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Abstract
An SIS epidemic model with saturated incidence rate and treatment is considered.
According to different recovery rates, we use differential stability theory and
qualitative theory to analyze the various kinds of endemic equilibria and disease-free
equilibrium. Finally, we get complete configurations of different endemic equilibria
and disease-free equilibrium.
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1 Introduction andmodel
Infectious diseases have tremendous influence on human life and will bring huge panic
and disaster to mankind once out of control. Every year millions of human beings suffer
from or die of various infectious diseases. In order to predict the spreading of infectious
diseases, many epidemic models have been proposed and analyzed in recent years (see
[–]). Some new conditions should be considered into SIS model to extend the results.
Li et al. (see []) studied an SIS model with bilinear incidence rate βSI and treatment.

The model takes into account the medical conditions. The recovery of the infected rate
is divided into natural and unnatural recovery rates. Because of the medical conditions,
when the number of infected persons reaches a certain amount I, the unnatural recovery
rate will be a fixed value δI. The study of this model should be divided into two cases to
discuss with I ≤ I and I > I. In this paper, we study an SISmodel with saturated incidence
rate βSI

+αS and treatment, and we extend some recent results.
By a saturated incidence rate βSI

+αS , we consider an SIS epidemic model which consists
of the susceptible individuals S(t), the infectious individuals I(t) and the total population
N(t) at time t:

{
dS
dt = A – dS – βSI

+αS + γ I + T(I),
dI
dt =

βSI
+αS – (d + ε + γ )I – T(I),

N(t) = S(t) + I(t),

(.)

where T(I) =
{

δI, if ≤ I ≤ I,
k, if I ≥ I

(k = δI) is the rate at which infected individuals are treated;
A is the recruitment rate of individuals (including newborns and immigrants) into the
susceptible population; βSI

+αS is the nonlinear incidence rate; d is the natural death rate;
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γ is the rate at which infected individuals are recovered; ε is the disease-related death
rate, A, d, γ , δ, ε, α are all positive numbers.
Thus, if ≤ I ≤ I, model (.) implies

{
dS
dt = A – dS – βSI

+αS + γ I + δI,
dI
dt =

βSI
+αS – (d + ε + γ )I – δI.

(.)

If I > I, model (.) implies

{
dS
dt = A – dS – βSI

+αS + γ I + k,
dI
dt =

βSI
+αS – (d + ε + γ )I – k.

(.)

2 Existence of equilibria
Now, we study equilibria of model (.). Steady states of model (.) satisfy the following
equations:

{
A – dS – βSI

+αS + γ I + T(I) = ,
βSI
+αS – (d + ε + γ )I – T(I) = .

(.)

We easily see that model (.) has a disease-free equilibrium P(Ad , ).
If  < I ≤ I, it follows from equation (.) that

{
A – dS – βSI

+αS + γ I + δI = ,
βSI
+αS – (d + ε + γ )I – δI = ,

(.)

and if I > I, we get

{
A – dS – βSI

+αS + γ I + k = ,
βSI
+αS – (d + ε + γ )I – k = .

(.)

From two equations of (.), we have

S =
A – (d + ε)I

d
. (.)

By substituting (.) into the second equation of (.), we obtain the following equations:

βA – β(d + ε)I
d +Aα – α(d + ε)I

– (d + ε + γ + δ) = ,

(d + ε)
[
–β + α(d + ε + γ + δ)

]
I = (d +Aα)(d + ε + γ + δ) – βA.

(.)

Let R = βA
(d+Aα)(d+ε+γ+δ) . We study equation (.) as follows.

If α(d + ε + γ + δ) > β , R <  holds if and only if

I =
(d +Aα)(d + ε + γ + δ)( – R)
(d + ε)[–β + α(d + ε + γ + δ)]

> 
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with

S =

d

[
A – (d + ε)

(d +Aα)(d + ε + γ + δ)( – R)
(d + ε)[–β + α(d + ε + γ + δ)]

]
= –

d + ε + γ + δ

–β + α(d + ε + γ + δ)
< .

So this case need not be considered.
If α(d + ε + γ + δ) < β , R >  holds if and only if

I =
(d +Aα)(d + ε + γ + δ)(R – )
(d + ε)[β – α(d + ε + γ + δ)]

> 

with

S =
d + ε + γ + δ

β – α(d + ε + γ + δ)
> .

Then we get a positive equilibrium P∗(S∗, I∗) of (.), where

I∗ =
(d +Aα)(d + ε + γ + δ)(R – )
(d + ε)[β – α(d + ε + γ + δ)]

,

S∗ =
d + ε + γ + δ

β – α(d + ε + γ + δ)
.

Furthermore, if  < I∗ ≤ I, P∗(S∗, I∗) is an endemic equilibrium of model (.) when

 < R ≤  +
(d + ε)[β – α(d + ε + γ + δ)]

(d +Aα)(d + ε + γ + δ)
I.

Define

n =  +
(d + ε)[β – α(d + ε + γ + δ)]

(d +Aα)(d + ε + γ + δ)
I.

Therefore model (.) has a disease-free equilibrium P(Ad , ) and has an endemic equilib-
rium P∗(S∗, I∗) except the disease-free equilibrium P(Ad , ) when  < R ≤ n.
By substituting (.) into the second equation of (.), we obtain the following equation:

(d+ε)
[
β–α(d+ε+γ )

]
I +

[
(Aα+d)(d+ε+γ )–βA–kα(d+ε)

]
I+k(Aα+d) = . (.)

Let b = (Aα + d)(d + ε + γ ) – βA – kα(d + ε). We study equation (.) as follows.
If β = α(d + ε + γ ), (.) has a positive root if b < , then

I =
k(Aα + d)

kα(d + ε) – d(d + ε + γ )
,

S = –
k(d + ε) +A(d + ε + γ )
kα(d + ε) – d(d + ε + γ )

< .

So this case need not be considered.
If β < α(d + ε + γ ), it follows from (.) that

(d+ε)
[
α(d+ε+γ )–β

]
I +

[
βA+kα(d+ε)–(Aα+d)(d+ε+γ )

]
I–k(Aα+d) = . (.)
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Then

� =
[
βA+ kα(d + ε) – (Aα + d)(d + ε + γ )

] + k(d + ε)
[
α(d + ε + γ ) –β

]
(Aα + d) > .

Denoting two roots of (.) by I and I, we have

I + I = –
βA + kα(d + ε) – (Aα + d)(d + ε + γ )

(d + ε)[α(d + ε + γ ) – β]
,

I · I = –k(Aα + d)
(d + ε)[α(d + ε + γ ) – β]

< .

So (.) has only one positive root, denote it by I,

I =
b +

√
�

(d + ε)[α(d + ε + γ ) – β]
,

S =

d

[
A – (d + ε)I

]
.

Then S >  holds only if

R <
(Aα – d)(d + ε + γ ) + kα(d + ε) –

√
�

(Aα + d)(d + ε + γ + δ)
.

Define

n =
(Aα – d)(d + ε + γ ) + kα(d + ε) –

√
�

(Aα + d)(d + ε + γ + δ)
.

The point P(S, I) satisfies (.), then I > I, i.e.,

b +
√

�

(d + ε)[α(d + ε + γ ) – β]
> I,

we have

√
� > –b + (d + ε)

[
α(d + ε + γ ) – β

]
I. (.)

Then –b + (d + ε)[α(d + ε + γ ) – β]I < .
And

R <  –
δ(Aα + d) + kα(d + ε)
(Aα + d)(d + ε + γ + δ)

–
(d + ε)[α(d + ε + γ ) – β]I
(d + ε + γ + δ)(Aα + d)

.

Define

n =  –
δ(Aα + d) + kα(d + ε)
(Aα + d)(d + ε + γ + δ)

–
(d + ε)[α(d + ε + γ ) – β]I
(d + ε + γ + δ)(Aα + d)

.

Then (.) holds only if

{
–b + (d + ε)[α(d + ε + γ ) – β]I ≥ ,
� ≥ {–b + (d + ε)[α(d + ε + γ ) – β]I}.
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Then

n < R ≤  –
δ(Aα + d) + kα(d + ε)
(Aα + d)(d + ε + γ + δ)

+
k

(d + ε + γ + δ)I
+
(d + ε)[β – α(d + ε + γ )]I
(Aα + d)(d + ε + γ + δ)

,

define

n =  –
δ(Aα + d) + kα(d + ε)
(Aα + d)(d + ε + γ + δ)

+
k

(d + ε + γ + δ)I
+
(d + ε)[β – α(d + ε + γ )]I
(Aα + d)(d + ε + γ + δ)

.

So, if R ≤ n and R ≤ n, P(S, I) is an endemic equilibrium, where

I =
b +

√
�

(d + ε)[α(d + ε + γ ) – β]
, S =


d

[
A – (d + ε)I

]
.

If β > α(d + ε + γ ), it is easy to see that (.) has no positive root if b ≥ .
If b < ,

� = b – k(d + ε)(Aα + d)
[
β – α(d + ε + γ )

]
,

b = –R(d + ε + γ + δ)(Aα + d) + (Aα + d)(d + ε + δ + γ ) – kα(d + ε) – δ(Aα + d).

Then � ≥  implies b ≥ k(d + ε)(Aα + d)[β – α(d + ε + γ )], we get

R ≤  –
δ(Aα + d) + kα(d + ε)
(Aα + d)(d + ε + δ + γ )

–

√
k(Aα + d)(d + ε)[β – α(d + ε + γ )]

(Aα + d)(d + ε + δ + γ )

or

R ≥  –
δ(Aα + d) + kα(d + ε)
(Aα + d)(d + ε + δ + γ )

+

√
k(Aα + d)(d + ε)[β – α(d + ε + γ )]

(Aα + d)(d + ε + δ + γ )
.

Define

n =  –
δ(Aα + d) + kα(d + ε)
(Aα + d)(d + ε + δ + γ )

–

√
k(Aα + d)(d + ε)[β – α(d + ε + γ )]

(Aα + d)(d + ε + δ + γ )
,

n =  –
δ(Aα + d) + kα(d + ε)
(Aα + d)(d + ε + δ + γ )

+

√
k(Aα + d)(d + ε)[β – α(d + ε + γ )]

(Aα + d)(d + ε + δ + γ )
.

At the same time, b <  holds if and only if R >  – δ(Aα+d)+kα(d+ε)
(Aα+d)(d+ε+δ+γ ) .

Define

n =  –
δ(Aα + d) + kα(d + ε)
(Aα + d)(d + ε + δ + γ )

.

Therefore, if R ≥ n, we have b <  and � ≥ , then (.) has two positive roots I, I,
where

I =
–b –

√
�

(d + ε)[β – α(d + ε + γ )]
, I =

–b +
√

�

(d + ε)[β – α(d + ε + γ )]
.
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Then Si = 
d [A – (d + ε)Ii] >  (i = , ) holds only if

R <  –
δ(Aα + d) + kα(d + ε)
(Aα + d)(d + ε + δ + γ )

+
A[β – α(d + ε + γ )] +

√
�

(Aα + d)(d + ε + δ + γ )
,

R <  –
δ(Aα + d) + kα(d + ε) +

√
�

(Aα + d)(d + ε + δ + γ )
+

A[β – α(d + ε + γ )]
(Aα + d)(d + ε + δ + γ )

.

Define

n =  –
δ(Aα + d) + kα(d + ε)
(Aα + d)(d + ε + δ + γ )

+
A[β – α(d + ε + γ )] +

√
�

(Aα + d)(d + ε + δ + γ )
,

n =  –
δ(Aα + d) + kα(d + ε) +

√
�

(Aα + d)(d + ε + δ + γ )
+

A[β – α(d + ε + γ )]
(Aα + d)(d + ε + δ + γ )

.

It is easy to see that n < n, which implies that (.) has two positive equilibrium points
P(S, I), P(S, I) if R < n, (.) has only one positive equilibrium point P(S, I) if
n < R < n, (.) has no positive equilibrium point if R ≥ n.
Now, we consider the conditions for Ii > I (i = , ).

I > I ⇒ –b –
√

� > (d + ε)
[
β – α(d + ε + γ )

]
I

⇒ b + (d + ε)
[
β – α(d + ε + γ )

]
I < .

Then

R >  –
δ(Aα + d) + kα(d + ε)
(Aα + d)(d + ε + δ + γ )

+
(d + ε)[β – α(d + ε + γ )]I
(Aα + d)(d + ε + δ + γ )

.

Define

n =  –
δ(Aα + d) + kα(d + ε)
(Aα + d)(d + ε + δ + γ )

+
(d + ε)[β – α(d + ε + γ )]I
(Aα + d)(d + ε + δ + γ )

.

Furthermore,

–b–
√

� > (d+ε)
[
β –α(d+ε+γ )

]
I ⇒ {

b+(d+ε)
[
β –α(d+ε+γ )

]
I

} > �,

i.e.,

R <  –
δ(Aα + d) + kα(d + ε)
(Aα + d)(d + ε + δ + γ )

+
k

(d + ε + δ + γ )I
+
(d + ε)[β – α(d + ε + γ )]I
(Aα + d)(d + ε + δ + γ )

.

Therefore, if n < R < n, I > I holds.
Similarly, if I > I,

b + (d + ε)
[
β – α(d + ε + γ )

]
I ≤ 

or {
b + (d + ε)[β – α(d + ε + γ )]I > ,
� > {(d + ε)[β – α(d + ε + γ )]I + b},

we get R ≤ n or R >max(n,n).
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From the above discussion, we get the following conclusions.

Theorem. If R < ,model (.) has only one disease-free equilibrium P(Ad , ); if R > ,
model (.) has a unique endemic equilibrium P∗(S∗, I∗) except the disease-free equilibrium
P(Ad , ); if  < R < n, P∗(S∗, I∗) is a unique endemic equilibrium of model (.).

Theorem . If β < α(d + ε + γ ), then P(S, I) is a unique endemic equilibrium of model
(.) if R ≤ n; P(S, I) is a unique endemic equilibrium of model (.) if R ≤ n and
R ≤ n.
If β > α(d + ε + γ ),model (.) has two positive equilibrium points P(S, I), P(S, I) if

R < n;model (.) has only one positive equilibrium point P(S, I) if n < R < n;model
(.) has no positive point if R ≥ n; P(S, I) is an endemic equilibrium of model (.) if
n < R < n; P(S, I) is an endemic equilibrium of model (.) if R < n or n < R < n.
If β = α(d + ε + γ ),model (.) has no endemic equilibrium.

3 Stability of equilibria
Theorem . The disease-free equilibrium P(Ad , ) is stable if R <  and is a saddle point
if R > ; the endemic equilibrium P∗(S∗, I∗) is a stable node if it exists; the endemic equi-
librium P(S, I) is a stable node if it exists; if the endemic equilibrium points P(S, I),
P(S, I) exist, then P(S, I) is a stable node of model (.) if –b–

√
�

(d+α)[β–α(d+α+γ )]D +D > 
and P(S, I) is a stable node of model (.) if –b+

√
�

(d+α)[β–α(d+α+γ )]D +D > .

Proof The Jacobi matrix of model (.) is

J =

[
–d – βI

(+αS) – βS
+αS + δ + γ

βI
(+αS)

βS
+αS – (d + ε + δ + γ )

]
,

then

J(P) =

[
–d – βA

d+αA + γ + δ

 βA
d+αA – (d + ε + γ + δ)

]
,

det J(P) = d(d + ε + δ + γ )( – R),

tr J(P) = –d – (d + ε + δ + γ )( – R).

Thus, P(Ad , ) is a stable node if R < , and is a saddle point if R > .
For P∗(S∗, I∗),

J(P∗) =

[
–d – βI∗

(+αS∗) – βS∗
+αS∗ + δ + γ

βI∗
(+αS∗)

βS∗
+αS∗ – (d + ε + δ + γ )

]
=

[
–d – βI∗

(+αS∗) –(d + ε)
βI∗

(+αS∗) 

]
,

tr J(P∗) = –d –
βI∗

( + αS∗)
< ,

det J(P∗) = (d + ε)
βI∗

( + αS∗)
> .

So, P∗(S∗, I∗) is a stable node if it exists.

http://www.advancesindifferenceequations.com/content/2014/1/246


Wang and Jiang Advances in Difference Equations 2014, 2014:246 Page 8 of 10
http://www.advancesindifferenceequations.com/content/2014/1/246

The Jacobi matrix of model (.) is

J =

[
–d – βI

(+αS) – βS
+αS + γ

βI
(+αS)

βS
+αS – (d + ε + γ )

]
.

Then

det J(P) = dα
[
α(d + ε + γ ) – β

]
S + d

[
α(d + ε + γ ) – β

]
S + d(d + ε + γ ) + βA.

If β < α(d + ε + γ ), P(S, I) does not exist, then det J(P) > .
Because

tr J(P) =


( + αS)
[
–βI + βS( + αS) – ( + αS)(d + ε + γ )

]
< ,

then P(S, I) is a stable node if it exists.
Consider points P(S, I), P(S, I),

J(P) =

[
–d – βI

(+αS)
– βS

+αS
+ γ

βI
(+αS)

βS
+αS

– (d + ε + γ )

]
,

tr(P) = –d –
βI

( + αS)
– (d + ε + γ ) +

βS
 + αS

=


( + αS)(d + ε)
[
–βA + βdS + βS( + αS)(d + ε)

– ( + αS)(d + ε + γ )(d + ε)
]

≤ (
β(d + ε)S + βα(d + ε)S –

[
(d + ε + γ )(d + ε) + α(d + ε + γ )(d + ε)S

+ (d + ε + γ )(d + ε)αS
])
/
(
( + αS)(d + ε)

)
If β > α(d + ε + γ ), then tr(P) < ,

det J(P) = dα
[
α(d + ε + γ ) – β

]
S + d

[
α(d + ε + γ ) – β

]
S + d(d + ε + γ ) + βA

= dα
[
α(d + ε + γ ) – β

] [A – (d + ε)I]

d

+ d
[
α(d + ε + γ ) – β

]A – (d + ε)I
d

+ d(d + ε + γ ) + βA.

Because I satisfies equation (.), we get

det J(P) =DI +D =
–b –

√
�

(d + α)[β – α(d + α + γ )]
D +D,

where

D = α(Aα + d)(d + α + γ ) – kα(d + α) – αβA

+ α(d + α)A + d(d + α)
[
β – α(d + α + γ )

]
,

D = –α
[
β – α(d + α + γ )

]
A – d

[
β – α(d + α + γ )

]
A + d(d + α + γ ) + k(Aα + d).

http://www.advancesindifferenceequations.com/content/2014/1/246
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If –b–
√

�
(d+α)[β–α(d+α+γ )]D +D > , det J(P) >  holds, then P(S, I) is a stable node if β > α(d+

ε+γ ) and –b–
√

�
(d+α)[β–α(d+α+γ )]D +D > . Similarly, P(S, I) is a stable node if β > α(d+ε+γ )

and –b+
√

�
(d+α)[β–α(d+α+γ )]D +D > . This completes the proof. �

Theorem . If δ < d, there is no limit cycle of model (.).

Proof Consider the Dulac function D = 
I . Note that

P = A – dS –
βSI

 + αS
+ γ I + T(I),

Q =
βSI

 + αS
– (d + ε + γ )I – T(I).

If  < I ≤ I,

∂(DP)
∂S

+
∂(DQ)

∂I
= –

d
I
–

β

( + αS)
< .

If I > I, because k = δI,

∂(DP)
∂S

+
∂(DQ)

∂I
= –

d
I
–

β

( + αS)
+
k
I

=

I

(
δI
I

–d
)
–

β

( + αS)
<

I
(δ–d)–

β

( + αS)
.

Thus ∂(DP)
∂S + ∂(DQ)

∂I <  if δ < d.
Then there is no limit cycle of model (.) if δ < d. This completes the proof. �

Theorem . There is no limit cycle of model (.) if β ≤ α(d + ε + γ ).

Proof If I ≤ I, consider the Dulac function D = 
I . Note that

P = A – dS –
βSI

 + αS
+ γ I + T(I),

Q =
βSI

 + αS
– (d + ε + γ )I – T(I),

∂(DP)
∂S

+
∂(DQ)

∂I
= –

d
I
–

β

( + αS)
< .

If I > I,

∂(P)
∂S

+
∂(Q)
∂I

= –d –
βI

( + αS)
+

βS
( + αS)

– (d + ε + γ )

=


( + αS)
[
–d( + αS) – βI + βS( + αS) – (d + ε + γ )( + αS)

]

=


( + αS)
[
–βI – (d + ε + γ )( + αS) + βS( + αS)

]
,

(d + ε + γ )( + αS)

βS( + αS)
=
(d + ε + γ )( + αS)

βS
=
(d + ε + γ ) + α(d + ε + γ )S

βS
.

Thus ∂(DP)
∂S + ∂(DQ)

∂I <  if β ≤ α(d + ε + γ ).

http://www.advancesindifferenceequations.com/content/2014/1/246
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Then there is no limit cycle of model (.) if β ≤ α(d + ε + γ ). This completes the
proof. �

4 Numerical simulation and conclusion
With different A, d, γ , δ, ε, α, it is easy to test and verify the above results, so numerical
simulation is omitted. In this paper, we study an SIS model with saturated incidence rate
βSI
+αS and treatment. We get some relatively complex conclusions by stability theory and
qualitative theory of differential equations. These conclusions will help policy makers to
make decisions.
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