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Abstract
In this paper, we investigate zeros and α-points of meromorphic solutions f (z) for
difference Riccati equations, and we obtain some estimates of exponents of
convergence of zeros and α-points of f (z) and shifts f (z + n), differences
�f (z) = f (z + 1) – f (z), and divided differences �f (z)

f (z) .
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1 Introduction andmain results
In this paper, we assume that the reader is familiar with the standard notations and basic
results of Nevanlinna’s value distribution theory (see [, ]). In addition, we use the notions
σ (f ) to denote the order of growth of the meromorphic function f (z), λ(f ), and λ( f ) to
denote the exponents of convergence of zeros and poles of f (z), respectively. We say a
meromorphic function f (z) is oscillatory if f (z) has infinitely many zeros.
The theory of difference equations, the methods used in their solutions, and their wide

applications have advanced beyond their adolescent stage to occupy a central position
in applicable analysis. The theory of oscillation play an important role in the research on
discrete equations, and it is systematically introduced in []. The complex oscillation is the
development and deepening of the corresponding real oscillation, and it can profoundly
reveals the essence of the oscillation problem that the property of oscillation is investigated
in complex domain.
Recently, as the difference analogs of Nevanlinna’s theory were being investigated [–],

many results on the complex difference equations have been got rapidly. Many papers [,
–]mainly deal with the growth of meromorphic solutions of some difference equations,
and several papers [, , –] deal with analytic properties of meromorphic solutions of
some nonlinear difference equations. Especially, there has been an increasing interest in
studying difference Riccati equations in the complex plane [, , , ].
In [], Ishizaki gave some surveys of the basic properties of the difference Riccati equa-

tion

y(z + ) =
A(z) + y(z)
 – y(z)

,

where A(z) is a rational function, which have analogs in the differential case []. In the
proof of the celebrated classification theorem,Halburd andKorhonen []were concerned
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with the difference Riccati equation of the form

w(z + ) =
A(z) + δw(z)

δ –w(z)
,

where A is a polynomial, δ = ±. In [], Chen and Shon investigated the existence and
forms of rational solutions, and the Borel exceptional value, zeros, poles, and fixed points
of transcendental solutions, and they proved the following theorem.

TheoremA Let δ =± be a constant and A(z) = m(z)
n(z) be an irreducible nonconstant ratio-

nal function, where m(z) and n(z) are polynomials with degm(z) =m and degn(z) = n.
If f (z) is a transcendental finite ordermeromorphic solution of the difference Riccati equa-

tion

f (z + ) =
A(z) + δf (z)

δ – f (z)
, ()

then
(i) if σ (f ) > , then f (z) has at most one Borel exceptional value;
(ii) λ( f ) = λ(f ) = σ (f );
(iii) if A(z) �≡ –z – z + , then the exponent of convergence of fixed points of f (z) satisfies

τ (f ) = σ (f ).

In [], the first author investigated fixed points of meromorphic functions f (z) for dif-
ference Riccati equation (), and obtain some estimates of exponents of convergence of
fixed points of f (z) and shifts f (z + n), differences �f (z) = f (z + ) – f (z), and divided dif-
ferences �f (z)

f (z) .
In this paper, we investigate zeros and α-points ofmeromorphic solutions f (z) for differ-

ence Riccati equations (), and we obtain some estimates of the exponents of convergence
of zeros and α-points of f (z) and shifts f (z + n), differences �f (z) = f (z + ) – f (z), and di-
vided differences �f (z)

f (z) of meromorphic solutions of (). We prove the following theorem.

Theorem . Let δ = ± be a constant and A(z) be a nonconstant rational function. Set
�f (z) = f (z + ) – f (z). If there exists a nonconstant rational function s(z) such that A(z) =
–s(z), then every finite order transcendental meromorphic solution f (z) of the difference
Riccati equation (), its difference �f (z), and divided difference �f (z)

f (z) are oscillatory and
satisfy

λ
(
�f (z)

)
= λ

(
�f (z)
f (z)

)
= σ (f ).

Theorem . Let A(z) be a nonconstant rational function. If α is a non-zero complex con-
stant, then every finite order transcendental meromorphic solution f (z) of the difference
Riccati equation

f (z + ) =
A(z) + f (z)
 – f (z)

()

satisfies
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(i) if α �= –, then λ(f (z + n) – α) = σ (f ), n = , , , . . . ;
(ii) if there is a rational function n(z) satisfying

A(z) =
α

( + α)
– ( + α)n(z),

then λ(�f (z)
f (z) – α) = σ (f );

(iii) if there is a rational function m(z) satisfying

A(z) =
α + α


–m(z),

then λ(�f (z) – α) = σ (f ).

Example . The function f (z) = Q(z)–z(z–)(z+)
zQ(z)+z(z–)(z+) satisfies the difference Riccati equation

f (z + ) =
A(z) + f (z)
 – f (z)

,

where A(z) = – 
z(z+) , Q(z) is a periodic function with period . Note that for any ρ ∈

[, +∞), there exists a prime periodic entire function Q(z) of order σ (Q) = ρ by Ozawa
[]. Thus σ (f ) = σ (Q) = ρ ≥ .
Also, this solution f (z) = Q(z)–z(z–)(z+)

zQ(z)+z(z–)(z+) satisfies

�f (z) = f (z + ) – f (z) =
z(z + ) – [Q(z) – z(z + )(z + )]

z(z + )[Q(z) + z(z – )(z + )][Q(z) + z(z + )(z + )]

and

�f (z)
f (z)

=
z(z + ) – [Q(z) – z(z + )(z + )]

(z + )[Q(z) – z(z – )(z + )][Q(z) + z(z + )(z + )]
.

Using the same discussion as Lemma ., we easily see that z(z + ) – [Q(z) – z(z +
)(z+)] and [Q(z)+z(z–)(z+)][Q(z)+z(z+)(z+)] (or [Q(z)–z(z–)(z+)][Q(z)+
z(z + )(z + )]) have at most finitely many common zeros. Thus,

λ
(
�f (z)

)
= λ

(
�f (z)
f (z)

)
= λ

(
z(z + ) –

[
Q(z) – z(z + )(z + )

])
= σ (Q) = σ (f ) = ρ ≥ .

2 Lemmas for proofs of theorems
Firstly we need the following lemmas for the proof of Theorem ..

Lemma . Let A(z) be a nonconstant rational function, and f (z) be a nonconstant mero-
morphic function. Then

y(z) = A(z) + f (z) and y(z) =  – f (z)

have at most finitely many common zeros.
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Proof Suppose that z is a common zero of y(z) and y(z). Then y(z) =  – f (z) = .
Thus, f (z) = . Substituting f (z) =  into y(z), we obtain

y(z) = A(z) +  = .

Since A(z) is a nonconstant rational function, A(z) +  has only finitely many zeros. Thus,
y(z) and y(z) have at most finitely many common zeros. �

Lemma . Let w(z) be a nonconstant finite order transcendental meromorphic solution
of the difference equation of

P(z,w) = ,

where P(z,w) is a difference polynomial in w(z). If P(z,α) �≡  for a meromorphic function
α(z) satisfying T(r,α) = S(r,w), then

m
(
r,


w – α

)
= S(r,w)

holds for all r outside of a possible exceptional set with finite logarithmic measure.

3 Proof of Theorem 1.1
Suppose that δ = . We only prove the case δ = . We can use the same method to prove
the case δ = –.
First, we prove that λ(�f (z)) = σ (f (z)).
By () and the fact that A(z) = –s(z), we obtain

�f (z) = f (z + ) – f (z) =
A(z) + f (z)
 – f (z)

– f (z) =
A(z) + f (z)
 – f (z)

=
f (z) – s(z)
 – f (z)

=
[f (z) – s(z)][f (z) + s(z)]

 – f (z)
. ()

SinceA(z) and s(z) are rational functions, we know that f (z)– s(z) (or f (z)+ s(z)) and – f (z)
have the same poles, except possibly finitely many. By Lemma ., we see that A(z) + f (z)
and – f (z) have atmost finitelymany common zeros. Hence, by (), we only need to prove
that

λ
(
f (z) – s(z)

)
= σ

(
f (z)

)
or λ

(
f (z) + s(z)

)
= σ

(
f (z)

)
. ()

Suppose that λ(f (z)–s(z)) < σ (f (z)). By σ (f (z)–s(z)) = σ (f (z)) andHadamard factorization
theorem, f (z) – s(z) can be rewritten in the form

f (z) – s(z) = zt
P(z)
Q(z)

eh(z) =
P(z)
Q(z)

, ()

where h(z) is a polynomial with degh(z) ≤ σ (f (z)), P(z) and Q(z) are canonical products
(P(z) may be a polynomial) formed by non-zero zeros and poles of f (z)– s(z), respectively,
t is an integer, if t ≥ , then P(z) = ztP(z), Q(z) = Q(z)e–h(z); if t < , then P(z) = P(z),
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Q(z) = z–tQ(z)e–h(z). Combining Theorem A with the property of the canonical product,
we have{

σ (P(z)) = λ(P(z)) = λ(f (z) – s(z)) < σ (f (z)),
σ (Q(z)) = λ(Q(z)) = σ (f (z)).

()

By (), we obtain

f (z) = s(z) + P(z)y(z), f (z + ) = s(z + ) + P(z + )y(z + ), ()

where y(z) = 
Q(z) . Thus, by (), we have

σ
(
y(z)

)
= σ

(
Q(z)

)
= σ

(
f (z)

)
, σ

(
P(z + )

)
= σ

(
P(z)

)
< σ

(
f (z)

)
.

Substituting () into (), we obtain

E(z, y) :=
[
s(z + ) + P(z + )y(z + )

][
 – s(z) – P(z)y(z)

]
–A(z) – s(z) – P(z)y(z) = . ()

By () and the fact that A(z) = –s(z), we have

E(z, ) := s(z + )
[
 – s(z)

]
–A(z) – s(z)

= s(z + )
[
 – s(z)

]
+ s(z) – s(z)

=
[
 – s(z)

][
s(z + ) – s(z)

]
.

Since s(z) is a nonconstant rational faction, we see that  – s(z) �≡  and s(z + ) – s(z) �≡ ,
so that

E(z, ) �≡ . ()

Thus, by (), (), and Lemma ., we obtain for any given ε ( < ε < σ (f (z)) – σ (P(z))),

N
(
r,


y(z)

)
= T

(
r, y(z)

)
+ S

(
r, y(z)

)
+O

(
rσ (P(z))+ε

)
()

holds for all r outside of a possible exceptional set with finite logarithmic measure.
On the other hand, by y(z) = 

Q(z) and the fact that Q(z) is an entire function, we see that

N
(
r,


y(z)

)
=N

(
r,Q(z)

)
= . ()

Thus () is a contradiction. Hence, () holds, that is, λ(�f (z)) = σ (f (z)).
Secondly, we prove that λ(�f (z)

f (z) ) = σ (f ). By (), we obtain

�f (z)
f (z)

=
[f (z) – s(z)][f (z) + s(z)]

f (z)( – f (z))
.

Thus, by this and (), we see that λ(�f (z)
f (z) ) = σ (f ).
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4 Proof of Theorem 1.2
Suppose that f (z) is a finite order transcendental meromorphic solution of ().
(i) First, we prove that the conclusion holds when n = . Set y(z) = f (z) – α. Thus, y(z) is

transcendental, T(r, y) = T(r, f ) +O(log r), and S(r, y) = S(r, f ). Substituting f (z) = y(z) + α

into (), we obtain

K(z, y) =
[
y(z + ) + α

][
 – y(z) – α

]
–A(z) – y(z) – α = .

Thus

K(z, ) = α( – α) –A(z) – α = –α –A(z).

By the condition that A(z) is a nonconstant rational function, we obtain K(z, ) �≡ . By
Lemma .,

N
(
r,

y

)
= T(r, y) + S(r, y)

holds for all r outside of a possible exceptional set with finite logarithmic measure. That
is,

N
(
r,


f – α

)
= T(r, f ) + S(r, f )

holds for all r outside of a possible exceptional set with finite logarithmic measure. Thus,
we obtain λ(f (z) – α) = σ (f (z)).
Now suppose that n = . By () and α �= –, we see that

f (z + ) – α =
A(z) + f (z)
 – f (z)

– α =
( + α)f (z) +A(z) – α

 – f (z)

= ( + α) · f (z) +
A(z)–α

+α

 – f (z)
. ()

Using the same discussion as Lemma ., we easily see that f (z) + A(z)–α

+α
and  – f (z) have

at most finitely many common zeros. Thus, we only need to prove that

λ

(
f (z) +

A(z) – α

 + α

)
= σ (f ). ()

Using the same method as in the proof of ()-(), we can prove that () holds. Hence
λ(f (z + ) – α) = σ (f (z)).
Now in (), we replace z by z + n –  (n≥ ), and we obtain

f (z + n) – α = ( + α) · f (z + n – ) + A(z+n–)–α

+α

 – f (z + n – )
. ()

Set g(z) = f (z + n – ). Then () is transformed as

g(z + ) – α = ( + α) · g(z) +
A(z+n–)–α

+α

 – g(z)
. ()

http://www.advancesindifferenceequations.com/content/2014/1/247
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Since A(z + n– ) is a nonconstant rational function too, applying the conclusion for n = 
to (), we obtain

λ
(
f (z + n) – α

)
= λ

(
g(z + ) – α

)
= σ (g) = σ (f ), n = , , . . . .

(ii) Suppose that there is a rational function n(z) satisfying

A(z) =
α

( + α)
– ( + α)n(z). ()

Now we prove

λ

(
�f (z)
f (z)

– α

)
= σ (f ). ()

By (), we have

�f (z)
f (z)

– α =
f (z + ) – f (z)

f (z)
– α =

( + α)f (z) – αf (z) +A(z)
f (z)( – f (z))

. ()

If α = –, then

�f (z)
f (z)

– α =
A(z) – αf (z)
f (z)( – f (z))

. ()

Since A(z) is a rational function, A(z) – αf (z) and ( – f (z)) have the same poles, except
possibly finitely many. By () and Theorem A, we obtain

λ

(
�f (z)
f (z)

– α

)
= λ

(
A(z) – αf (z)
f (z)( – f (z))

)
= λ

(

f

)
= σ (f ).

If α �= –, by () and (), we have

�f (z)
f (z)

– α = ( + α) · [f (z) –
α

(+α) + n(z)][f (z) – α
(+α) – n(z)]

f (z)( – f (z))
. ()

Using the same discussion as Lemma ., we easily see that ( + α)f (z) – αf (z) +A(z) and
f (z)( – f (z)) have at most finitely many common zeros. Thus, by (), in order to prove
(), we only need to prove that

λ

(
f (z) –

α

( + α)
– n(z)

)
= σ

(
f (z)

)
()

or

λ

(
f (z) –

α

( + α)
+ n(z)

)
= σ

(
f (z)

)
.

Without loss of generality, we prove (). Suppose that λ(f (z) – α
(+α) – n(z)) < σ (f (z)).

Using the same method as in the proof of ()-(), we see that f (z) – α
(+α) – n(z) can be

http://www.advancesindifferenceequations.com/content/2014/1/247
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rewritten as

f (z) =
α

( + α)
+ n(z) + P(z)y(z), ()

where y(z) = 
Q(z) , P(z), Q(z) are non-zero entire functions, such that

λ
(
P(z)

)
= σ

(
P(z)

)
< σ

(
f (z)

)
and λ

(
Q(z)

)
= σ

(
Q(z)

)
= σ

(
f (z)

)
.

Substituting () into (), we obtain

K(z, y) :=
[

α

( + α)
+ n(z + ) + P(z + )y(z + )

]

·
[
 –

α

( + α)
– n(z) – P(z)y(z)

]
–A(z) –

α

( + α)
– n(z) – P(z)y(z) = 

and

K(z, ) :=
[

α

( + α)
+ n(z + )

][
 –

α

( + α)
– n(z)

]

–A(z) –
α

( + α)
– n(z).

By the above equation and (), we have

K(z, ) :=
[

α

( + α)
+ n(z + )

][
 –

α

( + α)
– n(z)

]

–
α

( + α)
+ ( + α)n(z) –

α

( + α)
– n(z)

= ( + α)n(z) – n(z)n(z + ) +
 + α

( + α)
n(z + )

–
 + α
( + α)

n(z) –
( + α)α

( + α)

= R(z) –
( + α)α

( + α)
,

where R(z) = (+α)n(z)–n(z)n(z+)+ +α
(+α)n(z+)–

+α
(+α)n(z). Since

(+α)α
(+α) is a constant,

to prove K(z, ) �≡ , we need to prove that R(z) is nonconstant.
Now we prove that

R(z) = ( + α)n(z) – n(z)n(z + ) +
 + α

( + α)
n(z + ) –

 + α
( + α)

n(z)

is nonconstant. Since A(z) is a nonconstant rational function and due to (), n(z) is a
nonconstant rational function too. First, if n(z) is a polynomial with degn(z) = n≥ , then

deg
(
( + α)n(z) – n(z)n(z + )

)
= degn(z)

(
( + α)n(z) – n(z + )

)
= n

http://www.advancesindifferenceequations.com/content/2014/1/247
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is the maximal degree in R(z) (since α �= , ). Thus R(z) is a polynomial with degR(z) =
n≥ . Secondly, if n(z) = p(z)

q(z) , where p(z) and q(z) are polynomials with degp(z) = p < q =
degq(z), then R(z) = s(z)

t(z) , where

s(z) = ( + α)p(z)q(z + ) – p(z)p(z + )q(z)

+ ( + α)p(z + )q(z) – ( + α)p(z)q(z)q(z + )

and

t(z) = ( + α)q(z)q(z + ).

Since p < q,

deg s(z) = deg
(
( + α)p(z + )q(z) – ( + α)p(z)q(z)q(z + )

)
= q + p < q = deg t(z).

Thus R(z) is nonconstant. Lastly, if n(z) = p(z)
q(z) , where p(z) and q(z) are polynomials with

degp(z) = p≥ q = degp(z), then

n(z) = n(z) +
p(z)
q(z)

,

where n(z), p(z), and q(z) are polynomials with degn(z) = p – q ≥  and degp(z) <
degq(z). By the above discussion, we know that R(z) is nonconstant. Hence K(z, ) �≡ ,
and, by Lemma ., we see that () holds.
(iii) Suppose that there is a rational function m(z) satisfying

A(z) =
α + α


–m(z). ()

In what follows, we prove that

λ
(
�f (z) – α

)
= σ (f ). ()

By () and (), we obtain

�f (z) – α =
A(z) + f (z)
 – f (z)

– α =
f (z) + αf (z) +A(z) – α

 – f (z)

=
[f (z) + α

 +m(z)][f (z) + α
 –m(z)]

 – f (z)
. ()

Using the same discussion as Lemma ., we easily see that f (z) + αf (z) + A(z) – α and
 – f (z) have at most finitely many common zeros. Thus, by (), we know that to prove
(), we only need to prove that

λ

(
f (z) +

α


+m(z)

)
= σ

(
f (z)

)
or λ

(
f (z) +

α


–m(z)

)
= σ

(
f (z)

)
.

http://www.advancesindifferenceequations.com/content/2014/1/247
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Using the same method as in the proof of (), we can prove that the above equation
holds.
Thus, Theorem . is proved.
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