ . Since

N
(
r,


F(z) – 

)
+N

(
r,


G(z) – 

)
+N (l+

(
r,


F(z) – 

)

+N (l+

(
r,


G(z) – 

)
–N

(
r,


F(z) – 

)
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≤ 

N

(
r,


F(z) – 

)
+



(
r,


G(z) – 

)
+ S(r,F) + S(r,G)

≤ 

T(r,F) +



T(r,G) + S(r,F) + S(r,G).

Case . Suppose that F(z),G(z) satisfy Lemma .(i). From (), (), and Lemma ., we
have

(n + λ)
[
T(r, f ) + T(r, g)

] ≤ (� + d)
[
T(r, f ) + T(r, g)

]
+ S(r, f ) + S(r, g),

that is,

(n + λ – � – d)
[
T(r, f ) + T(r, g)

] ≤ +S(r, f ) + S(r, g).

Since n > � + d – λ and f , g are transcendental, a contradiction is obtained.
Case . If F(z), G(z) satisfy Lemma .(ii), that is,

F =
(b + )G + (a – b – )

bG + (a – b)
, ()

where a ( 	= ), b are two constants.
We now will consider three subcases as follows.
Subcase .. b 	= ,–. If a – b –  	= , then by () we know

N
(
r,


G + a–b–

b+

)
=N

(
r,

F

)
.

Since f , g are entire functions of zero order, by the Second Fundamental Theorem, we
have

T(r,G) ≤ N
(
r,


G

)
+N

(
r,


G + a–b–

b+

)
+ S(r, g)≤ N

(
r,


G

)
+N

(
r,

F

)
+ S(r, g)

≤ (m + d)T(r, g) + (m + d)T(r, f ) + S(r, f ) + S(r, g).

Then from Lemma ., we have

(n + λ –m – d)T(r, g)≤ (m + d)T(r, f ) + S(r, f ) + S(r, g).

Similarly, we have

(n + λ –m – d)T(r, f ) ≤ (m + d)T(r, g) + S(r, f ) + S(r, g).

From the definitions of m and �, we have m =m +m. Since n > � + d – λ, we have
n + λm – d > � + d – λ + λ – m – d = � + d – m > . From the above two
inequalities, for any ε ( < ε < � + d – m), we have

(n + λ – m – d – ε)
[
T(r, f ) + T(r, g)

] ≤ S(r, f ) + S(r, g),

which is a contradiction with f , g are transcendental.
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If a – b –  = , then by () we know F = ((b + )G)/(bG + ). Since f , g are entire func-
tions, we see that – 

b is a Picard’s exceptional value of G(z). By the Second Fundamental
Theorem, we have

T(r,G) ≤ N
(
r,


G

)
+ S(r,G)≤ (m + d)T(r, g) + S(r, g).

Then, from Lemma . and n > � + d – λ, we know T(r, g) ≤ S(r, g), a contradiction.
Subcase .. b = –. Then () becomes F = a/(a +  –G).
If a +  	= , then a +  is a Picard exceptional value of G. Similar to the discussion as in

Subcase ., we can deduce a contradiction again.
If a +  = , then FG ≡ , that is,

P(f )
d∏
j=

f (qjz + cj)sjP(g)
d∏
j=

g(qjz + cj)sj ≡ .

Since n >max{� + d – λ,λ}, by Lemma ., we see that fg = μ for a constant μ such
that anμn+λ ≡ .
Subcase .. b = . Then () becomes F = (G + a – )/a.
If a– 	= , thenN(r, 

G+a– ) =N(r, F ). Similar to the discussion as in Subcase ., we can
deduce a contradiction again.
If a –  = , then F ≡G, that is,

P(f )
d∏
j=

f (qjz + cj)sj ≡ P(g)
d∏
j=

g(qjz + cj)sj .

Using the same argument as in the proof of Case  in Theorem ., we can see that f , g
satisfy Theorem .(ii).
(II) l = . Since

N
(
r,


F – 

)
+N

(
r,


G – 

)
–N

(
r,


F – 

)

+


N (l+

(
r,


F – 

)
+


N (l+

(
r,


G – 

)

≤ 

N

(
r,


F – 

)
+


N

(
r,


G – 

)

≤ 

T(r,F) +



T(r,G) + S(r,F) + S(r,G), ()

N (l+

(
r,


F – 

)
≤ 


N

(
r,

F
F ′

)
=


N

(
r,
F ′

F

)
+ S(r,F)

≤ 

N

(
r,

F

)
+ S(r,F)

≤ m

T(r, f ) +

d

N

(
r,

f

)
+ S(r, f ), ()
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and

N (l+

(
r,


G – 

)
≤ m


T(r, g) +

d

N

(
r,

g

)
+ S(r, g).

Case . If F(z), G(z) satisfy Lemma .(i), from the fact that f (z), g(z) are transcendental
entire functions and ()-(), we have

T
(
r,F(z)

)
+ T

(
r,G(z)

) ≤ N

(
r,

F

)
+ N

(
r,


G

)
+mT(r, f ) +mT(r, g)

+ dN
(
r,

f

)
+ dN

(
r,

g

)
+ S(r, f ) + S(r, g).

From (), (), Lemma ., and χ = min{
(, f ),
(, g)}, for any ε ( < ε < n + λ –m –
� – d + dχ ), we have

(n + λ –m – � – d + dχ – ε)
[
T(r, f ) + T(r, g)

] ≤ S(r, f ) + S(r, g). ()

Since n > � + d +m– λ– dχ and f , g are transcendental functions, we get a contradic-
tion.
Case . If F(z), G(z) satisfy Lemma .(ii). Similar to the proof of Case  in (I), we get

the conclusions of Theorem ..
(III) l = . Since

N
(
r,


F – 

)
+N

(
r,


G – 

)
–N

(
r,


F – 

)

≤ 

N

(
r,


F – 

)
+


N

(
r,


G – 

)

≤ 

T(r,F) +



T(r,G) + S(r,F) + S(r,G), ()

we have

N (

(
r,

F

)
≤ N

(
r,

F
F ′

)
=N

(
r,
F ′

F

)
+ S(r, f )≤ N

(
r,

F

)
+ S(r, f )

≤ mT(r, f ) + dN
(
r,

f

)
+ S(r, f ), ()

and

N (

(
r,


G

)
≤ mT(r, g) + dN

(
r,

g

)
+ S(r, g). ()

Case . If F(z), G(z) satisfy Lemma .(i), from f , g are entire functions, (), (), (),
(), (), and (), we have

T(r,F) + T(r,G) ≤ (� + d +m)
[
T(r, f ) + T(r, g)

]
+ dN

(
r,

f

)

+ dN
(
r,

g

)
+ S(r, f ) + S(r, g).
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From Lemma . and χ =min{
(, f ),
(, g)}, for any ε ( < ε < n + λ – � – d – m +
dχ ), we have

[n + λ – � – d – m + dχ – ε]
[
T(r, f ) + T(r, g)

] ≤ S(r, f ) + S(r, g). ()

Since n > � + d + m– λ– dχ , from () and f , g are transcendental, we get a contra-
diction.
Case . If F(z), G(z) satisfy Lemma .(ii). Similar to the proof of Case  in (I), we get

the conclusions of Theorem ..
(IV) l = , that is, F(z), G(z) share  IM. From the definitions of F(z), G(z), we have

NL

(
r,


F – 

)
≤ N

(
r,

F
F ′

)
=N

(
r,
F ′

F

)
+ S(r,F)≤ N

(
r,

F

)
+ S(r,F)

≤ mT(r, f ) + dN
(
r,

f

)
+ S(r, f ), ()

similarly, we have

NL

(
r,


G – 

)
≤ mT(r, g) + dN

(
r,

g

)
+ S(r, f ). ()

Case . Suppose that F(z), G(z) satisfy Lemma .(i). From () and (), we have

T
(
r,F(z)

)
+ T

(
r,G(z)

) ≤ N

(
r,

F

)
+ N

(
r,


G

)
+ mT(r, f ) + mT(r, g)

+ dN
(
r,

f

)
+ dN

(
r,

g

)
+ S(r, f ) + S(r, g).

From Lemma . and ()-(), for any ε ( < ε < n + λ – � – d – m + dχ ), we get

(n + λ – � – d – m + dχ – ε)
[
T(r, f ) + T(r, g)

] ≤ S(r, f ) + S(r, g). ()

Since n > � + d + m – λ – dχ , we get a contradiction.
Case . Suppose that F(z),G(z) satisfy Lemma .(ii). Similar to the proof of Case  in (I),

we get the conclusions of Theorem . easily.
Thus, the proof of Theorem . is completed. �
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